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A method of comparison of Post-complete

propositional logics

Abstrad. In this paper we consider a necessary and sufficient condition
for every propositional calculus to be Post—complete. We will show, how
this condition may be used to compare consequence operations for these
calculi.

Let S denote the set of all well formed formula of a fixed language of
a propositional calculus. By the symbol (R, X) we mean any propositional
calculus, where R is a set of rules and X is a subset of S. The set of all
formulae belonging to the set X or derivable from the set X by means of the
rules R will be denoted by Cn(R, X). The consequence operation Cn is finistic.
The notion of Post-completeness is defined as follows:

DEFINITION 1
(R,X) € Cpl <= VaﬂCn(R.X)[Cn(Ryx U{a}) = 9]

Let us recall definitions of two sets of rules. With any pair (R, X) there can
be connected two sets of rules of inference:

DEFINITION 2
r € Perm(R,X) <= VncsVaes[{Il,a) € r A 11 C Cn(R,X) =
a € Cn(R, X)].

DEFINITION 3
r € Der(R, X) <= VncsVaesl(Il,a) € r = a € Cn(R, X UII)].

The set Der(R, X) contains all rules derivable from R and X. Perm(R, X)
is the set of all rules permissible in the system (R, X).
It can be shown (see [2, 3]) that:

LEMMA 1
a) r € Perm(R, X) <= Cn(RU {r}, X) C Cn(R, X),
b) Der(R, X) C Perm(R, X),
¢) (R,X) € Cpl <= Perm(R,X) C Der(R, X).
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For any logical matrix 9t the symbols V/(91) and E(9N) denote a set of
all unfailing rules and a set of all valid formulae (tautologies) in the matrix 9t
respectively. We define the set V(9) in the following way:

DEFINITION 4
r € V(M) < VncsVaes{(Il,a) € r A T1 C E(M) => a € E(9M))].

The next lemma will be useful (see [2]):

LEMMA 2
XCEMMARCV(EN) = Cn(R,X) C E(ON).

Lemma 2 states that all formulae derivable from the set X C E(90) by
means of the rules R are valid in the matrix 9. The completeness theorem for
the calculus (R, X') with respect to the matrix 90 may be formulated as follows:

THEOREM 1
0 # X C E() => [V(9M) = Perm(R, X) <= E(M) = Cn(R, X)).!

Given a pair (R, X) we define the operation C:

DEFINITION 5
C(R'x)(Y) = Cﬂ(R,X U Y).

It is easy to prove that the function C(g x) is a consequence with the
properties:

LEMMA 3
a) Cr.x)(#) = Cir.x)(X),
b)Y C C(r.x)(0) = C(r,x)(Y) = C(r,x)(9)-

LEMMA 4
Crx)(0), if Y CCrx)(0),

R.X)eCpl=C Y) =

( )eCpl (r.x)(Y) {S, if ~Y CCnx)®).
LEMMA 5

Cirx)(), if Y CCrx)(®),
C Y)= R, X) € Cpl.
( wx)(Y) {S, if ~Y CConxy(®) = (R, X) € Cp

The easy proofs of these lemmas are left to the reader. From Lemmas 4 and
5 it follows that the completeness notion may be characterized in the following
way:

If the calculus (R, X) fulfils this condition, then the matrix 9 is said to be weakly
adequate to (R, X).
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THEOREM 2
C m ’ if Y CC J 0 )
(R,X) € Cpl@C(n.x)(Y)={ (rx)(0), if Y CCir.x)(0)

S, if ~Y CCrx)(0).

THEOREM 3
XCEMOMYARCV(OM)A(R,X) € Cpl = Cr.x)(8) = E(MM).

Proof. Assume that X C E(90), R C V(91) and (R, X) € Cpl. Thus, by
Lemma 2 and Definition 5 the inclusion holds:

Cr.x)(0) C E(9M). (1)

For the converse inclusion we assume that a € E(9) and on the contrary that

a & C(r,x)(9). From Definitions 1 and 5 and by assumption (R, X) € Cpl we
conclude that:

Cirxy({a}) = S. (2)

Since X U {a} € E(M1) and R C V(9M), then on the basis of Lemma 2

and Definition 5 we obtain C(g x)({a}) C E(9M). Because E(M) # S, thus
C(r,x)({a}) # S, which contradicts (2).

Let us consider two propositional calculi (R;, X;) and (R3, X;), where X, U

X2 C S and two consequence functions C,C, which are defined below:

DEFINITION 6
For every Y C S::
ﬂ) Cl (Y) = Cn(Rl ) -Xl U ),))
b) C2(Y) = Cn(Rz, X2 UY).

We will prove the next Theorem:

THEOREM 4
(R1, X1), (R2, X2) € CplARUR; C V(IMAX,UX, C E(N) = C, = (.

Proof. From assumptions, Definitions 6 and 5 and Theorem 3, it follows
that:

C1(0) = C2(0) = E(M). ()

According to the assumption (R;, X)), (R2,X2) € Cpl, Definitions 6 and 5 and
Theorem 2 we have two equalities:

_ [a®. if yca,

Gy) = { S, if ~Y CCi(®). &
[, if Ycam,

@) = { S, if ~Y CCl). ©
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Let us consider the following two cases:

I. Y C Ci(0). Then from (3) we have Y C C2(0). We conclude from (4) and
(5) that C1(Y) = C1(0) and C2(Y) = C2(0), hence C,(Y) = Co(Y).

II. ~ (Y € C1(9)). By (3) it follows that ~ (Y C C2(0)). Using (4) and (5)
we obtain C;(Y) = S = C2(Y), hence C,(Y) = Co(Y).

In both cases it has been shown that for any Y C S we have C,(Y) = C2(Y),
thus C) = C,, which completes the proof.

This theorem states connection between some propositional calculi and
consequences determined by them.

Sometimes, the notion of Post—completeness is defined in a weaker version.
Let us denote by Sb(X) the set of all substitutions of formulae belonging to
the set X.

DEFINITION 7
(RvX) € Cpl* — VaQCn(R.X)[Cn(R)X U Sb({a})) = S]'

It is visible that Cpl C Cpl*. The theorem concerning weakly completeness
may be written in the form (see Theorem 3):

THEOREM 5
XCEMARCV(O)A(R,X) € Cplx = c(n,x)(w) = E(9M).

Propositional calculi Z; = (R, X)) and Z; = (R, X2) may be compared
in another way: Z; and Z» are equivalent if and only if Z; < Z5 and Z; < 24,
where the relation < is defined as follows:

Zy L 71 &= [VTGRl (7‘ € DeT(Rz,XQ)) ANX; C CTL(Rz,XQ)].

EXAMPLES:
Let us consider the disjunctional-negational language and the following rules
of inference:

B € Sb({a}) ANap Aap
To: a 71: a Ta: No
¢ B B

We will compare the following propositional calculi:

I. The Eukasiewicz system (R;, X, ) (see [1]), where Ry = {ro,r1} and X, =
{Alp, A2,, A3L}. The axioms have the form:

Al;. ANANApqrANpr,
A2;. ANANApqrANgr,
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A3;. ANANprANANqrANApqr.

Adopting the definition Caf = ANaf and the rule of definitional re-
placement these axioms may be rewritten in the form:

Alj. CCApqrCpr,

A2;. CCApqrCaqr,

A3;. CCprCCqrCApqr.

In the remainder of this paper the abbreviation C = AN will be adopted.
II. The Rasiowa system (R;, X3) (see [4]), where X, = {Alg, A2g, A3r},

Alg. CAppp,

A2g. CpApq,

A3g. CCprCAqgpArq.

ITI. The Whitehead-Russell system (R;, X3) (see [6]), where
X3 = {Alw,AZw, Adw, Adw, A5w},

Alw. CAppp,

A2w. CqApq,

A3w. CApqAqp,

Adw. CApAqrAqApr,

ASw. CCqrCApqApr.

P. Bernays has proved, that axiom A4y is independent of Alyw, A2y,
A3w, ASw (see [6]).

IV. The Reichbach system (R, X3) (see [5]), where X, = {Alp, A2, A3pr},

Alp. ApCpq,
A2p. CApqCCqpp,
A3ps. CApqCCqrApr.

V. The Reichbach system (Rz, X5s) (see [5]), where R; = {ro,72} and X5 =
{Aln, A2N, A3n, Adn, A5N},
Aly. NNApCpq,
A2y. NNCApqCCqpp,
A3x. NNCApqCCqrApr,
Adn. Cpp,
AS5y. CApqApNNq.
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The above systems are Post-complete. Let us consider the 2-valued matrix
m = ({0,1},{1},{a,n}), where a(z,y) = max(z,y) and n(z) = 1 —-=z. It is
easy to prove that R; UR; C V() and X; U X, U X3U X, U X5 C E(9N).

Let: C(Y) = Cn(R,, X, UY),

Cy(Y) =Cn(Ry, XoUY),

C3(Y) =Cn(R:, X3UY),

C4(}') = Cn(Rl,X4 U Y),

Cs()’) =Cn{R,, X5 UY).
On the basis of Theorem 4 it follows that C; = C; = C3 = Cy = Cs.
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