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Implicit function in the calculus infinitesimalis

Abstrad. The theorem about implicit function with respect to non-standard
analysis in the special meaning of the Calculus Infinitesimalis is proved

(see [1]).

THEOREM 1

Let F(z,y) be a continuous function on the interval I containing point
[zo,¥0)- Let F(xo,y0) = 0 and let function F(xo,y) of one variable y be in-
creasing at point yo. Then F(zo + a,yo + 7) is for all a and ell positive infin-
itely small v greater than 0 and F(zo + a,yo + 7) s for all a and all negative
infinitely small y less than 0.

Proof. 'The proof will be done only for positive 4. Since function F(zo, y)
of one variable y is at point yg increasing it is clear that for every v > 0 is valid
F(zo,y0+7) > 0. Hence for every n € IN (IN means the class of infinitely great
natural numbers) has to be F(zo,y0+ &) > 0 where [zo,y0+ 1] € I. According
to Law of Back Projection (see [1]), the smallest natural number fulfilling both
these conditions belongs to N, that is there exists m € FN (FN means the
class of finitely great. natural numbers) such that F(zg,yo + l) > 0. The
number F(zo, yo+ ) belongs to A" and function F(z y)isat pomt [zo,y0+ L]
continuous, i.e. for all & we get F(zo+a,y0 + = wm) = F(zo,yo + ) > 0. Thus
for every v is F(zo + a,y0 +7) > 0.

THEOREM 2
Let F(z,y) be a function with continuous derivatives till the n-th order on

interval I containing point [zo,yo]. Let F(zo,y0) =0 and ﬂ"_(;_:-ml #0. Then

1. To every infinitely small a there exists one and only one infinitely small
B such that F(zo + a,yo + B8) = 0. Thus at point [zq,yo] is valid

y=yo+B=f(zo+a) = f(z) & F(zo + a,y0 + B) = F(z,y) =0

2. The function f(z) has a continuous derivative till the n-th order at point
Zo-
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Proof. Without loss of generality we can assume that Mf,—;@ > 0 (for

M%M < 0, we should investigate function —F instead of function F because
equations F = 0 and —F = 0 are equivalent). Hence F(zo,y) of one variable
y is at point yp increasing, therefore for all v > 0 is F(zo,%0 + 7) > 0 and
F(zo,y0 — 7) < 0. The function F(z,yo — 7) of one variable z is thus both
continuous at point zo and negative and the function F(z,yo + 7) is both
continuous at x¢ and positive. According to the former theorem we get F(zp +
a,yo +79) > 0and F(zo + a,y0 — 7) < 0 for all a. According to the Bolzano
theorem about intermediate value for a function of one variable y there exists
such g8 that —y < 8 < v and F(zo + a,y0 + 8) = 0. Since F(zo + a,y) is
increasing at yo and therefore one-to-one function, there exists one and only
one f. The first part of the proof is over.

To proof the second proposition we start with the following statement:
The function f(x) has got the derivative at zo

BF!IQ yo)
f'(w0) = ~ g5y

9y

(1)

where yo = f(zo).
Proof. Since F(z,y) has at point [zo,%0] continuous derivatives till the

n-th order we get

OdF (zo, o) OF (zo,
oz © + dy

Let = f(zo + a) — f(zo)- To put this 8 to the above equation we get

_OF (zo,30) 3F (1'0,

oz

Because F(zp + a,y0 + ﬁ) = 0 and F(zo,y0) = O the former term equals 0.
Thus the following is valid

OF (2o, yo) + OF (zo,y0) (f(zo + a) — f(z0)) ot (Jzotea) = f(=)) _,
Oz Oy a a ’

DI S R CY (TR
oz a Oy
Since according to the hypothesis a—F(;:+"°2 # 0 and therefore even w:,—;’,i‘ll +
v # 0 we can divide by this term the former one and we get

yo)ﬁ +au+ Pr.

F(zo + a,y0 + B) — F(zxo,%) =

%) ((zo + @) — f(z0)) +au+ (f(zo + @) — f(z0)) v.

fmo+e)—fz) _ ZEGerd 4y

a 3F!zo.yo! +”’
8y
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thus oF( |
xo,
flzo+a)—f(z) . 5
o T 8F(z0.y0)’
Oy

what is the fact we wanted to prove.

We have just finished the proof of the second proposition for n = 1. For
the general n we use the following statement.

PROPOSITION Cy:
Under essumption of the above theorem there ezists a continuous derivative
¥ () at [zo,u0] (1 € k < n,k € N) fulfilling

—k
f® () = (a—”g—j@) Via), (2)

where Vi (z) is the sum of the finite number of terms of the formn

cFi(z, f(z))Fa(z, f(2)) . .. Fo(z, f(2))Y1(x)Ya(z) ... V() 3)

where F;(z,y) denotes a partial derivative of the function F till the k-th order,
Y; a derivative of function f(z) till the order k — 1.
Proof. For n = k = 1 the proposition has been proved above. It remains to
prove the following. Let propositions C;,Cs,...,Cy are true (1 < k < n) then
the proposition Cj4; is valid.

According to theorems concerning the derivative of a composite, of a pro-
duct, and of a power of functions the derivative of the right hand side of equa-
tions (2) equals

_x (aF(g yf(z)))"‘“, 4 (aF(zé ;(x») V@) (aF(ag yf(z)))"‘ Wils)

if the derivatives

d (9F(@, f()) dVile)
dz oy ' odr

exist. However, the first of these derivatives exists according to theorcm about
the derivative of a composite (see [3]) (it is the function a—(Fa:’—”’. where u = «,
v = f(x) here) and equals to

d (aF(I,f(I))) _ 0°F(z,y) + 3*F(z,y)
dz dy O8yOr Oy?

f'(=@). (4)

where f(z) is substituted for y.
The derivative of Vi(z) is equal to the sum of derivatives of separate
products {(3) and the derivative of every such product equals to the sum where
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all but one factors are left without any changes and that one is derived (if
such derivative exists). We therefore dealt with differentiation of the following
functions of variable z: Fj(z, f(z)) and Yj(z). The function F;(u,v) is a par-
tial derivative of the highest order & < =, thus it has yet continuous partial
derivatives and since f’'(z) exists according Cy, we get

dFj(:E, f(ﬂ:)) — aFj(I, f(z)) + aE)(xvf(x))
dz Jdz Oy

° f'(z)a

where partial derivatives on the right hand side are any partial derivatives of F’
of the highest order k + 1. Further, Y; is the derivative of function f(x) of the
highest order k — 1, e.g. Yj(z) = (‘)(:c), where | < k — 1. Hence according to
propositions Cy,...,Ck Q:'-(L = fU+1(z) exists, I + 1 < k. Therefore %ﬂ
cxists and is equal to the sum of terms (5), where Fj could be derivatives of
orders until k+ 1, Y; derivatives of the k-th order. One can see that right hand
sides of equations (2) exist and therefore left hand sides exist as well and are
valid:

e v (OF(e, f(2)\ ¥ [OF(z, f(z)) dVi(z)
ree = ( dy ) { dy dr
2 2

If we denote the term within brackets as Vi41(z) we can see that Vi, () is
again a sum of terms (3). Here Fj(u,v) can mean the partial derivative of F till
order k + 1, and Yj(z) the denvatlve of f till order k. Continuity of functions
FE+D follows then from the continuity of functions F}(u,v) and Yj(z). By this
the assertion Cr4; was proved and we have ﬁmshed the proof of the whole
theorem (2).
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