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Non-Riemannian geometry and the theory of 
lattice imperfections

Abstract. Creation and development of continuum theory of imperfections 
of a  crystal structure (dislocations and disclinations) is closely associated 
with ideas and methods of non-Euclidean and non-Riemannian geometry. 
In the geometrical interpretation of the continuum theory of lattice de
fects Kondo [1] and Bilbi et at. [2] identified the Cartan torsion tensor 
with the dislocation density, Anthony [3] used the Riemann-Christoffcl 
curvature tensor to describe disclination. The above-mentioned authors 
considered static imperfections. To give a  differential-geometrical inter
pretation of the imperfection kinematics it is necessary to  take time into 
consideration. We discuss a  three-dimensional space of affine connection 
with time as a  parameter and introduce the material time derivative using 
the “time-connection" tensor.

In non-Euclidean space the connection V T  is defined according to a certain 
axiomatic [4] and allows us to introduce the tensor

V T  =  V iT kmdC  ® J *  ® d r , (1)

for the tensor T  with typical arrangement of indices, where the covariant de
rivative

V  T * = 8  T k -i- T p F- —T k r pv »x.m U'± m.  ̂1 . m1 tp 1 .nL it. p  t m (2)

is calculated using the coefficients of connection r*p; and d fm are the basic
d_

d e
vectors in tangent and cotangent spaces, respectively.

The torsion tensor S  and the curvature tensor R  are defined by the following 
relations [4]:

2 S (X , Y )  =  V X Y  -  V Y X  -  [X , Y ], (3)
R (X , Y )Z  =  V x (V y Z )  -  V y (V x Z) -  V [x ,y ]Z, (4)

where X , Y  and Z are vector fields, [X, Y ] is the Lie derivative.
Tensors S and R  satisfy the Bianki-Padova relations



(6)

with [ ] denoting antisymmetric part of a tensor with respect to the indices 
enclosed.

The torsion tensor S  and the curvature tensor R  have the following geomet
rical interpretation [5]. At some point of a space of affine connection we draw 
an infinitesimal contour C  bounding an area with bivector d E  =  n • cdE, where 
e is the anti-symmetric Levi-Civita tensor. Using the procedure of rolling we 
map the contour to the tangent space at the considered point. The image of 
the contour C  in the tangent space will be, in general, a  non-closed line. If we 
take a closed contour in the tangent space, the pre-image may be non-closed. 
The discrepancy vector db can be expressed in terms of the torsion tensor S :

db =  —n • e : S  dE. (7)

The curvature tensor at the given point of the space determines the devi
ation from the original value of vector A  parallel-transported along the closed 
contour C :

dA =  ^ A  - R  : ed E . (8 )

At the same time we consider the density d fi of vector dA defined by the 
relation

dA =  A x d fi. (9)

From formulae (8 ) and (9) we obtain the geometrical interpretation of the 
curvature tensor R

d fi =  ^  n  - e : R  : e dE. (10)

The internal logic of the development of the mechanics of continuum, as 
well as the growing field of applications of the theory, has led to the study of 
media with motion determined by the displacement field u and by the rotation 
field LJ independent of it, which causes the appearance of a couple of stresses n  
alongside with the usual stresses o\ Such media are known as Cosserat continua. 
The continuous theory of dislocations and disclinations can be considered as 
the theory of incompatible deformation of a  Cosserat continuum [6 ].

The surface density of the Bürgers vector db is connected with the dislo
cation density tensor a  by the relation

db =  n  ■ a  dE. (11)

The similar relation between the surface density of the Frank vector d fi 
and the dislocation density tensor -d reads
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Identification of Bürgers vector db in equation (11) with the corresponding 
discrepancy vector in formula (7) allows us to obtain the physical interpretation 
of the torsion tensor in terms of the dislocation density [1 , 2 ]

a  =  —e : S . (13)

Comparison of formulae (10) and (12) leads to an interpretation of the 
curvature tensor in terms of the disclination density [3]

=  7  c : R  : (14)
4

The material time derivative of tensor T  with respect to the material (Lag- 
rangean) basis of the three-dimensional material Euclidean continuum can be 
written in the form [7]

and vk are the components of the velocity vector v.
Following [8 ], we consider a  three-dimensional space of affine connection 

with properties depending on time. On the basis of an axiomatic analogous to
T

that used by introducing the connection V , we introduce a time connection V , 
which assigns to an arbitrary tensor field the material time derivative

V T = v r lm^ f ® d f (17)

where the covariant time derivative

V r ‘m =  -  T’tp7mP (18)

is calculated using the components of tensor 7 , which play the role of coefficients 
of time connection.

r
The connections V  and V  do not commute, and the following formula 

holds
P (Y )Z  = V  V Y Z -  V Y V  Z -  V r Z ,  (19)

where
d Y k \ d



The tensors 7  and P  are additional characteristics of a  space of affine 
connection with properties depending on time.

In the Euclidean space the tensor 7  equals the gradient of the velocity 
vector

7  =  V v , (21)

and in the non-Euclidean space the deviation of 7  from V v  is interpreted as 
the dislocation current tensor:

J  =  V v - 7 , (22)

while the tensor P  is connected with the disclination current tensor:

I  =  i p : e .  (23)

From geometrical equations for tensors S , R , 7  and P  we obtain their phys
ical counterparts describing the kinematics of dislocations and disclinations.
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