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Duality: random variables versus observables

Abstract. We discuss some aspects of the duality between random variables 
and observables - one of the basic questions of probability. Besides a his­
torical background, we mention the role of elementary events and the 
algebraic (i.e. pointless) approach to probability. We present some cat­
egorical constructions leading to possible generalizations of the field of 
events, probability measures, and random variables.

1. Introduction

In the classic Kolmogorovian model, the fundamental notions of probability 
are events, probability, random variable, and distribution. Events are subsets of 
a set fi the points of which are called elementary events. Events are closed with 
respect to the set-theoretical operations and form a field (usually a cr-field) S of 
sets. Probability is a normed measure p  on S. The triple (f i,S ,p ) is called the 
original probability space. A random variable /  is a measurable map of Ji into 
the real line R, i.e., f*~ (B )  =  (wG Q] f(u>) G B )  is an event for each Borcl set 
B  G B (R ). The preimage f*~  : B  — > S  preserves the set-theoretical operations 
(it is a  homomorphism), and the composition p j  — p ° f * ~  is a normed measure 
on B (R ) called the distribution of / .  Distributions can be extended to families 
of random variables and, roughly speaking, Kolmogorovian probability is about 
distributions.

If the original probability space (B ,S ,p ) is not discrete, the elementary 
events seem to play a “secondary” role. Events form a Boolean algebra and the 
so-called pointless probability tries to avoid points and point functions com­
pletely or as much as possible (cf. [9]). A thorough discussion of the role of 
elementary events can be found in Łoś [10], a very interesting paper, unfortu­
nately ignored by the probability audience. In an attempt to describe physical 
theories in which the Boolean logic does not capture the behavior of events, 
probability theory has been generalized in various directions. It has started 
with the pioneering work of G. Birkhoff and J .  von Neumann. A survey of 
recent trends in the so-called quantum probability theory can be found for ex­
ample in Dvurecenskij and Pulmannova [3], Foulis [7], Mundici and Riećan
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[11]. The so-called operational probability theory (also fuzzy probability the­
ory), as outlined in Bugajski [1], [2] and Gudder [8], seems to be particularly 
promising.

It is our belief (cf. [4], [5], [6]) that sequential convergence and categorical 
methods provide suitable language and technical tools to describe various types 
of generalized events, generalized probability measures, and generalized random 
variables in a canonical way.

2. Measurability and duality

Each random variable /  : O — ► E  induces a Boolean homomorphism 
f*~  : B (E ) — > S. In general, each measurable map g  of a measurable space 
(T, A) into a measurable space (X , B ) induces a Boolean homomorphism g*~ : 
B  — v A. The problem is to find out when a Boolean homomorphism of B  into 
A is induced by a unique measurable map and, moreover, when the correspond­
ence between measurable maps and the induced Boolean homomorphisms (go­
ing the opposite way) yields a categorical duality. Such duality (as a categorical 
equivalence of measurable maps and certain Boolean homomorphisms) is rather 
useful. Indeed, each f*~  selects a subfield S /  of S , S ,  =  { / - ( * ) ;  B e  B (E )} , 
the subfield of all events in S related to the measurement (experiment) repres­
ented by the random variable / .  The abstract analysis applied to measurable 
maps and random variables (function spaces, measure theory, abstract integ­
ration, functional analysis) has led to solutions of fundamental problems of 
probability (central limit theorem, understanding of random processes, ... ). 
Notice that applying abstract analysis to Boolean homomorphisms is rather 
clumsy and it is not very practical. On the other hand, replacing the Boolean 
algebra of events by some other algebraic structure leads to natural generaliz­
ations of the classical probability theory. Indeed, there is an extensive list of 
algebraic structures modeling various types of operations on events (cf. Foulis
[7]): modular orthocomplemented lattice — the logic of a  quantum-mechanical 
system, orthomodular lattice, orthomodular poset, orthoalgebra, effect algebra 
— fuzzy or unsharp logic, D-poset, AfV-algebra, ...

In Fric [6] we have proposed a simple general construction of a duality 
suitable for generalized probability. It is based on sequential convergence and, 
unlike the classical Stone duality, it commutes with the transition from fields 
to cr-fields (no factorization like in the Loomis-Sikorski theorem is needed, no 
loss of points).

In what follows we assume that every field of sets is reduced (if x  and y, 
x  ^  y, are points, then there exists a set in the field such that x  belongs to the 
set and y belongs to the complement).

First, if A is a subset of Y , then A  and its characteristic function x a - 
l r — ► (0 ,1 }  {x a {v ) =  1 if y €  A and Xa (v) =  0 otherwise) will be identified.



Second, a sequence of subsets converges to  AC. Y  whenever the char­
acteristic functions converge pointwise {A =  lim inf An — lim sup An). Third, 
if (V, A ) and (AT, B )  are measurable spaces and /  is a  map of Y  into AT, then 
/  is measurable iff for each B  G B  the composition \ b  °  /  =  Xj'-(B) Is the 
characteristic function of some A 6  A . Fourth, each point y £ Y  represents a 
sequentially continuous Boolean homomorphism of A , the evaluation evy at y, 
into the two-point Boolean algebra {0 ,1 }  defined by evy(A) =  1 if y  G A and 
evy{A) =  0 otherwise; in fact, it is a cr-additive measure (point measure).

Let (F , A ) and (AT, B )  be measurable spaces.

L emma 1
L et f  be a  measurable map o f(Y , A ) into (AT, B ) .  Then f*~  is a  sequentially 

continuous Boolean hom om orphism  o f  B  into A .

Proof. The assertions follow from the properties of f*~ .

L emma 2
Let h  be a sequentially continuous Boolean hom om orphism  o f  B  into A . 

I f  each sequentially continuous Boolean hom om orphism  c / B  into (0 ,1 }  is an 
evaluation at som e x  E X , then there is a unique measurable map o f  B  into A 
such that h  =  / * “ .

Proof. Let y e Y .  Then the composition evyoh  is a sequentially continuous 
Boolean homomorphism of B  into {0 ,1 } . Thus there is x  G AT such that evx =  
evyo h. Since B  is reduced, the point x  is uniquely determined. Define f ( y )  — r .  
The rest is a  straightforward calculation verifying that h  =  f*~ .

A field satisfying the assumptions of the previous lemma (each sequentially 
continuous Boolean homomorphism into (0 ,1 }  is fixed) and the corresponding 
measurable space are called so ber.

Corollary 1
The category o f  sober fields o f  sets (the objects)  and sequentially continuous 

Boolean hom om orphism s (the m orphism s) and the category o f  sober measurable 
spaces and measurable m aps are dually isomorphic.

Using the properties of categorical products, the duality described in Co­
rollary 1 can be extended to more general algebraic structures and generalized 
measurable spaces. The extended duality has a probabilistic interpretation.

Let A be a Boolean algebra. It is known that each two elements of A  
can be (using the axiom of choice) separated by a Boolean homomorphism 
of A  into {0 ,1 } . This leads to the Stone representation of A  by subsets. 
Clearly, if Ya  is the set of all such homomorphisms, then we can represent each 
a G A as the characteristic function * a(o) : YA — > {0 ,1 }  of the set A (a) =



{y  £ Xa ; y {°)  =  1}» be., the set A (a) itself. Moreover, the Boolean operations 
in A  can be represented via the usual set-theoretical operations in F 4 . Ob­
serve that A  can be represented via every sufficiently rich (separating) subset 
Y  of Ya - Such subsets (of Boolean homomorphisms into {0 ,1 } )  are called Stone 
families. As pointed out by J .  Los, different Stone families can lead to different 
“probability models” (via sets) of the same Boolean algebra A  considered as a 
system of abstract probability events carrying an abstract probability measure 
on A  (cf. [4]).

Indeed, let Y  C Ya and let p  be an additive measure on A. For A {a) G Ay 
define p y {A{q) )  =  p (a). Then p y  is an additive measure on Ay. Observe, 
that for Y  =  Ya  (the usual compact representation) p y  is always er-additive. 
(Hint. Let be a decreasing sequence of sets in Ay such that 0 =
f | ~ ,  A (an). Since each A (a) is a  closed set in the compact topological Stone 
space, almost all A {an) are empty sets. Since <r-additivity is equivalent to the 
monotone continuity from above, py is cr-additive.) This is certainly undesirable 
and hence the compact (perfect) representation and the Stone duality are not 
suitable for probability. To sum up, the choice of Y  (the elementary events) 
has an impact on the properties of probability measures.

We construct the duality in two steps. First, we represent A  (via a suitable 
choice of Y  C Ya ) as a sober field Ay of subsets A (a) C Y , a  G A. Pairs 
(A , Y ) together with sequentially continuous Boolean homomorphisms form a 
category C B A  and, clearly, C B A  and the category of sober fields of sets are 
naturally equivalent. Then, as the second step, we pass to the measurable space 
(F, A y). The rest is straightforward: C B A  and the sober measurable spaces 
are dual (cf. [5], [6 ]). Remember, the choice of Y  is the choice of the elementary 
events in the classical Kolmogorovian probability.

Let us stress that the two-point Boolean algebra (0 ,1 }  determines the 
“logic” governing the pointwise operations with events. If a, 6 G A, then e.g. 
o V 6  G A  is represented as the set of all points y  G Y  for which the value 
of y at a  V b is the supremum in {0 ,1 }  of y(a) and y(b). Accordingly, if we 
use instead of {0 ,1 }  the interval [0,1] and if we use instead of the Boolean 
logic some fuzzy logic, then we get a duality for some “fuzzy” structures, e.g. 
Archimedean MV-algebras and generalized “fuzzy” measurable spaces.

In the next section we describe a duality which covers both the Boolean 
and the Lukasiewicz fuzzy logic. Generalized measurable maps lead to gen­
eralized random variables and the dual homomorphisms lead to the so-called 
observables.

3. Generalizations

At the FSTA2002 conference in Liptovsky Jan  (Fuzzy Set Theory and Ap­
plications) my PhD student M. Papco has introduced ID -posets as a potential



generalization of probability events. Difference posets or D-posets introduced 
by F . Chovanec and F . Kopka (cf. [12]) are quintuples (D , ^ ,0 ,1 ,  ©), where D  
is a partially ordered set, 0 is the least and 1 is the greatest element, and © is 
a partial operation (called difference): a  © 6 is defined iff b ^  a; some natural 
axioms for © are assumed. If D  is the interval /  =  [0,1], then ^  is the usual 
order and, if 6 ^  a, then a © b =  a  — b. Now let X  be a set and let X  C I x  be a 
class of functions on X  into / .  Then X  carries the natural pointwise order and 
the pointwise difference: a  © b is defined iff b(x) ^  a(x)  for all x  G X  and then 
(a © fc)(x) =  a(x) — 6(x), x  G X . If it is reduced and algebraically closed with 
respect to ©, then X  is said to be an ID -p o set. Morphisms are the maps of 
X  C I x  into y  C I Y preserving the ID -poset structure and sequentially con­
tinuous with respect to the pointwise convergence. Further, (A , X ) and {Y, 30 
are called /D -m ea su ra b le  sp aces and a map /  of Y  into X  is said to be 
m easu rab le  whenever the composition of /  and each a  €  X  belongs to 3̂  (i.e. 
X  o f  c y ) .  Again, each measurable map of (V, y )  into (X ,X )  induces an ID -  
morphism f < of X  into y  and, for sober /D-posets (each ID -morphism into 
I  is fixed at some point), each /D-morphism h  of X  into y  is of the form f < 
for a unique measurable map / .  This correspondence yields a dual isomorph­
ism between the categories of sober ID -posets and generalized /D-measurable 
spaces.

It is easy to verify that fields of sets and their “fuzzyfication”, the so- 
called bold algebras (systems of fuzzy sets closed with respect to the pointwise 
Lukasiewicz operations ©, ©, and complement) are ID -posets. The classical 
measurable spaces and measurable maps are special cases of /D-measurable 
spaces and maps. Classical probability measures are /D-morphisms into / .

Hence we can consider ID -posets as generalized fields of events, ID -mea­
surable maps as generalized random functions, /D-morphisms as generalized 
observables, and /D-morphisms into /  as generalized probability measures.

The important fact about ID -posets and /D-measurable spaces and maps 
is that they provide natural categories for the theory of operational random 
variables and operational (fuzzy) probability theory, as developed by E. G. 
Beltram etti and S. Bugajski (cf. [1], [2] and [8]).

The idea of an operational random variable, or a stochastic map, origin­
ated in quantum physics. Instead of the elementary events represented by the 
points (i.e. the point probabilities) of the original probability space fl, we con­
sider all probability measures V(U ) on fi (C 'P (fl)). A stochastic map is a 
map /  of the set V{D ) into P (f i ')  having some additional properties. To each 
stochastic map there corresponds a unique sequentially continuous homomorph­
ism of fuzzy events of ST into fuzzy events of fl, called observable. The classical 
Kolmogorovian probability deals with the case /(H ) C D'. If /(u;) €  V {W ) \ IV 
for some lj €  fi, then /  models some nontrivial quantum phenomenon. Ob­
serve that maps of V(Q ) into V(U t) have been used by L. Le Cam in a different 
context (statistics). We believe that ID -posets provide a simple and powerful



categorical tool for operational probability.
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