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To Andrzej Zajtz, on the occasion of his 70th birthday

`badcfe g hji e k
We discuss two kinds of functorial prolongations of the functional

bundle of all smooth maps between the fibers over the same base point of
two fibered manifolds over the same base. We study the prolongation of
vector fields in both cases and we prove that the bracket is preserved. Our
proof is based on several new results concerning the finite dimensional
Weil bundles.

l mbnfojp0q0r0sjnft p0m

Let E1 and E2 be two classical fiber bundles over the same base M . The
differential geometric investigation of the functional bundle F(E1, E2) −→ M
of all smooth maps from a fiber of E1 into the fiber of E2 over the same
base point was iniciated by the paper by A. Jadczyk and M. Modugno on
the Schrödinger connection, [6], [7]. The simpliest cases of the tangent bundle
TF(E1, E2) −→ TM and of the r-th jet prolongation JrF(E1, E2) −→ M
are discussed in [1]. In the present paper we first clarify that the essential
assumption for these constructions is that T is a product preserving bundle
functor on the classical category Mf of all smooth manifolds and all smooth
maps and Jr is a fiber product preserving bundle functor on the category
FMm of all fibered manifolds with m-dimensional bases and of all fibered
manifold morphisms covering local diffeomorphisms. Every product preserving
bundle functor F onMf is a Weil functor F = TA, where A is a Weil algebra,
[12]. The general construction of TAF(E1, E2) −→ TAM was presented by the
third author in [9], [10], see also Section 2 of the present paper. We underline
that this construction is based on the covariant approach to Weil bundles and
their natural transformations, [8], [12]. On the other hand, in [13] it was
deduced that every fiber product preserving bundle functor G on FMm is of
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the form G = (A,H, t), where A is a Weil algebra, H is a group homomorphism
H : Gr

m
−→ AutA of the r-th jet group Gr

m
in dimension m into the group of

all algebra automorphisms of A and t : D
r

m
−→ A is an equivariant algebra

homomorphism, where D
r

m
= Jr

0 (Rm,R) is the Weil algebra corresponding to
the functor of (m, r)-velocities. In Section 6 of the present paper we construct
GF(E1, E2) −→M in a way that generalizes the case of J rF(E1, E2) −→M .

Our main geometric problem is the prolongation of vector fields on
F(E1, E2) with respect to F and G. Since we cannot use the flow in the
functional case, we start from the fact that the classical flow prolongation
with respect to TA of a vector field M −→ TM coincides with the com-
position of its TA-prolongation TAM −→ TATM with the exchange map
κA

M
: TATM −→ TTAM . We apply this idea to a vector field X on F(E1, E2)

and we say the composition T AX = κA

F(E1,E2)
◦ TAX to be the field prolon-

gation of X . The bracket of vector fields on F(E1, E2) is defined in terms
of the strong difference, [1], [12]. Proposition 3.2 in Section 3 reads that T A

preserves the bracket of vector fields even in the functional case. To deduce it,
we develop, in Sections 4 and 5, a purely algebraic proof of the fact that T A

preserves bracket in the manifold case. For this purpose we need certain new
lemmas concerning the classical Weil bundles, which are collected in Sections 4
and 5. In particular, we present a complete description of the strong difference
in terms of Weil algebras. In Section 7 we study the prolongation of vector
fields to GF(E1, E2) and we prove that the bracket is preserved even in this
case. Finally we remark that an interesting kind of exchange morphism, which
was introduced recently for the manifold case in [11], can be extended to the
functional bundles as well.

In Section 1 we present a simplified version of the theory of smooth spaces
in the sense of A. Frölicher, [4], which we call F -smooth spaces, and of F -
smooth bundles. Special attention is paid to the functorial character of the
construction of F(E1, E2) and to the concept of finite order morphism.

If we deal with finite dimensional manifolds and maps between them, we
always assume they are of class C∞, i.e. smooth in the classical sense. Unless
otherwise specified, we use the terminology and notation from the monograph
[12].

���
F �f�0� p0pbnf���0r0m0q0� � �

We shall use the following simplified version, [2], of the theory of smooth
spaces by A. Frölicher, [4].

Definition 1.1

An F -smooth space is a set S along with a set CS of maps c : R −→ S, which
are called F -smooth curves, satisfying the following two conditions:
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(i) each constant curve R −→ S belongs to CS ,

(ii) if c ∈ CS and γ ∈ C∞(R,R), then c ◦ γ ∈ CS .

If (S′, CS
′) is another F -smooth space, a map f : S −→ S ′ is said to be F -

smooth, if f ◦ c is an F -smooth curve on S ′ for every F -smooth curve c on
S.

So we obtain the category S of F -smooth spaces. Every subset S̄ ⊂ S is
also an F -smooth space, if we define C

S̄
⊂ CS to be the subset of the curves

with values in S̄. In particular every smooth manifold M turns out to be
an F -smooth space by assuming as F -smooth curves just the smooth curves.
Moreover, a map between smooth manifolds is F -smooth, if and only if it is
smooth.

We find it useful to define the concept of F -smooth bundle in a more general
form than in [2].

Definition 1.2

An F -smooth bundle is a triple of an F -smooth space S, a smooth manifold
M and a surjective F -smooth map p : S −→ M . If p′ : S′ −→ M ′ is another
F -smooth bundle, then a morphism of S into S ′ is a pair of an F -smooth map
f : S −→ S′ and a smooth map f : M −→M ′ satisfying f ◦ p = p′ ◦ f .

Thus we obtain the category SB of F -smooth bundles. Every subset S̄ ⊂ S
satisfying p(S̄) = M is also an F -smooth bundle.

An important class of F -smooth bundles are the bundles of smooth maps
between the fibers over the same base point of two classical fibered manifolds
p1 : E1 −→M and p2 : E2 −→M . We write

F(E1, E2) =
⋃

x∈M

C∞(E1x, E2x)

and denote by p : F(E1, E2) −→M the canonical projection. A curve c : R −→
F(E1, E2) is called F -smooth, if c := p ◦ c : R −→M is a smooth map and the
induced map

c̃ : c∗E1 −→ E2, c̃(t, y) = c(t)(y), p1(y) = c(t)

is also smooth, [1].
Write FMI ⊂ FM for the subcategory of locally trivial fibered manifolds

whose morphisms are diffeomorphisms on the fibers. Let FMI ×BFM denote
the category whose objects are pairs (E1, E2) with E1 −→ M in FMI and
E2 −→M in FM and morphisms are pairs (f1, f2) with f1 : E1 −→ E3 in FMI

and f2 : E2 −→ E4 in FM over the same base map f : M −→ N , whereN is the
common base of E3 and E4. If we define F(f1, f2) : F(E1, E2) −→ F(E3, E4)
by
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F(f1, f2)(h) = f2(x) ◦ h ◦ f
−1
1 (f(x)), h ∈ C∞(E1x, E2x), (1.1)

then F is a functor on FMI ×B FM with values in the category SB.

Definition 1.3

Every F -smooth subbundle S ⊂ F(E1, E2) will be called a functional F -smooth
bundle.

If S′ ⊂ F(E3, E4) is another functional F -smooth bundle and (f1, f2) has
the property F(f1, f2)(S) ⊂ S′, then the restricted and corestricted map will
be interpreted as an SB-morphism S −→ S ′.

Consider a smooth map q : E3 −→ E1 .

Definition 1.4

An SB-morphism D : F(E1, E2) −→ F(E3, E4) is said to be of the order r, if
for every ϕ, ψ : E1x −→ E2x and v ∈ E3, p1(q(v)) = x,

jr

q(v)ϕ = jr

q(v)ψ implies D(ϕ)(v) = D(ψ)(v). (1.2)

Consider the fibered manifold

FJr(E1, E2) =
⋃

x∈M

Jr(E1x, E2x) −→ E1 . (1.3)

By (1.2), D induces the so called associated map

D : FJr(E1, E2)×E1
E3 −→ E4 .

In the same way as in [1] one proves that D is a smooth map.
We express the coordinate form of D in the case q : E3 −→ E1 is an FM-

morphism that is a surjective submersion on each fiber of E3 . Let xi or ua

be some local coordinates on M or N and yp or zs or (yp, vb) or wc be some
additional fiber coordinates on E1 or E2 or E3 or E4, respectively. Then zs

α
are

the induced coordinates on FJr(E1, E2), where 0 ≤ |α| ≤ r is a multiindex,
the range of which is the fiber dimension of E1, and the coordinate expression
of D is

ua = fa(xi), wc = f c(xi, yp, zs

α
, vb), (1.4)

where fa and f c are smooth functions.
The concept of r-th order morphism can be modified to a functional F -

smooth bundle S ⊂ F(E1, E2) analogously to [12], Section 18.
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Let A be a Weil algebra of the width k. Under the covariant approach, [8],
[12], the elements of a Weil bundle TAM are the A-velocities jAg of smooth
maps g : R

k −→M . For a smooth map f : M −→ N , we define TAf : TAM −→
TAN by

TAf(jAg) = jA(f ◦ g). (2.1)

If B is another Weil algebra of the width l, then every algebra homomorphism
µ : A −→ B can be generated by a B-velocity jBh of a map h : R

l −→ R
k. The

natural transformation µM : TAM −→ TBM induced by µ has the form of a
reparametrization

µM (jAg) = jB(g ◦ h). (2.2)

Consider F(E1, E2). We have TApi : T
AEi −→ TAM and we write

TA

X
Ei

:= (TApi)
−1(X), X ∈ TAM, i = 1, 2.

Let g1, g2 : R
k −→ F(E1, E2) be two F -smooth maps satisfying jA(p ◦ g1) =

jA(p ◦ g2) ∈ TAM . Then we construct the associated maps TA

0 gi : T
A

X
E1 −→

TA

X
E2,

TA

0 gi(j
Af(u)) = jAgi(u)(f(u)), u ∈ R

k ,

where f : R
k −→ E1 satisfies p ◦ gi = p1 ◦ f , i = 1, 2. If TA

0 g1 = TA

0 g2, we
say that g1 and g2 determine the same A-velocity jAg1 = jAg2. The set
TAF(E1, E2) of all such A-velocities is a subspace in F(TAE1, T

AE2) −→
TAM , so a functional F -smooth bundle. In the product case Ei = M × Qi,
i = 1, 2, the third author deduced in [9]

TA(M ×Q1,M ×Q2) = TAM × C∞(Q1, T
AQ2). (2.3)

In [9] it was also clarified that the idea of reparametrization (2.2) can be
applied to jAg ∈ TAF(E1, E2) as well. So every algebra homomorphism µ =
jBh : A −→ B induces an F -smooth map

µF(E1,E2) : T
AF(E1, E2) −→ TBF(E1, E2), jAg 7−→ jB(g ◦ h) . (2.4)

Consider a functional F -smooth bundle S ⊂ F(E1, E2). Then TAS ⊂
TAF(E1, E2) means the subset of all jAg, g : R

k −→ S.

Definition 2.1

An SB-morphism D : S −→ F(E3, E4) is called A-differentiable, if the rule

TAD(jAg) = jA(D ◦ g)

defines an F -smooth map TAS −→ TAF(E3, E4). We say D is strongly
differentiable, if it is A-differentiable for every Weil algebra A.
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If D is strongly differentiable, then TAD is also strongly differentiable. In-
deed, analogously to the finite dimensional case one verifies easily TB(TAD) =
TB⊗AD. In particular, every finite order morphism is strongly differentiable,
for its associated map is smooth. Further, each morphism F(f1, f2) is strongly
differentiable and we have

TAF(f1, f2)(j
Ag(u)) = jA

(

f2(p(g(u))) ◦ g(u) ◦ f
−1
1 (f(p(g(u))))

)

.

Thus, TAF is a functor on the category FMI ×B FM with values in SB.
Analogously to the finite dimensional case, [3], we define an A-field on

F(E1, E2) as a strongly differentiable section F(E1, E2) −→ TAF(E1, E2).
In the case A = D of the algebra of dual numbers, we obtain a vector field
X : F(E1, E2) −→ TF(E1, E2).

¯0�ª° ojp0� p0m00«±nft p0m�pb²�³��0sjnfp0oQ²ft �0� q �
In the manifold case, the exchange algebra homomorphism κA : A⊗ D −→

D⊗A defines a natural transformation κA

M
: TATM −→ TTAM . For a classical

vector field X : M −→ TM , its flow prolongation T AX : TAM −→ TTAM co-
incides with κA

M
◦TAX , [12]. For a vector field X : F(E1, E2) −→ TF(E1, E2),

we also can construct TAX : TAF(E1, E2) −→ TATF(E1, E2) and apply
κA

F(E1,E2)
: TATF(E1, E2) −→ TTAF(E1, E2). In this way we obtain a vector

field on TAF(E1, E2).

Definition 3.1

The vector field T AX := κA

F(E1,E2)
◦ TAX will be called the field prolongation

of X .

We recall that the bracket of two vector fields X , Y on F(E1, E2) was
defined by using the strong difference, [1],

[X,Y ] = (TY ◦X)÷ (TX ◦ Y ). (3.1)

(For classical vector fields X,Y : M −→ TM , (3.1) coincides with the classical
bracket, [1].) We are going to deduce

Proposition 3.2

For every vector fields X, Y on F(E1, E2),

T A([X,Y ]) = [T AX, T AY ]. (3.2)

The proof will be based on the algebraic results of the next two sections.
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Write pT

M
: TM −→ M for the bundle projection. We recall that two ele-

ments X,Y ∈ TTxM satisfying

pT

TM
X = TpT

M
Y, pT

TM
Y = TpT

M
X (4.1)

determine the strong difference

X ÷ Y ∈ TxM, (4.2)

[12]. Denote by SM the domain of definition of the strong difference, i.e.,
SM ⊂ TTM ×M TTM is the subset of all pairs (X,Y ) satisfying (4.1), and
by σM : SM −→ TM the map (4.2). For every smooth map f : M −→ N , one
verifies easily that (TTf, TTf) transforms SM into SN . So we obtain a map

Sf : SM −→ SN

and S is a bundle functor on Mf . Moreover, the strong difference map is a
natural transformation

σM : SM −→ TM. (4.3)

The fact SR
m =

5
×R

m implies that S preserves products. Write S for
the corresponding Weil algebra. In general, the sum of two Weil algebras
A = R×NA and B = R×NB is defined by

A+B = R×NA ×NB

with the induced multiplication that satisfies ab = 0 for all a ∈ NA, b ∈ NB .
Clearly, we have

TAM ×M TBM = TA+BM.

Write D = {a0 + a1e}, e2 = 0. Then TT corresponds to D ⊗ D, which
is linearly generated by 1, e1, e2, e1e2. Let {1, E1, E2, E1E2} be the linear
generators of another copy of D ⊗ D. So S is a subalgebra of D ⊗ D + D ⊗ D

and (4.1) implies directly that the elements of S are of the form

X = a0 + a1(e1 +E2) + a2(e2 +E1) + a3e1e2 + a4E1E2,

a0, . . . , a4 ∈ R. By the definition of the strong difference, [12], the algebra
homomorphism σ : S −→ D corresponding to (4.2) is

σ(X) = a0 + (a3 − a4)e. (4.4)

Write pA

M
: TAM −→M for the bundle projection. Since SM ⊂ TTM ×M

TTM is defined by (4.1), TASM ⊂ TATTM ×
T

A
M
TATM is the set of all

pairs (X,Y ) satisfying
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TApT

TM
X = TATpT

M
Y, TApT

TM
Y = TATpT

M
X. (4.5)

On the other hand, STAM ⊂ TTTAM ×
T

A
M
TTTAM is characterized by

pT

TT
A

M
X = TpT

T
A

M
Y, pT

TT
A

M
Y = TpT

T
A

M
X. (4.6)

We have TAσM : TASM −→ TATM , κA

TM
: TATTM −→ TTATM and

TκA

M
: TTATM −→ TTTAM . For technical reasons, we postpone the proof of

the following assertion to Section 5.

Proposition 4.1

The map TκA

M
◦ κA

TM
: TATTM −→ TTTAM induces a diffeomorphism

KA

M
: TASM −→ STAM and the following diagram commutes

TASM STAM

TATM TTAM

K
A
M

κ
A
M

T
A

σM
σ

T AM

(4.7)

Now we first show how (4.7) implies that the flow prolongation T A of clas-
sical vector fields X,Y : M −→ TM preserves the bracket. We have (TY ◦
X,TX ◦ Y ) : M −→ SM and

[X,Y ] = σM ◦ (TY ◦X,TX ◦ Y ). (4.8)

Then TA(TY ◦X,TX ◦ Y ) : TAM −→ TASM . Adding KA

M
we obtain

TκA

M
◦ κA

TM
◦ TATY ◦ TAX = TκA

M
◦ TTAY ◦ κA

M
◦ TAX

= TT AY ◦ T AX

and the same for TX ◦Y . So in (4.7) we clockwise obtain [T AX, T AY ]. Coun-
terclockwise, we first get TA[X,Y ] and then T A[X,Y ].

Consider now the case of F(E1, E2). According to the general fact that the
homomorphisms of Weil algebras extend to the functional case, (4.7) yields a
commutative diagram

TASF(E1, E2) STAF(E1, E2)

TATF(E1, E2) TTAF(E1, E2)

K
A
F(E1,E2)

κ
A
F(E1,E2)

κ
A
F(E1,E2)

σ
T AF(E1,E2)

(4.9)

For two vector fields X,Y on F(E1, E2), we first construct

(TY ◦X,TX ◦ Y ) : F(E1, E2) −→ SF(E1, E2).

Then we deduce (3.2) in the same way as in the manifold case. This proves
Proposition 3.2.
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The elements of A = TA

R are of the form jAg, g : R
k −→ R. For a vector

space V , the map V × A −→ TAV , (v, jAg) 7−→ jA(gv) is bilinear and defines
an identification TAV = V ⊗A. If W is another vector space and f : V −→W
is a linear map, then TAf : TAV −→ TAW is of the form

TAf = f ⊗ idA : V ⊗A −→W ⊗A, (5.1)

[12]. Further, let µ : A −→ B be an algebra homomorphism. Then the induced
natural transformation µV : TAV −→ TBV is of the form

µV = idV ⊗µ : V ⊗A −→ V ⊗B. (5.2)

This follows from the fact that V is isomorphic to R
n and we have a product

preserving functor.
In particular, if C is another Weil algebra, then (5.1) implies that the na-

tural transformation TCµM : TCTAM −→ TCTBM corresponds to the algebra
homomorphism

idC ⊗µ : C ⊗A −→ C ⊗B. (5.3)

Further, the maps µ
T

C
M

: TATCM −→ TBTCM form a natural transforma-
tion TATC −→ TBTC that corresponds to the algebra homomorphism

µ⊗ idC : A⊗ C −→ B ⊗ C. (5.4)

The trivial bundle functor on Mf transforming every manifold M into
idM : M −→ M and every smooth map f into (f, f) corresponds to the tri-
vial Weil algebra R. The natural transformation pA

M
: TAM −→ M is deter-

mined by the canonical “real part projection” ρA : A = R × NA −→ R. So
TBpA

M
: TBTAM −→ TBM corresponds to the canonical map

idB ⊗ρA : B ⊗A −→ B ⊗ R = B. (5.5)

Write κA,B : A ⊗ B −→ B ⊗ A for the exchange map. This defines the
exchange natural transformation κA,B

M
: TATBM −→ TBTAM . By (5.4),

κA,B

T
C

M
: TATBTCM −→ TBTATCM corresponds to the exchange A ⊗ B ⊗

C −→ B ⊗ A ⊗ C. By (5.3), TBκA,C

M
: TBTATCM −→ TBTCTAM corre-

sponds to the exchange B ⊗A⊗ C −→ B ⊗ C ⊗A.

Lemma 5.1

The following diagram commutes

TATBTCM TBTCTAM

TATCM TCTAM

T
B

κ
A,C

M
◦ κ

A,B

T C M

κ
A,C

M

T
A

p
B

T C M
p

B

T C T AM

(5.6)



¦0½ w0x,y zExP{P| | }L~P}��P��}��j�E�dzE�P{,���d}�xP�P� ����}P��� ��}�xX��zE| �P� �

Proof. At the algebra level, we have a commutative diagram

A⊗B ⊗ C B ⊗A⊗ C B ⊗ C ⊗A

A⊗ C C ⊗A

Now we are in position to prove Proposition 4.1. Comparing our general
case with the situation in Section 4, we see κA,D = κA and pD

M
= pT

M
. So if we

put B = D = C into (5.6), we obtain

pT

TT
A

M
◦ TκA

M
◦ κA

TM
= κA

M
◦ TApT

TM
. (5.7)

Every X,Y ∈ TASM satisfy (4.5). The naturality of κA on pT

M
: TM −→ M

yields

κA

M
◦ TATpT

M
= TTApT

M
◦ κA

TM
(5.8)

and the standard relation pT

T
A

M
◦ κA

M
= TApT

M
implies

TpT

T
A

M
◦ TκA

M
= TTApT

M
. (5.9)

Hence we have

(pT

TT
A

M
◦ TκA

M
◦ κA

TM
)(X) = κA

M
(TApT

TM
(X)) = κA

M
(TATpT

M
(Y ))

= (TTApT

M
◦ κA

TM
)(Y )

= (TpT

T
A

M
◦ TκA

M
◦ κA

TM
)(Y ).

Thus, (TκA

M
◦ κA

TM
)(X) and (TκA

M
◦ κA

TM
)(Y ) satisfy (4.6), so that KA

M
maps

TASM into STAM . In the case M = R
m, we have SR

m =
5
×R

m and TA
R

m =

Am, so that TASR
m =

5
×Am and STA

R
m =

5
×Am. In this situation, KA

Rm is

the identity of
5
×Am. Moreover, by (4.4) σRm is determined by the difference of

the fourth and fifth components. Taking into account that the vector addition
in A is the TA-prolongation of the addition of reals, we deduce that the diagram
(4.7) commutes.
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Every fiber product preserving bundle functor G on FMm is of the form
G = (A,H, t) where A is a Weil algebra, H : Gr

m
−→ AutA is a group homo-

morphism and t : D
r

m
−→ A is an equivariant algebra homomorphism, [13]. For

every manifold N , the natural transformations corresponding to AutA deter-
mine an action HN of Gr

m
on TAN . So we can construct the associated bundle
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P rM [TAN,HN ], where P rM ⊂ T r

m
M is the r-th order frame bundle of M . For

a fibered manifold π : E −→ M , we define GE as a subset of P rM [TAE,HE ]
characterized by

GE = {{u, Z}, tMu = TAπ(Z)} , u ∈ P rM, Z ∈ TAE . (6.1)

For an FMm-morphism f : E −→ Ē over a local diffeomorphism f : M −→

M̄ , we have the induced principal bundle morphism P rf : P rM −→ P rM̄

and an Gr

m
-equivariant map TAf : TAE −→ TAĒ. So we can construct

P rf [TAf ] : P rM [TAE] −→ P rM̄ [TAĒ] and we define

Gf = P rf [TAf ]|GE. (6.2)

In the product case E = R
m ×Q, we have GE = R

m × TAQ, [13].
This construction extends directly to F(E1, E2). By (2.4), each element of

AutA determines an F -smooth isomorphism TAF(E1, E2) −→ TAF(E1, E2).
So we have an action HF(E1,E2) of Gr

m
on TAF(E1, E2) and we can construct

the F -smooth associated bundle

P rM [TAF(E1, E2), HF(E1,E2)]. (6.3)

Then we define GF(E1, E2) as the subset of (6.3) characterized by

GF(E1, E2) = {{u, Z}, tMu = TAp(Z)},

u ∈ P rM, Z ∈ TAF(E1, E2).
(6.4)

Write FMI

m
= FMI ∩ FMm . For (f1, f2) ∈ FMI

m
×B FMm with the

common base map f , we define

GF(f1, f2) = P rf [TAF(f1, f2)]|GF(E1, E2). (6.5)

Hence GF is a functor on FMI

m
×B FMm with values in SB.

In the product case E1 = R
m ×Q1, E2 = R

m ×Q2, we have

GF(E1, E2) = R
m × C∞(Q1, T

AQ2). (6.6)

This shows that for Jr = (D r

m
, idG

r
m
, idD r

m
) we obtain JrF(E1, E2) constructed

by means of the fiber r-jets in [1].
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In the manifold case, [11], if we have a principal bundle P (M,C) with
structure group C and a left C-space S, a right-invariant vector field ϕ on
P and a left-invariant vector field ψ on S, the product vector field (ϕ, ψ) on
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P × S is projectable to a vector field {ϕ, ψ} on the associated bundle P [S]. In
particular, if η is a projectable vector field on E −→ M over a vector field ξ
on M , then the flow prolongation Prξ is right-invariant on P rM and T Aη is
left-invariant on TAE. In [11] we deduced that the flow prolongation Gη of η
coincides with the restriction of {Prξ, T Aη} to GE ⊂ P rM [TAE].

In the functional case, consider a vector field X : F(E1, E2) −→ TF(E1, E2)
over ξ : M −→ TM . Then (2.4) implies that the field prolongation T AX
is HF(E1,E2)-invariant. Hence we have the vector field {Prξ, T AX} on
P rM [TAF(E1, E2)] and we define the field prolongation GX of X by

GX = {Prξ, T AX}|GF(E1, E2). (7.1)

This is a vector field GF(E1, E2) −→ TGF(E1, E2) over ξ. For two vector
fields Xi on F(E1, E2) over ξi , i = 1, 2, we have by the basic properties of the
strong difference

[GX1,GX2] = {[Prξ1,P
rξ2], [T

AX1, T
AX2]}.

Hence Proposition 3.2 yields

Proposition 7.1

We have

[GX1,GX2] = G[X1, X2] .

At the end we remark that the third author, [11], constructed a map

µG

E
: JrTM ×GTM GTE −→ TGE

with the property that for every projectable vector field η on E over ξ on M

Gη = µG

E
◦ (jrξ ×M Gη) ,

where jrξ : M −→ JrTM is the r-th jet prolongation of the section ξ : M −→
TM and Gη : GE −→ GTE is the induced morphism. Analyzing this con-
struction, one realizes that each step can be extended to our functional case.
In other words, one can introduce in the same way an F -smooth morphism

µG

F(E1,E2)
: JrTM ×GTM GF(E1, E2) −→ TGF(E1, E2)

with the property

GX = µG

F(E1,E2)
◦ (jrξ ×M GX)

for every vector field X on F(E1, E2) with underlying vector field ξ on M .
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[13] I. Kolář, W. Mikulski, On the fiber product preserving bundle functors, Diffe-
rential Geom. Appl. 11 (1999), 105-115.
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Janáčkovo nám. 2a

662 95 Brno

Czech Republic

E-mail: janyska@math.muni.cz

Department of Algebra and Geometry

Masaryk University
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