Grzegorz BrylL Robert Sochacki **A method of comparison of Post-complete propositional logics**

Abstract. In this paper we consider a necessary and sufficient condition for every propositional calculus to be Post-complete. We will show, how this condition may be used to compare consequence operations for these calculi.

Let S denote the set of all well formed formula of a fixed language of a propositional calculus. By the symbol (R, X) we mean any propositional calculus, where R is a set of rules and X is a subset of S . The set of all formulae belonging to the set *X* or derivable from the set *X* by means of the rules R will be denoted by $C_n(R, X)$. The consequence operation C_n is finistic. The notion of Post-completeness is defined as follows:

DEFINITION 1

 $(R, X) \in Cpl \Longleftrightarrow \forall_{\alpha \in Cn(R,X)}[Cn(R, X \cup {\alpha})] = S$.

Let us recall definitions of two sets of rules. With any pair *(R , X)* there can be connected two sets of rules of inference:

DEFINITION 2

 $r \in Perm(R, X) \Longleftrightarrow \forall_{\Pi \subset S} \forall_{\alpha \in S} [(\Pi, \alpha) \in r \ \land \ \Pi \subseteq Cn(R, X) \Longrightarrow$ $\alpha \in C_n(R, X)$.

DEFINITION 3

 $r \in Der(R, X) \Longleftrightarrow \forall_{\Pi \subset S} \forall_{\alpha \in S} [(\Pi, \alpha) \in r \Longrightarrow \alpha \in Cn(R, X \cup \Pi)].$

The set $Der(R, X)$ contains all rules derivable from R and X . $Perm(R, X)$ is the set of all rules permissible in the system (R, X) .

It can be shown (see [2, 3]) that:

Lemma 1

- $a)$ $r \in Perm(R, X) \Longleftrightarrow Cn(R \cup \{r\}, X) \subset Cn(R, X),$
- *b)* $Der(R, X) \subseteq Perm(R, X)$,
- $c)$ $(R, X) \in Cpl \Longleftrightarrow Perm(R, X) \subseteq Der(R, X)$.

For any logical matrix \mathfrak{M} the symbols $V(\mathfrak{M})$ and $E(\mathfrak{M})$ denote a set of all unfailing rules and a set of all valid formulae (tautologies) in the matrix *VJl* respectively. We define the set $V(\mathfrak{M})$ in the following way:

DEFINITION 4

 $r \in V(\mathfrak{M}) \Longleftrightarrow \forall_{\Pi \subset S} \forall_{\alpha \in S} [(\Pi, \alpha) \in r \ \land \ \Pi \subset E(\mathfrak{M}) \Longrightarrow \alpha \in E(\mathfrak{M})].$

The next lemma will be useful (see [2]):

Lemma 2

 $X \subseteq E(\mathfrak{M}) \land R \subseteq V(\mathfrak{M}) \Longrightarrow Cn(R,X) \subseteq E(\mathfrak{M}).$

Lemma 2 states that all formulae derivable from the set $X \subseteq E(\mathfrak{M})$ by means of the rules *R* are valid in the matrix *VJl.* The completeness theorem for the calculus (R, X) with respect to the matrix \mathfrak{M} may be formulated as follows:

T heorem 1

$$
\emptyset \neq X \subseteq E(\mathfrak{M}) \Longrightarrow [V(\mathfrak{M}) = Perm(R, X) \Longleftrightarrow E(\mathfrak{M}) = Cn(R, X)].1
$$

Given a pair (R, X) we define the operation C :

DEFINITION₅

 $C_{(R,X)}(Y) = Cn(R, X \cup Y).$

It is easy to prove that the function $C_{(R,X)}$ is a consequence with the properties:

Lemma 3

a)
$$
C_{(R,X)}(\emptyset) = C_{(R,X)}(X)
$$
,
b) $Y \subseteq C_{(R,X)}(\emptyset) \Longrightarrow C_{(R,X)}(Y) = C_{(R,X)}(\emptyset)$.

Lemma 4

$$
(R,X)\in Cpl \Longrightarrow C_{(R,X)}(Y)=\left\{\begin{array}{ll}C_{(R,X)}(\emptyset),\ \ if\ \ Y\subseteq C_{(R,X)}(\emptyset),\\ S,\qquad\ \ if\ \sim Y\subseteq C_{(R,X)}(\emptyset).\end{array}\right.
$$

Lemma 5

$$
\left(C_{(R,X)}(Y)=\left\{\begin{array}{ll}C_{(R,X)}(\emptyset),\;\;if\;\;Y\subseteq C_{(R,X)}(\emptyset),\\S,\qquad if\;\;\sim Y\subseteq C_{(R,X)}(\emptyset)\end{array}\right\}\Longrightarrow (R,X)\in Cpl.
$$

The easy proofs of these lemmas are left to the reader. From Lemmas 4 and 5 it follows that the completeness notion may be characterized in the following way:

¹If the calculus (R, X) fulfils this condition, then the matrix \mathfrak{M} is said to be weakly adequate to (R, X) .

T heorem 2

$$
(R,X)\in Cpl \Longleftrightarrow C_{(R,X)}(Y)=\left\{\begin{array}{ll}C_{(R,X)}(\emptyset),\ \ if\ \ Y\subseteq C_{(R,X)}(\emptyset),\\ S,\qquad\ \ if\ \ \sim Y\subseteq C_{(R,X)}(\emptyset).\end{array}\right.
$$

T heorem 3

 $X \subseteq E(\mathfrak{M}) \wedge R \subseteq V(\mathfrak{M}) \wedge (R, X) \in Cpl \Longrightarrow C_{(R,X)}(\emptyset) = E(\mathfrak{M}).$

Proof. Assume that $X \subseteq E(\mathfrak{M})$, $R \subseteq V(\mathfrak{M})$ and $(R, X) \in Cpl$. Thus, by Lemma 2 and Definition 5 the inclusion holds:

$$
C_{(R,X)}(\emptyset) \subseteq E(\mathfrak{M}).\tag{1}
$$

For the converse inclusion we assume that $\alpha \in E(\mathfrak{M})$ and on the contrary that $\alpha \notin C_{(R,X)}(\emptyset)$. From Definitions 1 and 5 and by assumption $(R, X) \in Cpl$ we conclude that:

$$
C_{(R,X)}(\{\alpha\}) = S. \tag{2}
$$

Since $X \cup \{\alpha\} \subseteq E(\mathfrak{M})$ and $R \subseteq V(\mathfrak{M})$, then on the basis of Lemma 2 and Definition 5 we obtain $C_{(R,X)}({\{\alpha\}}) \subseteq E(\mathfrak{M})$. Because $E(\mathfrak{M}) \neq S$, thus $C_{(R,X)}({\alpha}) \neq S$, which contradicts (2).

Let us consider two propositional calculi (R_1, X_1) and (R_2, X_2) , where $X_1 \cup$ $X_2 \subseteq S$ and two consequence functions C_1, C_2 which are defined below:

DEFINITION 6

For every $Y \subset S$ *: a)* $C_1(Y) = C n(R_1, X_1 \cup Y),$ *b)* $C_2(Y) = C n(R_2, X_2 \cup Y)$.

We will prove the next Theorem:

T heorem 4

 $(R_1, X_1), (R_2, X_2) \in Cpl \wedge R_1 \cup R_2 \subseteq V(\mathfrak{M}) \wedge X_1 \cup X_2 \subseteq E(\mathfrak{M}) \Longrightarrow C_1 = C_2.$

Proof. From assumptions, Definitions 6 and 5 and Theorem 3, it follows that:

$$
C_1(\emptyset) = C_2(\emptyset) = E(\mathfrak{M}). \tag{3}
$$

According to the assumption $(R_1, X_1), (R_2, X_2) \in Cpl$, Definitions 6 and 5 and Theorem 2 we have two equalities:

$$
C_1(Y) = \begin{cases} C_1(\emptyset), & if \ Y \subseteq C_1(\emptyset), \\ S, & if \ \sim Y \subseteq C_1(\emptyset). \end{cases} (4)
$$

$$
C_2(Y) = \begin{cases} C_2(\emptyset), & if \ Y \subseteq C_2(\emptyset), \\ S, & if \ \sim Y \subseteq C_2(\emptyset). \end{cases} (5)
$$

Let us consider the following two cases:

- I. *Y* $\subset C_1(\emptyset)$. Then from (3) we have *Y* $\subset C_2(\emptyset)$. We conclude from (4) and (5) that $C_1(Y) = C_1(\emptyset)$ and $C_2(Y) = C_2(\emptyset)$, hence $C_1(Y) = C_2(Y)$.
- II. ~ $(Y \subseteq C_1(\emptyset))$. By (3) it follows that ~ $(Y \subseteq C_2(\emptyset))$. Using (4) and (5) we obtain $C_1(Y) = S = C_2(Y)$, hence $C_1(Y) = C_2(Y)$.

In both cases it has been shown that for any $Y \subseteq S$ we have $C_1(Y) = C_2(Y)$, thus $C_1 = C_2$, which completes the proof.

This theorem states connection between some propositional calculi and consequences determined by them.

Sometimes, the notion of Post-completeness is defined in a weaker version. Let us denote by $S\mathfrak{b}(X)$ the set of all substitutions of formulae belonging to the set *X .*

DEFINITION 7

 $(R, X) \in Cpl* \Longleftrightarrow \forall_{\alpha \notin C_n(R, X)} [C_n(R, X \cup S_b(\{\alpha\})) = S].$

It is visible that $Cpl \subset Cpl$. The theorem concerning weakly completeness may be written in the form (see Theorem 3):

T heorem 5

 $X \subseteq E(\mathfrak{M}) \land R \subseteq V(\mathfrak{M}) \land (R, X) \in Cpl \implies C_{(R,X)}(\emptyset) = E(\mathfrak{M}).$

Propositional calculi $Z_1 = (R_1, X_1)$ and $Z_2 = (R_2, X_2)$ may be compared in another way: Z_1 and Z_2 are equivalent if and only if $Z_1 \leq Z_2$ and $Z_2 \leq Z_1$, where the relation \leq is defined as follows:

$$
Z_2 \leq Z_1 \Longleftrightarrow [\forall_{r \in R_1} (r \in Der(R_2, X_2)) \wedge X_1 \subseteq Cn(R_2, X_2)].
$$

E xamples:

Let us consider the disjunctional-negational language and the following rules of inference:

$$
r_0: \begin{array}{c}\n\beta \in Sb(\{\alpha\}) \\
\alpha \\
\beta\n\end{array}\n\qquad r_1: \begin{array}{c}\nAN\alpha\beta \\
\alpha \\
\beta\n\end{array}\n\qquad r_2: \begin{array}{c}\nA\alpha\beta \\
N\alpha\n\end{array}
$$

We will compare the following propositional calculi:

I. The Lukasiewicz system (R_1, X_1) (see [1]), where $R_1 = \{r_0, r_1\}$ and $X_1 =$ ${A1_L, A2_L, A3_L}$. The axioms have the form:

A₁,. ANANApqrANpr,

A2*l,.* ANANApqrANqr,

A3*L-* ANANprANANqrANApqr.

Adopting the definition $C\alpha\beta = AN\alpha\beta$ and the rule of definitional replacement these axioms may be rewritten in the form:

- A1^{*}. CCApqrCpr,
- A2£. CCApqrCqr,
- A3_t. CCprCCqrCApqr.

In the remainder of this paper the abbreviation $C = AN$ will be adopted.

- II. The Rasiowa system (R_1, X_2) (see [4]), where $X_2 = \{A1_R, A2_R, A3_R\}$,
	- $Al_R.$ CAppp,
	- $A2_R$. CpApq,
	- A3_R. CCprCAqpArq.
- III. The Whitehead-Russell system (R_1, X_3) (see [6]), where $X_3 = \{A1_W, A2_W, A3_W, A4_W, A5_W\},\$
	- $\mathbf{A} \mathbf{1}_W$. CAppp,
	- $A2_W$. CqApq,
	- $A3_W$. САрфАqp,
	- A4w. CApAqrAqApr,
	- A5w- CCqrCApqApr.

P. Bernays has proved, that axiom $A4_W$ is independent of $A1_W$, $A2_W$. $A3_W$, $A5_W$ (see [6]).

IV. The Reichbach system (R_1, X_4) (see [5]), where $X_4 = \{A1_M, A2_M, A3_M\}$,

- A l*м-* ApCpq,
- $A2_M$. CApqCCqpp,
- A3_M. CApqCCqrApr.
- V. The Reichbach system (R_2, X_5) (see [5]), where $R_2 = \{r_0, r_2\}$ and $X_5 =$ $\{A1_N, A2_N, A3_N, A4_N, A5_N\},\$
	- $A1_N$. NNApCpq,
	- *A2N.* NNCApqCCqpp,
	- A3_N. NNCApqCCqrApr,
	- $A4_N$. Cpp,
	- A5*N-* CApqApNNq.

The above systems are Post-complete. Let us consider the 2-valued matrix $\mathfrak{M} = (\{0,1\}, \{1\}, \{a,n\})$, where $a(x, y) = \max(x, y)$ and $n(x) = 1 - x$. It is easy to prove that $R_1 \cup R_2 \subseteq V(\mathfrak{M})$ and $X_1 \cup X_2 \cup X_3 \cup X_4 \cup X_5 \subseteq E(\mathfrak{M})$. Let: $C_1(Y) = C_n(R_1, X_1 \cup Y)$, $C_2(Y) = Cn(R_1, X_2 \cup Y),$ $C_3(Y) = Cn(R_1, X_3 \cup Y),$ $C_4(Y) = Cn(R_1, X_4 \cup Y),$ $C_5(Y) = Cn(R_2, X_5 \cup Y).$ On the basis of Theorem 4 it follows that $C_1 = C_2 = C_3 = C_4 = C_5$.

References

- [1] J. Lukasiewicz, Eein Vollständigkeitsbeweis des zweiwertigen Aussagenkalküls, Comptes rendus de la Société des Sciences et des Lettres de Varsovie 24 (1931), 153-183.
- [2] W. A. Pogorzelski, Klasyczny rachunek zdań, Wyd. 3, PWN, Warszawa 1975.
- [3] W. A. Pogorzelski, P. Wojtylak, Elements of the theory of completeness in propositional logic, Silesian University, Katowice 1982.
- [4] H. Rasiowa, Sur certain systeme d'axiomes du calcul des propositions, Norsk Mathematisk Tidsskrift 31 (1949), 1-3.
- [5] J. Reichbach, Uber den auf Alternative und Negation aufgebauten Aussagenkalkül, Studia Logica 1 (1953), 13-18.
- [6] A. N. Whitehead, B. Russell, Principia mathematica, Cambridge 1910.

Grzegorz Bryll Instytut Matematyki i Informatyki Wyzsza Szkoła Pedagogiczna Armii Krajowej 13/15, 42-200 Częstochowa Poland

Robert Sochacki Instytut Matematyki i Informatyki Uniwersytet Opolski Oleska 48, 45-052 Opole Poland E-mail: sochacki@math.uni.opole.pl