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A method of comparison of Post-complete 
propositional logics

Abstract. In this paper we consider a  necessary and sufficient condition 
for every propositional calculus to be Post-complete. We will show, how 
this condition may be used to compare consequence operations for these 
calculi.

Let 5  denote the set of all well formed formula of a fixed language of 
a  propositional calculus. By the symbol (R ,X )  we mean any propositional 
calculus, where R  is a set of rules and X  is a subset of S . The set of all 
formulae belonging to the set X  or derivable from the set X  by means of the 
rules R  will be denoted by C n (R , X ). The consequence operation C n  is finistic. 
The notion of Post-completeness is defined as follows:

Definition 1
(R,X) 6  Cpl<=> Vagcn(R.x){Cn(R,Xu  ( q () =  S].

Let us recall definitions of two sets of rules. With any pair (R , X )  there can 
be connected two sets of rules of inference:

Definition 2
r G P e r m ( R ,X ) <=> VncsVaes[(II,a) G r A IT C C n (R >X ) = >  

a € C n ( R , X ) ] .

Definition 3
r G Der(R,X ) VncsVaes[(n,a) e r = >  a G Cn(R,X  LJII)].

The set D er(R , X )  contains all rules derivable from R  and X . P e r m (R t X )  
is the set of all rules permissible in the system 

It can be shown (see [2, 3]) that:

L emma 1
a) r  G P erT n (R jX ) < = >  C n {R  U {r} ,X)  C C n (R ,X ) ,
b) D e r (R ,X )  C P e r m (R ,X ) ,
c)  (R tX ) G C pl < = >  P e r m (R ,X )  C D e r (R ,X ).



For any logical matrix 971 the symbols V(DJl) and E(Wl) denote a set of 
all unfailing rules and a set of all valid formulae (tautologies) in the matrix VJl 
respectively. We define the set V  (971) in the following way:

Definition 4
r  E Vr(9Jt) VncsVQe s [(n ,a )  £  r  A II C E(9Jl) =>• a  E E(VJVj\.

The next lemma will be useful (see [2]):

Lemma 2
X  C E {T l)  A R C  V {W ) = >  C n { R , X )  C E{V.71).

Lemma 2 states that all formulae derivable from the set A" C E(VJl) by 
means of the rules R  are valid in the matrix VJl. The completeness theorem for 
the calculus (R , X )  with respect to the matrix VJl may be formulated as follows:

T heorem 1
0 £  X  C E(Tl) = >  [V(9K) =  P e r m {R ,X )  * = >  E{VJl) =  C n (R yX)\.1 

Given a pair {R , X )  we define the operation C :

Definition 5
ClR,X)(Y) =  Cn(R1X u Y ) .

It is easy to prove that the function C (R_\) is a  consequence with the 
properties:

L emma 3
a)  C'(ft,X)(0) =  C(R.X)P0>
b )  V C  C(fl.X )(0) = *  C {RtX)(Y ) =  C(* ,x ) (0).

L emma 4

(R ,X )  e  C pl = >  C {R,X)(Y )
C(R.X)(0)» i f  y  Q C(R.X)(0) 1 

S , i f  ~ Y  Q C (R'X)W)-

L emma 5

( c w ,x ) { Y )
f <?(R,x)(0)ł * /  y  £  C{fl,X)(0)» ^  
\ 5 ,  i f  - y ę C („ .x ) (0) )

(R , X )  G Cpl.

The easy proofs of these lemmas are left to the reader. From Lemmas 4 and 
5 it follows that the completeness notion may be characterized in the following 
way:

1IF the calculus ( R , X )  fulfils this condition, then the matrix VJl is said to be weakly 
adequate to (/?, A').



T heorem 2

(R ,X )  G C pl * = *  C {RtX)(Y ) =
{

C(/?,x)(0), *’/  y  
5 , i f  ~ y c c (fl, ,) (0 ) .

T heorem 3
X  C E(9H) A R C  V(9Jl) A ( # ,  A ) G C pl C(fi..Y)(0) =  £(9X).

Proof. Assume that X  C E(V.Jt), 7? C F(9Jt) and (R, A") G Cp/. Thus, by 
Lemma 2 and Definition 5 the inclusion holds:

c {RtX)m c E m -  ( i)

For the converse inclusion we assume that a  G E(fJJl) and on the contrary that 
a  & C(fl,x)(0)- From Definitions 1 and 5 and by assumption (R ,X )  G Cpl we 
conclude that:

q « . J 0 ( { a } )  =  5 . (2)

Since A" U { a }  C E(Wl) and R  C V(9Jl), then on the basis of Lemma 2 
and Definition 5 we obtain C ju ,* )({<*}) C E(DJl). Because E(9Jl) ^  5 , thus 
C(fltx ) ( { a } )  jt  S , which contradicts (2).

Let us consider two propositional calculi ( i? i, X\) and (Rz,X-z), where A'i U 
Xz C S  and two consequence functions C \, C2 which are defined below:

Definition 6
F or every  V” C S :
a )  Cl {Y ) =  C n {R u X l \JY),
b) C2{Y ) =  C n {R 2,X 2 V Y ) .

We will prove the next Theorem:

T heorem 4
( R u X iU R i iX z )  G CplARiURz C V (9tt)A X,U X2 C E {M )  = »  C x =  C2.

Proof. FVom assumptions, Definitions 6 and 5 and Theorem 3, it follows 
that:

C.(0) =  Cs(0) =  £(OTl). (3)
According to the assumption (7?i, X i) , {R 2,X 2) G C pl, Definitions 6 and 5 and 
Theorem 2 we have two equalities:

Ci{Y)

Cz(Y)

f  C M ,  i f  Y C C M ,
\ S , i f  ~ Y  C  C i(0).

f C2(0), i f  Y  C C2(0),

\ S, i /  ~ 1' C  Ca(0).

(4)

(5)



Let us consider the following two cases:

I. Y  C C i(0). Then from (3) we have Y  C C2(1b). We conclude from (4) and 
(5) that C i(Y ) =  C i(0) and C2{Y ) =  C2(0), hence C i(Y ) =  C2{Y).

II. ~  (Y  C C i(0)). By (3) it follows that ~  (Y  C C2(0)). Using (4) and (5) 
we obtain C\{Y) =  S  =  C2(Y ), hence C i(y )  =  C2(Y ).

In both cases it has been shown that for any Y  C S  we have C\{Y) =  C 2(Y ), 
thus C i =  C2, which completes the proof.

This theorem states connection between some propositional calculi and 
consequences determined by them.

Sometimes, the notion of Post-completeness is defined in a weaker version. 
Let us denote by S b (X ) the set of all substitutions of formulae belonging to 
the set X .

Definition 7
(R ,X )  €  C pl*  < = >  VQe c n{R ,x )[C n (R ,X \ JS b {{a }))  =  5].

It is visible that Cpl C C pl*. The theorem concerning weakly completeness 
may be written in the form (see Theorem 3):

T heorem 5
X  C E(9Jl) A R C  V{Wl) A {R ,X )  G C pl* = >  C(fliX)(0) =  E(W l).

Propositional calculi Z\ =  {R \ ,X i) and Z2 =  (R 2,X 2) may be compared 
in «mother way: Z\ and Z2 are equivalent if and only if Z\ ^  Z2 and Z2 ^  Z\, 
where the relation ^  is defined as follows:

Z2 ^  Zi < = >  G E e r (R 2,X 2)) A X i C C n (R 2,X 2)].

E xamples:
Let us consider the disjunctional-negational language and the following rules 
of inference:

0  e  S b ( {a } )  A N a 0  A a p
tq: a  r\: a. r 2: N a

P 0  ~ P ~ ~

We will compare the following propositional calculi:

I. The Lukasiewicz system ( R i ,X i)  (see [1]), where R i  =  {r0, r i }  and X\ =  
{A I l ,A 2 l i A3l }- The axioms have the form:

A l/,. ANANApqrANpr,

A2l,. ANANApqrANqr,



A3L- ANANprANANqrANApqr.

Adopting the definition C a@  =  AN a ft  and the rule of definitional re
placement these axioms may be rewritten in the form:

A l£ . CCApqrCpr,

A2£. CCApqrCqr,

A3£. CCprCCqrCApqr.

In the remainder of this paper the abbreviation C  =  AN  will be adopted.

II. The Rasiowa system (Я ^ Л г )  (see [4]), where X 2  =  (Л ід , Л2д, ЛЗд } ,

А і д . CAppp,

А2 Л. CpApq,

АЗд. CCprCAqpArq.

III. The Whitehead-Russell system (Я і,Х з )  (see [6 ]), where
X 3 =  {A lw i A 2w , A3w , A 4w , A 5w } ,

A l ^ .  CAppp,

A2w- CqApq,

АЗц/. CApqAqp,

A4 w  CApAqrAqApr,

A5w- CCqrCApqApr.

P. Bernays has proved, that axiom A4w is independent of A lw , A2w, 
A3yv, A5w  (see [6]).

IV. The Reichbach system (Я і, X 4 ) (see [5]), where X 4 =  {А \м , Л2л/, Л Зм },

A lм- ApCpq,
А2д/- CApqCCqpp,
АЗм- CApqCCqrApr.

V. The Reichbach system (R 2) X 5 ) (see [5]), where R 2  =  {ro ,r2} and X 5 =  
{A l;v , Л2лг, АЗлг, A4n , Л5/у},

A ljv. NNApCpq,

A2N. NNCApqCCqpp,

АЗлг. NNCApqCCqrApr,

A4w- Cpp,

A5N- CApqApNNq.



The above systems are Post-complete. Let us consider the 2-valued matrix 
OT =  ( { 0 , l } , { l } , { a  ,n } ) , where a (x ,j/) =  m ax(x,y) and n(x) =  1 — x. It is 
easy to prove that R i U R2 C V  (DDT) and Ari U X 2 U X 3 U X 4 U X b C E(VJl). 

Let: C i{Y ) =  C n iR u X iU Y ) ,
C 2{ Y ) = C n { R u X 2 U Y ),
C 3(Y ) =  C n (R u X 3 u Y ) ,
C 4( Y ) = C n ( R u X 4 V Y ) ,
C 5( Y ) = C n ( R 2,X b U Y ).

On the basis of Theorem 4 it follows that C\ =  C2 — C3 =  C4 =  Cb.
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