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Abstract. A lot of interesting examples from the history of mathematics axe 
seldom if at all used in school mathematics. Continuous fractions were 
used in the ancient Greece to calculate values of irrational numbers. In 
the present paper we show their possible applications to the problems of 
limit, and problems involving sequences and series.

1. Introduction

In the teaching of limits at the secondary school level many teachers often 
make a mistake neglecting or omitting a suitable motivation and a proper 
introduction to the topic.

The history of mathematics provides many inspiring examples and ap
proaches to sequential convergence which can help to understand the limit 
processes. There are parallels between the history of mathematical thinking 
and the development of mathematical thinking in the miiul of students.

Continuous fractions can serve the secondary school teacher as a good ma
terial for motivation and as an introduction to sequences and limits.

2. Ancient Greek

About three centuries B . C., in the time when nobody talked of limits 
and convergence, the ancient Greek mathematicians used continuous fractions 
to calculate values of irrational numbers. As an illustration we present the 
following example.

Consider a  square ABCD (see Figure 1). Because \ AB\ <  \BD\, there exists 
point C\ E BD with \AB\ =  \BC\\. The perpendicular at point C\ crosses side 
AD in point B\. Clearly \Z.ADB\ =  \ADB\C\\ =  45°. The triangle DB̂ Ci 
is isosceles and rectangular, so =  \C\D\. Next, consider the square
AiB\C\D. The length of the side of this square is \BD\ — \AC\. Again \AVB\ | <  
\BiD\ and we can repeat the same construction in the square A\B\C\D and 
get the square A 2 B 2 C 2 D. If the process is repeated the sides of consecutive 
squares “go” to nil.
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Figure 1.

Volkert shows in [6 ] how we can use this construction to aproximate y/2. 
Let |.<4j£t| — Oj for i 6  N and let \AB\ =  ao =  1. So \BD\ =  \/2 and 
\BD\ — |£Ci| +  \C\D\i hence y/2 =  1 +  a j .  Further \B\D\ =  \B\C2\ +  \C2D\, 
hence |AD| — =  IB 1C2 I +  \C2D\ and we can write 1  — ai = 0 1 + 0 2 »
which implies ao =  1 =  2ai +  0 2 . We can continue: \B2D\ =  \B2C2\ +  IC3DI, 
hence \A\D\ — \A\B2\ =  \B2C$\ +  \C$D\. We get 0 1 —02 = 0 2  +  03, which 
implies 01 =  2o2 + 0 3 . In general, we get for all non-negative whole numbers n: 
a n =  2an+i +  an+2 - From the preceding equations we get:
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In this way a continuous fraction for the number y/2 is constructed:
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If this continuous fraction is meant as a sequence of approximate values of 
v/2, we can calculate:
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99 r  41So we get the inequality —  >  v 2  >  — . From the viewpoint of school math
ematics it is important to observe that it is possible to write this continuous 
fraction with a recurrent sequence:

3 1
ai =  a„+i =  1 +  i—;-----  for n  6  N.

2 1 +  an

3. Leonhard Euler

Leonhard Euler (1707-1783) deals with continuous fractions in his book 
Introductio in analysis infinitorum  and the last chapter in the first part of the



book is entitled Continuous fractions. Let x  be a positive real number.

If x =
1

than x  =
2 + 2 4- x
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We get a quadratic equation x 2 +  2x =  1 and its solution x =  y/2 — 1.
Euler generalizes this example as follows. If a  is a positive real constant, 

then
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hence .r = and x J +  ax  =  1, implies x  =
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Also in 18th century the calculation of continuous fractions was a widespread
means of getting values of irrational numbers.

Euler constructed an algorithm of changing an infinite series with commut
ing signs into a continuous fraction. He explains it as follows. Let
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Consider a continuous fraction of the form
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The partial sums of the infinite series are

1 B -  A B C - A C  +  AB  
A 1 AB  ’ ABC

and the expressions in the continuous fraction are

1 b be +  P 
a ' ab + a 1 abc +  a 0  +  a c '  "

Comparing the corresponding expressions, we get a system of equations. We 
will explain this procedure in the first three steps:
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Hence 
a =  A, 
b =  B - A ,
A B  =  ab  +  a ,
B C  — A C  +  A B  — be -f- /3,
A B C  =  abc  +  a/? +  a c .

The first two equations are simple. If we substitute a , b in the third equation, 
we have A (B  — A) +  a  =  A B  and hence a  =  A2. We simplify the fifth equation 
A B C  =  a(bc  +  0 )  +  a c .  If B C  — A C  +  A B  — be +  0 , then A B C  =  a (B C  — 
A C  +  A B ) +  a c  =  A2(B C  — A C  4- A B ) +  ac , which implies c =  C  — B . We 
substitute now for b and c  in the fourth equation. We get B C  — A C  +  A B  =  
(B  — A )(C  — B )  +  /3, hence 0  =  B 2. Euler generalizes these equations:
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He illustrates this interesting construction using the Leibniz’s series:
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4. Summary

We selected the above algorithms and examples from a great number of 
interesting items in the history of mathematics. In my opinion, unsatisfactory 
attention is paid in Slovakia to the often ingenious and seminal work of great 
mathematicians of the past. It would be rather useful to include into mathem
atical textbooks more examples of this kind, representing “the art of thinking” , 
and also an integral part of culture and history. This is in particular desirable 
in the introduction of important notions and constructions or in the teaching 
of “how to solve mathematical problems”. An interested reader can find more 
information about teaching mathematics “via history” in [4].
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