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Wavelet Galerkin method for solving the 
Fredholm's integral equation of the second kind

Abstract. Wavelets are very discussed today in many fields of mathematics. 
For this reason we want to show their application to solving the FYed- 
holm’s integral equation of the second kind. The basis of discretisation 
of such an equation will be called Galerkin method. We introduce semi- 
orthogonal wavelets use them for solving Fredholm’s integral equation.

1. Multi-resolution analysis and wavelets

In this section, we briefly present basic wavelet principles that are used to 
construct and facilitate the wavelets.
A multiresolution analysis of L 2 (R) is defined as a nested sequence of closed 
subspaces Vj of L 2 (R)\j G R, where 0 4- ... c  VI i C Vo C Vi... —► L 2  with the 
following properties:

f ( x ) e V j ^ f ( 2 x ) e V j+ u  

f i x )  e V 0 *+ f { x  +  1 ) €  Vo

and a scaling function ^  G Vo, with a non-vanishing integral, exists such that 
the collection {0 (x  — k )k  G Z } is a  Riesz basis of Vo. This scaling function 
satisfies the dilation equation, namely

<f>{x) =  y/2 ^  /ijfe<£(2x — A:).
*e z

The subspaces Vj are generated by <pjtk =  2%<pi23x — k). For each scale j ,  
since Vj C V j+1 , there exists a unique orthogonal complementary subspace 
Vj+ 1 =  Vj © Wj and holds © jL - o o ^ j  =  L 2 (J&). This subspace Wj is called 
“wavelet subspace” and is generated by ipj,k(x) =  2 ^tp{2 3x  — k)  where function 
ip{x) is called the “wavelet” ; the collection of functions {ip{x  — k)\k G Z } 
forms a Riesz basis of Wo. Since the wavelet ip is an element of Vi, a sequence 
{ff*} £  12 (R) exists such that

ip(x) =  \/2 ^ f f f c 0 (2 x -  k)



and for coefficient gk holds the relation <7* =
An important property of wavelets is vanishing moment. A wavelet is said to 
have a vanishing moment of order m if

OO

I  x pil>{x)dx =  0 , P =  0 ....... m - I .
— OO

All wavelets satisfy the above condition for p  =  0.
The wavelets form an orthonormal basis if

($ j,k i ~  € Z.

The wavelets {Vv.fc} form a semi-orthogonal basis if

= 0 » * ^  3, e  Z .

2. Wavelets on a Bounded Interval

In the previous subsection we described wavelets and scaling functions 
defined on the real line. For many applications it is necessary, or at least more 
natural, to work on a subset of the real line. Many of these cases can be dealt 
with by introducing periodicized scaling function and wavelets, which we define 
as follows:

4>j,kix ) =  5 Z  4jAx +  n )i
n €  Z

+ n )
n £ Z

and it can be shown that { 0 o.o}U{^j,fc}, j  €  Z +  =  { 0 , 1 , . . . . } ,  k  =  { 0 . 1 , -, 2 J — 1 } 
generates L 2 (0 , 1 ).
A different approach is to start from cardinal B-spline, which generates a mul- 
tiresolution analysis. Cardinal B-spline of order n  regarding the set of points 
{ar,-tXi+ i,...,a r j+n +i } .  i  =  1 is defined as

where

i+n+l
K { z )  =  (n  +  1) ] T

P=1

{xp -  x ) l

wn + l  , i ( x p)

(xp -  x )£  =
f (xp x )n,
1 0 ,

X ^  Xp

otherwise

U kA x ) =  E [ ( * - X i ) .
j=t

and



Now, we descibe the compactly supported SO-spline, which are specially con­
structed for the bounded interval (0 ,1). The second-order B-spline (scaling 
function) is given by

2>x - k ,  i £  ( £ ;  *£■ ),

2 -  ( P x  - k ) ,  x e  < % i ;

for
A; =  0 , l , . . . ,2 j  — 2

with the respective left- and right-side boundary scaling functions

=  3 -  2 >x,

4>3 , ^ - 1  =  2 j x -  2 j  +  1 ,

The second-order B-spline Wavelets are given by

2 J x -  k , X e ( k - \ 2-> ’
fc+O.5 \ 

2> /J
4 -  7(2-*x -  fc), X e / * + 0  

\ 2J
.5. fc+1 \

* 2 > h
- 1 9  +  16(2Jx -  k), X e '  2-1

■ H 1 5 n 
» 2> / ’

2 9 - 1 6 ( 2  j x - k ) , X e / * + 1  \ >3
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'  2J
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3 -  (2J x  -  k), X e /M 2 '  2J
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for

with boundary wavelets

Jfc =  0 ,... . ,2 J' - 3

—6  +  23(2J x), 

1 4 - 1 7 ( 2 ^ ) ,  
—10 +  7(2J x),

x  6  (0 ; 2ttt), 

x  €  ^r),

x  €  ( ^ - ; y ) ,  

x z ( & i )

for the left-side boundary and

2 -  (k +  2 -  2 Jx),

- 1 0  +  7{k  +  2 -  2J x), 

14 — 17(fc +  2 — 2J x), 

- 6  +  23(A; +  2 - 2 J x),



where k  =  2J — 2, for the right-side boundary.

Figure 1.

The advantage of SO-wavelets against ON-wavelets is their compact sup­
port, explicit form and symmetric graph simultaneously.

3. Integral Equation and Wavelet Expansion

We consider Fredholm’s integral equation of the second kind in the form

l

f ( x )  ~  J K ( x ,y ) f ( y ) d y  =  g(x) (1)
o

where g(x)  is a known function, K ( x ,y )  is the kernel of integral equation and 
f ( x )  is an unknown function from Z^0
The weak formulation of the problem is to seek /  G L*0 ^  such that

H X - K ) / , h ) l U  =  ( a ,h ) l U

where X is identical operator and operator K, has the following form

l

(K f ) {x )  =  J K (x ,y ) f ( y ) d y .  
o

In Galerkin method we replace the space Z^0 ^  by spaces =  C{<f>jtfc}fceZ 
and within the integration domain (0,1) we can expand the function f ( x )  in



the integral equation in the terms of scaling functions at the highest level J  on 
bounded interval

2J+ 1 —1 J  2io 210 — 1

/(* ) =  53 c^.*^.*(z) =  53 53 +  53 c J o , k 4> j o . k -  (2)
fc=— 1 j= jQ k= ~ l k=—1

For n-order B-spline must be satisfied the following condition for the lowest 
level jn

2io ^  2n -  1.

Then for the second order B-spline the lowest level is determined as j 0 =  2. 
Substituting the second expansion (2) of function f ( x )  to the considered integ­
ral equation (1 ) and taking the tested function h(x) as function { 0 jo,jt}jk=-i 

and we obtain the following system of linear equations.

+  Ym  11 I" cj0tk =  G $
X jI )^  X y j ,^  Y fp ^  Yiptip J J d j tk  G ^

where the elements of matrices X  and Y  are

i i
— J  — J  $io<l

0 0
1 1

X j j  =  (x )<i)j0tk(x)dx, Xifi'jj, =  f  rpiji (x)ipj.k> (x)dx,
o o

l l
Y*,* =  I J  <t>ioAx )<t>joAy)K {x >y)dy<te,

0 o
1 i

Ym  =  J  J<l>ioAx )'l>i.v(y)K (x iy)dvdx,
0 0 
1 1

Ym  =  J  J ip i tt'(x)<f>jo ,k (y )K (x ,y)dydx,
0 o
1 i

=  f  f'P i,i>(x )'P],k’ {y )K (x ,y )dydx ,
0 0

and the subscripts A;,/,#;',/',*, j ,  are given as k , l  =  —1, . . . , 2J0 — 1 ,k\ V  =
— 1 ,...,2 J — 1 and jo ^  j  ^  J\io ^  i ^  I- The elements of vector G$ are 

i i
integrals f  g(x)<f>i0j(x )d x  and the elements are integrals f  g(x)i!>u(x)d£.

o o
The total number of unknowns (N) in this system of linear equations is N  =  
2 J + 1  +  1 .
If we remember the properties of SO-wavelets we know that matrix is 
three-diagonal matrix, X # ^ , X ^ ^  are zero matrices, and X $ t̂  is a block- 
diagonal matrix. Let us look at details of the elements of matrix Y . Even 
though the limits of integration in every element of matrix Y  range from zero



to one, the actual integration limits are much smaller because of the finite sup­
ports of SO-scaling function and SO-wavelets. Matrix Y ^  is a dense matrix 
with not very small elements. But this matrix occupies very little, (5 x 5), of 
matrix Y . The matrices Y ^^^Y ^^  and Y ^ ^  are dense too. But because of local 
supports and vanishing moment properties of wavelets many elements of these 
matrices are very small compared to the largest element. And hence they can 
be dropped without significantly affect the solution. So the elements whose 
magnitudes are smaller then e * Amax can be set zero where e (0 ^  e <  1) is 
called threshold parameter and Amax is the largest element of the matrix. We 
can evaluate the percentage scarcity S e of matrix (X  — Y )  as

TV2 -  Ne 
N 2

x 100

where N  is the number of unknowns and N e is the number of nonzero elements 
after thresholding.
Sparcity of the matrix of the system of linear equations is very important 
for decreasing memory capacity and computation time in inverting the matrix. 
Semi-orthogonal wavelets are a very good choice in Galerkin method for solving 
Fredholm’s integral equations of the second kind.
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