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Some consequences of a theorem of Liouville

Abstract. Let E n denote the n-dimensional Euclidean space and S  the 
group of Euclidean similarities. It is shown that the group (g, S) gener­
ated by S  and a single diffeomorphism g outside S  has an orbit which is 
dense in (E n'ira+l

1. Introduction

By the theorem referred to in the title we mean Liouville’s theorem on con­
formal mappings in space, that is, mappings which preserve all angles between 
smooth curves. It may be stated as follows.

L i o u v i l l e ’s  T h e o r e m

Any sufficiently smooth conform al mapping between connected open regions 
o f  a Euclidean space o f  dim ension at least three is induced by a Mobius trans­
form ation  acting on the whole space together with a point at infinity.

In textbooks on differential geometry and related subjects this theorem is usu­
ally proved for differentiable mappings of class C 3 (see e.g. [3], p. 140, [4], 
vol. I, p. 373, or [12], vol. Ill, p. 310 and vol. IV, p. 13). However in 1958, 
Philip Hartman has proved it for C 1 mappings (see [6]) and more recently 
Yu. Resetnyak has proved an even stronger theorem in which he makes no 
differentiability assumptions at all (see [8], [9]).

Let E n denote the n-dimensional Euclidean space and S  its group of auto­
morphisms comprising Euclidean motions as well as similarities. Thus with 
respect to Cartesian coordinates S  consists of all mappings of the form

X  ee AY ■ M  +  V, 0 ^  A 6  K, M  ■ M T =  I  (M  an orthogonal matrix).

A matrix of the form AM where M  is orthogonal will be called quasi-orthogonal. 
For an arbitrary number m  let us denote by (E „)m+1 the set E n x E n x . .. x E n 
where the factor appears m  +  1 times. As S  acts on E n it also acts on the sets
(E n)m +1.

For an (m +  l)-tuple {Pq,P i , . .. ,P m) G (E n)m+1 we shall denote by 
[Po, P i , . .. , Pm\ the affine subspace spanned by these points. An (m +  1)-
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tuple of points not contained in any subspace of dimension less than m  will be 
called independent or will be referred to as a non-degenerate m-simplex or just 
as an m -sim plex  for brevity.

T h eo rem  1
Let m  ^  n and let g denote a differentiable C 1 mapping o f  E n onto itself 

which has a differentiable inverse. I f  g ^  S  then the group G =  (g, S } generated  
by g and the group S  o f Euclidean sim ilarities has an orbit LI which is dense in 
(£ n )m+1- Precisely speaking, any orbit containing a non-degenerate m -sim plex  
is dense in (E n)m +1.

The main tool in the proof is Liouville’s theorem in the case where the map­
ping is defined in the whole of E n , combined with the fact that the Euclidean 
group S  is maximal within the affine group (see [5], [7], or [11]). Although 
Liouville’s theorem is not valid for planar regions in general, its analogue for 
the case when the region considered is the whole plane is still true. Therefore 
Theorem 1 holds also for n =  2.

Let G  be a group acting on E n and T) a subset of (E n)m+1 which is invariant 
under the action of G  induced on (E n)m+1. We consider functions /  : T> —> ]R 
where M denotes the field of real numbers satisfying the following functional 
equation:

f ( g ( P o ) ,g ( P i ) , . . . ,g ( P m) ) = f ( P o , P i , . . . , P m), for all g G G  (i.l)

Any function /  satisfying (i.l) with respect to a given group G  is called 
an invariant with respect to the group G. An invariant with respect to the 
group S  of Euclidean similarities will be called a Euclidean invariant. As an 
immediate consequence of the theorem above we obtain:

C o ro lla r y  1
Let m  ^  n. Let the bijective mapping g : E n —> E n and its inverse be o f  

class C 1 and assume (i.l) holds fo r  a continuous Euclidean invariant f  and 
fo r  G =  (S ,g ). Assume further that f  is defined on a set which contains a 
non-degenerate m -simplex. Then either g 6 S  or else f  is constant.

Corollary 1 is a slight improvement of theorem 2 of [10], p. 107, which was 
proved without any reference to transitivity properties of the group G  that is, 
independently of Theorem 1. Let us call an invariant /  trivial if it assumes 
distinct values only on tuples (Po, P i, . . . ,  Pm) and (Qo, Q i , • • •, Qm) which are 
not mapped onto each other by any bijection since they can be distinguished 
by means of the identity relation. Evidently non-trivial (m +  l)-ary invariants 
exist with respect to a group G  if and only if the group is not (m +  l)-fold 
transitive. The example of the affine group shows that the theorem and the 
corollary cannot be improved in a certain sense. For, by the maximality of S  
within the affine group, the affine group is generated by any affine mapping not



in S  together with S. Also the affine group is transitive on m-simplexes but not 
on arbitrary (m  +  l)-tuples. Hence non-trivial (n +  l)-ary invariants exist for 
the affine group so that we cannot omit the continuity in the corollary. But the 
situation may change if we require additionally that g is not an affine mapping. 
It is not known to the author whether there exist differentiable mappings g 
other than affine ones such that G =  (g, S } is not (n +  l)-fold transitive.

Also the assumption that m  ^  n  cannot be omitted. Here again the affine 
group provides us with a counterexample. Consider an r-simplex Po, P i, . . . ,  Pr . 
Recall that each point X  of the subspace [Po, P i, , Pr\ can be written in a 
unique way as

X  =  AoPo +  A1P1 +  • • • +  A rPr

where Ao +  Ai +  • • • +  Ar =  1 and Ao, Ai, . . . ,  Ar are called the barycentric 
coordinates o f  X  with respect to Po, P i, .. ., Pr . As a function of Po, P i, 
.. . , Pr , and X  the i-th barycentric coordinate Aj =  Aj(Po, P i , . . ., Pr , X )  is a 
continuous affine invariant which is not constant. Let us now take r =  n. From 
the fact that the point X  is uniquely determined by its barycentric coordinates 
Ao,. . ., A„ it follows easily that the affine group has no dense orbits on (P „)n+2.

Note however, that the invariants Aj =  Aj(Po, P i, . .. , Pr , X )  are no counter­
examples against Corollary 1 since they do not contain any (r +  l)-simplexes 
in their domain of definition. Hence the condition of the existence of a simplex 
in the domain of definition is also essential and cannot be omitted from the 
hypotheses of the corollary.

2. Proof of Theorem 1

The following Lemmas 2.1-2.3 will serve as preliminary steps towards the 
proof.

We start with an elementary fact about the Euclidean group, namely that 
there are no groups in between the Euclidean group and the affine group. Thus 
if S  C H  C A where H  is a subgroup, then H  =  A. Denote by G L n (№.) 
the group of all real n  x n  matrices with non-vanishing determinant and by 

the group of all quasi-orthogonal matrices. Then it is easily seen 
that the above assertion is equivalent with the following:

L em m a  2 .1
Let H n(M) be a subgroup o fG L n(№.) properly containing the group M*On(M). 

Then Hn (]R) =  GP„(]R).

We consider a bijective mapping g : E  —> E  such that g and its inverse are 
of class C 1. As in the theorem let G =  (g, S) and assume g ^ S. We express g 
in terms of coordinates in the form

g(X ) =  (u1(x1,x 2, ■ ■ , , x n) ,u 2(x i , x 2, . . . , i n), .. . ,u n(x 1,x 2, .. . , x n)).



Then with respect to an arbitrary point Po =  (xoi, X02, • • • , xon) we have (with 
P  =  (x i , x 2, .. . ,x„ ))

where

i ( P )  =  U i(P0) +  ^  ^ - ( X j  -  X0 j ) +  O i(P ) 
1

nlim ,
P^-Po P  -  PC0

where |P — Pol stands for the Euclidean distance between P  and Po. Let Do-
denote the Jacobian matrix D =  j  ■ Then the above equations can be 
rewritten as

g(P ) =  g(P0) +  (P  -  Po) • D T +  o(P ), (1)

where o(P) is a vector valued function such that p ^ p 0 ->  0 as |P — Po| —> 0. 

When n  ^  3 from Liouville’s theorem it follows:

L em m a  2 .2
There exists a point P  where D is not quasi-orthogonal.

Indeed, assume the contrary: the Jacobian matrix D  of g is quasi-orthogon- 
al at each point P .

An arbitrary CPmapping preserves angles between smooth curves going 
through a point P  if, and only if, its Jacobian matrix D  at P  is quasi-orthogonal. 
Hence g preserves all angles between smooth curves, i.e. g is a conformal 
mapping. When n ^  3 it follows by Liouville’s theorem that g is induced by a 
Möbius transformation. Let us recall that Möbius transformations are bijective 
mappings of the set P„U {oo} onto itself which can be composed from inversions 
at spheres or hyperplanes (see [2]). Alternatively, they can be characterized as 
maps preserving the system of point sets which are either given by spheres of 
E n or by hyperplanes of E n together with the point 00. Since g is defined on 
the whole space E n and maps E n onto itself we may identify g with the Möbius 
transformation in question, which fixes the point 00. It is well-known that any 
Möbius transformation fixing 00, as a mapping of E n must belong to S. Thus 
g 6 S  contrary to our assumption that g ^  S.

The case n =  2 needs some special attention since there exist conformal 
mappings of planar regions which are not induced by Möbius transformations. 
As is well-known however, it follows from the theorem of Casorati-Weierstraß 
that a conformal and one-to-one mapping of the entire complex plane is ne­
cessarily of one of the forms z 1—► az +  b or z 1—► az +  b. Since such mappings 
belong to S  it follows that Lemma 2.2 holds also when n =  2.

If g(P ) P  consider the mapping h  : E n —> E n given by

h (X ) =  g (X ) -  g (P ) +  P.



This mapping belongs to G =  (g ,S }, fixes the point P  and has the same 
Jacobian matrix as g. Let G p  denote the subgroup of G  fixing the point P. 
The Jacobian matrices of elements of Gp taken at P  form a group containing 
the matrix D  and also all quasi-orthogonal matrices. It follows that this group 
is the full linear group G L n(Jt). If Q is another point then G q is conjugate to 
G p  by a translation t taking P  to Q, i.e. G q =  tG p t^ 1. This implies that the 
Jacobian matrices of elements of G q also exhaust the full linear group.

L em m a  2 .3
Let P  be an arbitrary point. Then fo r  each invertible matrix M  there exists 

an elem ent h contained in the stabilizer G p having M  as its Jacobian  matrix.

Let A i and A2 be n-simplexes with the vertices Po, P i , . .. , P„ and Q0, Q 1, 
. .. , Qn, respectively. In order to prove the theorem it suffices to show that for 
a given e  >  0 there exists an n-simplex A3 in the orbit of A i with vertices 
Pq, P{, .. ., P f  such that \Qi — P'\ <  e, i =  0, 1,. . . ,  n. Since G contains ar­
bitrary translations we may assume here that Pq =  Qq =  O where O denotes 
the origin. By Lemma 2.3 there exists a mapping h  G G o  with the Jacobian 
matrix A satisfying Pi ■ AT =  Qi, i =  1,. .. ,n . For h  formula (1) becomes

h(P ) =  P  ■ AT +  o(P ), P ^ O .

Let d =  max|Pj|, i =  1 , . . . , n .  Choose ô such that |o(P)| <  (||P| if |P| <  S. 
Choose A such that A|Pj| ^  Ô. Then |o(APj)| <  |A|Pj| ^  eA. Let /  : E n —y E n 
denote the similarity, / ( X )  =  AX. Then f ~ 1h f  G G and / _1(h (/(P j))  =  
Qi +  Yi where \Yi\ =  A_ 1 |o(APj)| <  e. This proves the theorem.

R em a r k  1
Theorem 1 can easily be extended to arbitrary differentiable mappings. To 

do this one has to use the stronger result of Yu. Resetnyak rather than Li- 
ouville’s theorem for G1 mappings. All that needs to be done here is to show 
that Resetnyak’s condition of conformality (see [8]) is satisfied by a differen­
tiable mapping at a point P  provided the Jacobian matrix of the mapping is 
quasi-orthogonal at P . Then Resetnyak’s result will ensure that a differentiable 
mapping which has quasi-orthogonal Jacobian matrix everywhere is a Mdbius 
transformation. Hence Lemma 2.2 can be proved in a similar way as we have 
done it for G 1 mappings. The rest of the proof goes unchanged.

3. Continuous extensions of the affine group

In this section we consider extensions of the group A of all affine mappings 
X  1—► X  • M  +  B  of E n by a continuous transformation / ,  i.e., a bijective 
mapping /  : E n —y E n which is continuous in both directions.



T h eo rem  2
For any continuous transform ation f  o f  E n either f  6 A or the group 

G =  (/ , A) is (n  +  1 )-fold  transitive on E n .

P roo f  The proof will be achieved through the following elementary Lem­
mas 3.1-3.10 below.

Assume that for 1 ^  m  ^  n  there exist mutually distinct points Qo, Q i, .. ., 
Qm, R  such that [Qo, Q i, ■ ■ ■ , Qm] has dimension m  and contains R  and that 
none of the transforms of the tuple (Qo, Q i , . .. , Qm, R ) spans a subspace of 
higher dimension. For brevity let us write

p(Q o , Q i , • • • , Q m ? R )

if this is true. By this definition we may permute the points Qo, Qi, • • • , Q™ 
arbitrarily without disturbing the relation p. It should be clear that there exist 
relations of this type which are not empty. To see this we need only take m  =  n.

L em m a  3 .1
I f  m  is the sm allest number fo r  which a non-empty relation p exists then 

G is (m  +  1 )-fold  transitive.

Let Qo, Q i, .. ., Qm-1, Qm be distinct points which span a subspace of di­
mension less or equal m  — 1. Since the subgroup A of G  is transitive on m- 
simplexes it suffices to show that there is an h  G G  such that h(Q o), h (Q i) , . . ., 
h (Q m -i), h(Qm) is an m-simplex. Choose a maximal independent subset 
among these points. Since the ordering plays no role here, we may assume 
that Qo, Q i, • • •, Qr , r  <  m, are the points of this subset. Then since m was 
assumed minimal there exists an h i  G G  such that

h'li.Qo')i fo'ii.Qi'ji • • • i (Qr)i hii.Qr+1)

are independent. If r +  2 ^  m and hi(Q o), h i(Q i) , .. ., h i(Q r+ i) , h i(Q r+2) are 
dependent we may find ho G G  such that

h2[hi(Qo)\, h2[hi(Q i)\ ,. . . ,  h2[hi(Q r+i)\, h2[hi(Q r+2)\

are independent. Continuing in this way we find the required mapping h  G G.

L em m a  3 .2
Let h  G G. Then

p(Q o> Q h  • • • i Q m 7 R )
implies

p(h(Q 0), h (Q x ),. . . ,  h(Qm), h(R ))

provided that the points h(Q o), h (Q i), . . . ,  h(Q m) are independent.



This follows immediately from the definition of the relation p. Since all af­
fine mappings are contained in G  it follows that if the tuples (Qo, Q 1, • • • ,Q m ,R ) 
and (Qo, Q i, , Q'm , R') are affinely equivalent then the assertions

p(Qo, Q i, ■ ■ ■ , Qm, R) and p(Qo, Q 1j • • • , Qmi R  )

are equivalent.

L em m a  3 .3
Assume that p(Qo, Q i , . . . ,  Qm , Rv) holds fo r  all elem ents o f  a sequence 

(Rv) converging to a point R  distinct from  Qo, Q i, .. ., Qm - Then

p(Q o, Q i , - - - , Q m ? R )
holds as well.

Let h  be an arbitrary element of G. Denote by L u the subspace spanned by 
the points h(Q o), h ( Q i) , . .. , h(Q m), h (R u) and by L  the subspace spanned by 
the points h(Q o), h(Q i), .. ., h(Q m), h (R ). Let m i =  m i(h )  be the largest from 
among those numbers dim L u that occur inifinitely often in the sequence and 
choose a subsequence R\ such that dimLv =  m i for all A. Note that m i ^  m 
because of the assumption that p(Qo, Q i , • • •, Qm , Rv) is true.

If h(R ) depends on the points h(Qo), h (Q i), . . . ,  h(Q m) then obviously 
dimL =  dim[h(Q0), h{Q i), .. ., h(Q m)\ Q dimLv =  m i.

If h(R ) is independent of the remaining points h(Q o), h ( Q i) , . .. , h(Q m) 
then the same is true of h (R u) at least for all v larger than a certain number 
N . Then dim(L) =  dim(Lv) =  m i for all A >  N.

Since m i{h ) Q m for all h  G G  it follows that p(Q i, Q2, • • • , Qm, R) is true.

From now on we shall work with barycentric coordinates.

L em m a  3 .4
I f  S  =  (Q o,Q i, ■ ■ ■ ,Qm) and S' =  (Q'0, Q [ , . . . ,  Q'm) span subspaces o f  

dim ension  m and i f  R, R' are points such that the barycentric coordinates o f  R  
with respect to S  coincide with the barycentric coordinates o f  R' with respect to 
S' then p(Q 0, Q 1, • • •, Qm, R ) *5 equivalent with p(Q'0, QQ . . . ,  Q'm , R').

This follows from the fact that the tuples

(Q o ,Q i,. . .  ,Q m ,R )  and (Q'0, Q [ , . . . ,  Q'm , R')

are affinely equivalent if and only if the barycentric coordinates of R  with re­
spect to Q0, Q i, .. ., Qm are the same as those of R' with respect to Q'0, QQ .. .,
Q'm-

L em m a  3 .5
I f  p(Qo, Q i, ■ ■ ■ , Qm, R) is true and R  is not contained in the subspace 

spanned by Q0, Q i , . . . ,  Qm- 1 then p(Q  0, Q 1, . . . ,  Qm- i ,  R, Qm) is also true.



This is true since (Qo, Q 1, • • •, Qm—i, R) is still an m-simplex if (Qo, Q 1,
• • • , Qm) is, and since Qrri £ \Qo , • • • , Qm—17 R\ if A £ o , • • • , Qm] • Apart 
from that for p(Qo, Q i, ■ ■ ■ , Q m -i, R, Qm) to be true we only require that 
the dimension of the subspace spanned by h(Q o), h (Q i), . . . ,  h(Q m), h(R ) 
never exceeds m  as h  runs through G. This follows from the assumption that 
p(Qo, Q1, • • • , Qm, R ) is true.

L em m a  3 .6
I f  p(Q o, Q i, • • •, Qm, R ) *5 true and A is contained, in the subspace Sm- i  

spanned by Q o ,Q i , . . .  ,Q m- i  then p(Qo, Q i , . . . ,  Qm—i, P, R) is true fo r  any 
point P  outside the subspace Sm- i -

This follows from the fact that the tuple (Qo, Q i , . .. , Qm—i, Qm, R ) is af­
finely equivalent with (Qo, Q i , . . . ,  Qm—i, P, R )•

Let us now assume that m  is minimal so that G  is (m +  l)-fold transitive.

L em m a  3 .7
I f  m  =  1 then f  G A.

If m  =  1 then there exist points Q o ,Q i,R  such that p(Qo, Q i, R) holds, 
i.e., the points Qo, Q i, R  are distinct and collinear, and g(Qo), g(Q i) , g(R ) are 
collinear for all g G G. Let L  denote the line going through Qo, Q i, and R. We 
thus have a set Mo =  {Qo, Q i, R }  of collinear points such that for each g G G  
the set g{M(f) will again be collinear. By interchanging the points Qo, Q±, R  if 
necessary, we may assume that R  belongs to the segment QoQi-

Let R  =  ctQ o+ t Q i where cr+ r  =  1 and a, r  are the barycentric coordinates 
of R  with respect to Qo and Q i. If t S  =  —crQo +  Q i then Q i =  crQo +  t S  
whence p(Q o, S, Q i) . Similarly if a T  =  Qo — t Q i then Qo =  u T  +  t Q i whence 
we have p(T, Qo, Q i). The points S  and T  lie outside the segment QoQi and 
on different sides of it. We are now going to enlarge the set Mo successively.

First we may add the points S, T  to get M i =  {T , Qo, R, Q i, S'} which still 
has the property that <?(Mi) is a set of collinear points for all g G G. Secondly, 
for all pairs of consecutive points Ci, Co in such a set we may add the point 
C  =  crCi +  t Co- Combining these steps alternately we arrive at a sequence 
Mo C  M i C  . . .  C  M„ C  . . .  of sets such that g{M u) consists of collinear points 
for all g G G  and M  =  (J M„ is dense on the line L. Consequently, also the 
points of g(M ) are collinear for all g G G. Since the set M  is dense on L  
and the mappings g are continuous, it follows that the line L  is mapped onto 
another line by every g G G. The same must be true for any other line L i  since 
on L i we can construct a set of points M i analogous to the set M  on L.

Thus each g G G  preserves lines and hence it is a semi-affine mapping 
of E n . Since the field of real numbers has no automorphisms other than the 
identity, it follows that G  consists entirely of affine mappings, i.e., G =  A and 
consequently /  G A.



We shall now assume that m  >  1 which is only possible if G A, i.e.,
f t  A.

L em m a  3 .8
I f  there exists a point R contained in Sm- 1 such that p(Qo, Q i , • • •, Qm, R) 

is true then p(Q o, Q i, .. ., Qm ,X )  is true fo r  every point X  6 Sm- 1 which is 
distinct from  Qo, Q i , .. ., Qm- i -

We can find a mapping h  6 G  which fixes Qo, Q i, .. ., Qm- i  and maps 
R  to another arbitrarily chosen point R i inside Sm-1 which is distinct from 
Qo, Q i , . . . ,  Qm-1- Since h  is a homeomorphism it cannot transform all points 
of E n \ Sm-1  into Sm- 1- Let Q be a point which remains outside, i.e., h(Q) 6 
E n \Sm- i -  Choose an affine map a  which fixes Sm- i  pointwise and maps h(Q) 
to Q. Then

ah(R ) R i , ah(Q o) Qo, ah(Q Q  Q i , . . . ,  ah(Q m—i') Qm—l,

and
ah(Q) =  Q.

By Lemmas 3.2 and 3.6 it follows that p(Q o, Q i, .. ., Qm- i ,  Q ,R i) is true and 
again by Lemma 3.6 also that p(Qo, Q i , • • • , Qm—i, Qm, R i)  holds.

L em m a  3 .9
I f  there exists a point R  such that p(Q o, Q i, .. ., Qm, f?) holds we can find  

points P  in the subspace Sm- i  generated by Qo, Q i, ■ ■ ■ , Q m -i such that the 
relation p(Qo, Q i , . . . ,  Qm , P ) holds.

If R  is contained in one of the subspaces spanned by the faces of the simplex 
then using an affine map hi that permutes the points Qo, Q i, .. ., Qm appro­
priately, we can find points Ri =  hQR) in each of these subspaces such that 
the relation p{hi{Q o), h j(Q i), .. ., hi(Q m), hQ R )) is satisfied. Since we may ar­
bitrarily permute the points hi(Q o), h i ( Q i) , . .. ,h i(Q m) without disturbing p 
it follows that p(Qo, Q i, ■ ■ ■ , Q m ,R i)•

Let us now assume that R  is not contained in any one of these subspaces. 
Then if Ao, Ai , . . . , Am are its barycentric coordinates, we have 0 Aj for 
i =  0 ,1 , . . .  ,m . We may assume Am —1. (If Am =  —1 then Aj —1 for 
a suitable index i and we may interchange the points Qi and Qm.) Let T (R )  
be the point which has barycentric coordinates Ao, Ai, . .. , Am with respect to 
Qo, Q i, ■ ■ ■ , Q m -1, R- Then the barycentric coordinates of T (R )  with respect 
to Qo, Q i, ■ ■ ■ , Qrn are A0(l +  Am), A i ( l + A m), . .. , A2m and T (R )  is distinct from 
Qo, Q i, ■ ■ ■ , Qm and not contained in any of the subspaces spanned by the faces 
of the simplex with vertices Qo, Q i , . . . ,  Qm.

Moreover by Lemma 3.4 we get p(Qo, Q i, .. ., R, T (R )). We are now going 
to show that either p(Qo, Q l, • • •, Qm, T (R ))  is also true or there exists a point



P  in the subspace S m_ i =  [Q0, Q1, .. ., Qm- 1] such that p(Q 0, Qi, . .. , Qm , P ) 
is satisfied.

To this end consider an arbitrary h £ G. Assume the points h(Q o), h(Q i),
. .. , h(Q m) are dependent. Then obviously

dim[h(Q0), h{Qx), . .. , h(Q m), h (T (R ))] ^  m.

Hence assume that h(Q o), h(Q i), . .. , h(Q m) are independent. If h(R ) is not 
contained in the subspace [h(Qo), h(Q i), . .. , h(Q m—i)] then h (T (R ))  belongs 
to the subspace

[h(Q0), K Q x ) , . . . ,  h(R)} =  [h(Q 0), h { Q Q , . . . ,  h(Qm_i), h(Q m)\.

If this is true for all h  for which h(Q o), h(Q i), . .. , h(Q m) are independent the 
relation p(Q o, Q i , . . . ,  Qm , T (R ))  is satisfied.

Otherwise there exists h  such that h(Q o), h(Q i), . . . ,  h(Q m) are independ­
ent but h(R ) G [h(Qo), h(Q i), .. ., h(Q m- 1)]. Then we may choose an affine 
mapping a  such that ah(Q i) =  Qi, i =  0,1,  . . .  ,m  and ah(R ) =  P  belongs 
to [Q0, Q i , . . . ,  Qm-i\- By Lemma 3.2 this implies that p(Q  0, Q i , . . . ,  Qm , P)- 
Note that we are finished in this case.

Hence we may assume that p(Qo, Q i, . . . ,  Qm , T (R ))  is satisfied and that 
we may pass from a point R  to T (R )  in the way just explained whenever 
convenient. This means that we may assume that |Am| =/= 1. For, if Am =  
1 and all the other Aj are ± 1  we may first replace R  by T (R )  which has 
Ao(l +  Am) =  ± 2  as its first barycentric coordinate. Thus |Aj| =/= 1 for some 
i and we interchange Qi and Qm . We may even assume that |Am| <  1. For 
if | Am | >  1 we interchange the points Qm and R  which is possible because of 
Lemma 3.5. Then

~^Q m  — A0Qo +  • • • +  Am_ iQ m_ i — R

and so

Qm =  - y ^ Q o ----------^ Q m - l  +  ^ - R -
'Vn

With this last assumption let us now construct a sequence (R n) taking 
Ro =  R  and R n+ i =  T (R n). If this sequence breaks off at some stage we 
have found a point P  in [Qo, Q i, ■ ■ ■ , Q m -1] such that p(Qo, Q i , . .. , Qm , P ) is 
satisfied and we are finished. Hence we may assume that the sequence does not 
break off. It is easy to see by induction on n  that the barycentric coordinates 
of R n are

Pi A j(l +  Am +  • • • +  Am ), i 0 , 1 , . . . ,  Tfl 1, Pm m '

Since |Am| <  1 the sequence (R n) converges to a point S  with barycentric 
coordinates — for i =  0 ,1 , . . .  ,m  — 1 and 0 for i =  m . This point S  lies-L



within the face Qo, Q 1, .. ., Qm—i of the simplex Qo, Q 1, • • •, Qm and from the 
assumption m  >  1 it follows that S  is distinct from Qo, Q i, . . . ,  Qm- i -  Since 
its last coordinate is zero, it is also distinct from Qm . Hence by Lemma 3.3 it 
follows that p(Q i, Q2, , Qm, S) is true. This proves Lemma 3.9.

L em m a  3 .10
I f  there is a point R  contained in Sm- 1 such that p(Qo, Q i , . . . ,  Qm , R) 

holds then fo r  any R i outside Sm- 1 there are points Q such that

p(Qo, Q 1, • • • ,Q  m—1? Q, R i)

is true. M oreover, fo r  a given point R i the set o f  possible points Q is open and 
dense in E n.

Choose R i outside Sm- 1 and choose h  G G  such that h(Q 0) =  Q0, h(Q i) =  
Q 1, . .. , h(Q m- 1) =  Q m -1, and h(R ) =  R\. This is possible since G  is (m + 1 )-  
fold transitive.

Choose a point P  outside Sm- 1 whose image h(P )  also does not belong 
to the subspace Sm- 1 =  [Q o,Q i, ■ ■ ■ ,Qm-i\- This means that P  must not 
belong to the two surfaces [Qo,Q  1, . . . ,  Qm- 1] and h ~ 1([Q0,Q  1, . . . ,  Qm- 1]) of 
(topological) dimension m —1.

Since p(Q 0, Q 1, .. ., Qm, R ) holds and R  G Sm- 1 by Lemma 3.6 it follows 
that p(Qo, Q i , . . . ,  Qm- i ,P ,  R) does. Hence p(Q 0, Q i, ■ ■ ■ , Qm- 1, h (P ), R i)  is 
true because h(R ) =  R i and h(Q f) =  Q i, i =  0,1,  . . .  ,m  — 1. Thus we may 
take Q =  h (P ). The subset from which we can choose P  is open and dense in 
E n. Therefore the subset from which Q =  h (P )  can be chosen is also open and 
dense.

We are now in a position to complete the proof of Theorem 2. For, from 
Lemma 3.9 it follows that the hypothesis of Lemma 3.10 can always be satisfied. 
Thus we may conclude that m  =  n, for otherwise we could find points Q and R i 
such that p(Q 0, Q i, ■ ■ ■ , Qm- i ,Q ,  R i)  is true but £  [Q0, Q1, . . . ,  Qm- i ,  Q], 
a contradiction. Then G is (n +  l)-fold transitive, because of Lemma 3.1.

R em a r k  2
Note that the conclusion of Theorem 2 is not true if /  is not continuous. 

To see this, take a subfield K  of ]R. Consider E n as a vector space over K  
and let /  be a linear mapping of E n over K  which is not linear over the field 
M. Such a mapping /  is necessarily discontinuous and G =  ( / , A) is a group 
of affine mappings of E n considered as an affine space over K  and hence not 
(n +  l)-fold transitive.

The author does not know any example of a group G =  ( / , A) with /  
continuous which admits non-trivial k -ary invariants for some k  >  n +  1. In 
fact, the groups considered in Theorem 2 might well turn out to be /c-fold 
transitive for all k. At the present time however, this seems an open problem.



In this context it is worth noting that the groups G =  ( / , A) are a special kind 
of Jordan groups and therefore much further information is available on them 
(see [1]).

4. A special class of mappings

Theorem 1 raises the following question: if g is not an affine map maybe 
more could be said, e.g. that the group (g, S } is (n  +  l)-fold transitive. In 
this section we consider bijective mappings which are differentiable (in both 
directions) and which are themselves not affine but are such that the group 
(g, S } contains affine mappings not in S. In this case (g, S } must contain the 
whole affine group and hence is (n +  l)-fold transitive.

T h eo rem  3
Let g be as in Theorem  1. Assume further that g is not affine but (g, S } 

contains som e affine mapping not in S . Then (g, S } contains the affine group 
and is (n  +  1 )-fold  transitive on E n .

Since differentiable mappings are continuous this follows from the maxim- 
ality of S' in A and from Theorem 2 proved in the previous section. Note that 
the differentiability is not required in this theorem. It has been kept in the 
hypothesis to depart as little as possible from the context of Theorem 1.

We will now show by means of an example that the class of C 1 mappings 
considered in Theorem 3 is not empty. For this purpose we may look for a 
differentiable mapping a  given by

a {x ,y )  =  (G (x ,y ),y )

which is itself not linear but whose iterative square a  o a  is the linear mapping 
(x ,y ) —> (x +  u y,y)  for some u 0. This means that we are looking for a 
differentiable function G{x, y) which satisfies the functional equation

G[G{x,y),y\ =  x +  uy (4.1)

Let g : R ->  R  be a continuously differentiable function satisfying

g ( x +  1) =  g{x) +  1. (4.1a)

We can get such a function from any periodic function h  with period 1 by 
setting g(x) =  x +  h(x). We may choose h  in such a way that — A ^  h'(x) ^  t). 
Then g'{x) =  1 +  h'{x) will be positive within the bounds | ^  g'(x) ^  | so that 
g(x) is strictly increasing. We may also assume that 1 is the smallest period of 
the function h.

For each value of y we modify h(x) by a factor A(y) such that 0 ^  A(y) ^  1
2

and A(y) —> 0 as y —> 0. We may choose A(y) =  1 — e ~ v for this purpose. Set 
gy(x) = x  +  A (y)h(x).



This function still satisfies (4.1a) and | ^  g'y{x) ^  |, so its inverse gy 1 
exists. Let us now set

G(x, y) uygv 9y
X

uy

X

when у =/= 0, 

otherwise.

An easy computation shows that G  satisfies equation (4.1). Therefore the 
(iterative) square of the mapping a  is the linear mapping given by a o a ( x ,  y) =  
(x  +  u y , y). Hence a  must be bijective.

It remains to check that a  is differentiable. It is easily seen that the inverse 
function gy 1 also satisfies (4.1a) and so it can be written in the form

9 y 1{x) = x  +  h {x ,y )

where h (x ,y )  is periodic in x  with period 1. From the bounds for gy(x) we get 
_ i  ^  dh(x,y) ^  pQr sake Qf symmetry let us write h (x ,y ) instead of 
\{y)h{x). From x =  gy(gyx(x)) we obtain

h ( x +  h (x ,y ) ,y )  + h ( x ,y )  =  0. (4.2)

The value h(x, y) of the function h  is uniquely determined by this relation 
for each pair (x, y) and from the implicit function theorem it follows that the 
function h  has continuous partial derivatives if h  has. In fact, we may use the 
above relation to compute the partial derivatives of h  with respect to x  and y

9h(^ ’ ^  =  “ S i  (x +  h (x ,y ) ,y )  ( l +  ^  (x +  h ( x ,y ) ,y ) ]  (4.3 a)

9 jl ĝy V  ̂ =  ~ § y  (x +  h (x ,y ) ,y )  +  (x +  h (x ,y ),y )^ j (4.36)

It follows from these formulae that since (y)(x,y) =  o(y) and ^ j(x ,y )  =  0 (y )  
as y —y 0, independently of the first argument x, the same remains true for 
§ ( x , y ) a n d g ( x , y ) .

We may now rewrite the expression for G(x, y) in the case y =/= 0 as follows

where

G (x ,y ) x +  uyh  (£, y) uy
2

+  uyh  (77, y) , (4.4)

£, =  — , h =  i  +  h { i ,y )  +  \-uy 2
When y yf 0 we may calculate the partial derivatives G x and Gy in a straight­
forward manner. Thus

е л « . , )  -  ( i  +  £ * K , , ) )  ( 1 +  £ < * , ) ) . (4.5)



It follows that the function G x defined by the above expression is continuous 
(for y yf 0) and that G x(x ,y ) —► 1 as y —► 0 regardless of the first argument. 
Thus G x is continuous everywhere. For Gy we obtain in the case y 0

u

2 + U
[ H € , y )  +  K f i u y ) ]

+  u y
d h  d h  d h  - ,9 h
w - ( £ , y )  +  x - № l / J  +  x - ( ? 7  , y ) ^ ~ P , y )  
a y  a y  o x  o y

X

y

d h  d h  (  d h  \

It is easy to see that the function G y is continuous when y 0. For y =  0 it 
follows from (4.4) that Gy(x, 0) =  Moreover since, as remarked above,

and -  tP  tend to zero as y —> 0 while and ^  remain bounded it follows thaty ox v oy ay
G y(fi, y) —y ff as y —y 0 regardless of the first argument. Thus Gy is continuous 
everywhere and we have proved that a  is differentiable.

For the proof that the inverse of a  is also differentiable we only need to 
show that the Jacobian of a  never vanishes. (Note that this does not follow 
from the bijectivity of a  which has been established above.) But the Jacobian 
of a  at (x ,y )  is equal to G x(x ,y )  and from (4.5) it follows that G x(x ,y ) p  0 
for y p  0. For y =  0 this is still true since G x =  1 in this case.
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