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Abstract. The paper deals with the local structure of those n-dimensional
(n > 5) Riemannian manifolds of harmonic conformal curvature (M, g)
which are not conformally flat and admit a non-homothetic conformal
change of metric g — g such that (M, g) is locally symmetric.

1. Introduction

An n-dimensional (n > 4) pseudo-Riemannian manifold (M, g) is called
conformally symmetric [2] if its Weyl conformal curvature tensor

Chijk = Rhijr — %(gijShk — GikShj + gnrSi; — gn;Six)
K (1)
+m(gzj9hk - ghjgik)
is parallel, i.e., Cp;jx,; = 0. Herewith and in the sequel we denote the curvature

tensor, Ricci tensor and scalar curvature by R, S and K respectively, while
the comma stands for covariant differentiation with respect to the Levi-Civita
connection.

Clearly, the class of conformally symmetric manifolds contains all locally
symmetric ones (n > 4) as well as all conformally flat manifolds of dimension
n > 4. In the Riemannian case there are no more examples ([4], Theorem 2).

But in general, for each n > 4, there exist ([5]) conformally symmetric
manifolds with metrics of indices from the range {1,2,...,n — 1} which are
neither conformally flat nor locally symmetric.

It is not hard to check (see (5)) that for every conformally symmetric ma-
nifold the condition

Siji— S = W(K,l gij — K j ga) (2)

holds.
AMS (2000) Subject Classification: 53B20.
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An n-dimensional (n > 2) pseudo-Riemannian manifold is said to be nearly
conformally flat [3] (or nearly conformally symmetric [10]) if its Ricci tensor
satisfies condition (2). Any conformally symmetric manifold is therefore nearly
conformally flat. Moreover, condition (2) shows that any n-dimensional (n > 2)
manifold of harmonic curvature (S;; = Six,;j) is also nearly conformally flat.

The existence of essentially nearly conformally flat metrics, i.e. nearly con-
formally flat metrics which are neither conformally flat nor of harmonic curva-
ture, can be stated as follows:

ExaMPLE 1 ([10], Example 1)
Let M =R ! x Ri_, (n > 5) be endowed with the metric g given by

Grpdrrdzt = ((n — 1)33")"%1fijdmidmj + (dz™)?,

where A\, u = 1,2,...,n, 4,7 = 1,2,...,n— 1, and f is an arbitrary non-flat
Ricci-flat metric on R™™! (which evidently exists since n > 5 ). Then (M, g) is
essentially nearly conformally flat.

From Theorem 7 of [5] it follows that essentially nearly conformally flat
manifolds cannot be conformally symmetric ones. Nearly conformally flat ma-
nifolds (n > 4) with positive definite metrics are also said to have harmonic
Weyl tensor (i.e., 6C' = 0, see [1], p. 435) or to be of harmonic conformal
curvature. Throughout this paper we shall use the latter name.

Let M be a manifold of of class C*° endowed with a (not necessarily positive
definite) metric g. If g is another metric on M and there exists a smooth
function p on M such that g = (exp 2p)g, then g and § are said to be conformally
related or conformal to each other, and such a change of metric g — g is called
a conformal change. If p = constant, then the conformal change of the metric
is called a homothety.

Nickerson initiated [8] investigations of Riemannian manifolds (M, ¢g) admit-
ting a conformal change of metric g — g such that (M, g) is locally symmetric.

The present paper deals with similar problems. It contains at generic points
(Theorem 2) a full description of the local structure of those n-dimensional
(n > 5) (Riemannian) manifolds of harmonic conformal curvature (M, g) which
are not conformally flat and admit a non-homothetic conformal change of met-
ric g — g such that (M,g) is locally symmetric. Theorem 2 bases on the
following result:

THEOREM 1

Let (M,g), dim M > 4, be of harmonic conformal curvature. If (M, g) is not
conformally flat and it admits a non-homothetic conformal change of metric
g+— g = (exp2p)g such that (M,g) is conformally symmetric, then dim M > 5
and (M, g) is a locally reducible locally symmetric manifold.
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Throughout this paper, all manifolds under consideration are assumed to
be connected and of class C'°°. Their metrics, unless stated otherwise, are
assumed to be positive definite.

2. Preliminaries
In the sequel we need the following results:

LEMMA 1
The Weyl conformal curvature tensor satisfies the well-known equations:

Chiji = —Cinjit = —Chit; = Cjini (3)

Chijt + Cnii + Cniij =0, Clijr = iy = 07y = 0, (4)
- n—3 1

Chitr = m(sz‘j,l = Sitj — m([(,lgij — K jgu))- (5)

LEMMA 2 ([6], p. 89-90)
Let g;; = (exp2p)gij . Then we have:
Yy, =Tl + 8ipr + 01p; — p'gjn (6)
C_’hijl = Chijl ) (7>

where T' denotes Christoffel symbols, p; = p,; and p" = g""p,..

LEmMMA 3
Let §;; = (exp2p)gij. Then we have:

Cwijk;r =C"gr + (0 =3)p:C" (8)
where the semicolon denotes covariant differentiation with respect to g.

Proof. Differentiating (7) covariantly, using (6) and Lemma 1, we obtain

~h _ h h T h hev o . h . h
¢ ikl = ¢ ijkt T o'prC ijk 2pC ijk — P Ciiji — piC ik piCh

)

— pkCly + gup"C" . + giup"Cp + grap”CPy,
Equation (8) follows from (9) and Lemma 1. This completes the proof.

LEMMA 4 ([4], Theorem 2)
Let (M, g) be a Riemannian conformally symmetric manifold. If it is not con-
formally flat, then (M, g) is locally symmetric.
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LEMMA 5 ([11], Theorem 3)

Let (M, g) be a pseudo-Riemannian conformally symmetric manifold. If it
admits a conformal change of metric g — g such that (M,g) is conformally
symmetric, then both (M,g) and (M,g) are conformally flat or the conformal
change of metric is a homothety.

REMARK 1
It is known ([12], p. 286) that a Riemannian manifold is locally decomposable
if and only if it admits a symmetric parallel tensor field of type (0,2) which is
not a multiple of the metric tensor.

If (M, g) is locally decomposable and dim M = n, then coordinates (z, ...,
gt gt 2" can be locally chosen so (see [13], p. 414 ) that
its metric takes the form:

Gi1ja

Gisj
272 , (10)

Gie i

where iy, j1 = 1,..., 71, 49,2 = T1H 1, oy 14T, ey ity e = LE ) Tls ey 10
and the tensors g5 (s = 1,...,t) given by g1 = [gi;, (z},...,2™)], g2 =
[Ginjo (™ o 2™ F72)] L are irreducible. M can be therefore locally writ-
ten in the form My x ... x M; and its metric is the direct sum of the metrics
on M;’s. Obviously, if one or more of the M;’s are 1-dimensional, then, by a
renumeration of coordinates, (10) can be modified so that (M1, g1) is Euclidean
and that all g (k = 2,...,m < t) are irreducible and no one of the My’s is
1-dimensional. Moreover, (10) implies

l9:5] = [g“b ; (11)

gAB]

where a,b=1,...,r, A,B=r+1,...,n, ga are functions of z!,..., 2" only,
and gap depend on 2”1 ... a™ only. Clearly, in a matrix of the form (11) the
tensors g7 and gs can be reducible.

LEMMA 6
In the metric (11), the only components of the Weyl conformal curvature tensor
and its covariant derivative which may not vanish are those related to

1

Cabcd = Rabcd - m(gbcsad - gdeac + gadSbc - gachd)

Q+N
m(gbcgad - gacgbd) 5

(12)
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1
CaBcp = Rapep — r(chSAD — 9BDpSACc + 9AaDSBC

2
N L0 A
JACOBD (n — 1)(n — 2) 9BCIAD — JACYIBD),
1 1
CaABC i — Sac - —anc 9gAB
n—2 n—1 (14>
1
+ (SAB - —NQAB> gac) )
n—1
1
C = — 15
ABODa = T ) Q.a(9BcY9aD — 9acyBD), (15)
1
Cobedn = ———— N - , 16
abed, A (n—1)(n—2) A(9vcGad = Gacgbd) (16)
1 1
e Sy — —— 1
Caapea = ———5(8ac.d = ——7@.dgac)9as . (17)
1 1
wABe,D = ——— - ——N ac s 1
CaaBe,D —(Sap.p = —N.pgas)g (18)
1
Cabcd,e = Rabcd,e - m(gbcsad,e - gbdsac,e + gadSbc,e - gachd,e)
1 (19)
+m@,e(gbcgad = Yacgbd);
1
CaBcp,E = RABCD,E_m(gBCSAD,E — 9BpSAC,E + 9ADSBC.E
, (20)
—garS - - N _
9acSep,E)+ =1 =2 E(9BCc9AD — 9ac9BD),

where a,b,c,d,e =1,2,...,7r, A,B,C,D,E=r+1,...,n, and Q and N denote
the scalar curvatures of the metrics [gap] and [gap], respectively.

The proof is obvious.

LEMMA 7
Let (M, g) be conformally symmetric with a possibly indefinite metric. If the
metric can be locally written in the form (11), then (M, g) is locally symmetric.

The proof follows easily from equations (15)-(20).

The following two results seem to be well known:
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LEMMA 8
Let M = My x My be an n-dimensional (n > 4) pseudo-Riemannian mani-
fold, where My and My are of constant sectional curvature, dim My, =1 > 1,
dimMs = s > 1 and r +s = n.! Denote by Q and N the scalar curvatures
of M1 and My, respectively. Then M is conformally flat if and only if the
condition

s(s—1)Q+r(r—1)N=0 (21)
holds.
LEMMA 9
Let M = My x Ma X ...x My be a pseudo-Riemannian manifold, M; (dim M; =
¢ >1,1=1,2,...,t) being Einstein manifolds with scalar curvatures Q;. De-

note by Q the scalar curvature of M and let ¢ = dim M. Then M is Finsteinian
if and only if

1 1
-Q=—0; (i=1,2,...,t).
q qi

LeEmMA 10
Let (M, g) be an n-dimensional (n > 2) Riemannian locally symmetric manifold
whose curvature tensor satisfies the condition

v R = Bigi; — Bjga (22)

for some covector fields v and B. If (M, g) is locally irreducible and if at least
one of the covector fields v or B does not identically vanish, then (M,g) is of
constant sectional curvature.

Proof. Obviously, (M, g) is an Einstein manifold with constant scalar cur-
vature and its curvature tensor satisfies the condition

RMIy Ryiji = Tgm (23)

where 7 = constant. Transvecting (22) with RY?, and making use of (23), we
easily obtain

2
Tvg = —KBy. (24)
n
On the other hand, condition (22) yields

1
—K”Ul = (Tl — 1)Bl
n

which, together with (24), implies

IThroughout this paper, 1-dimensional manifolds are ass med to be of constant sectional
curvature.
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(7~ ey =0 >

Assume that v; does not vanish at least at some point of M. Since 7 and
K are constants, (25) gives

2
r=———K2
n?(n—1)

But, by (23), we have R""* R,;;;. =|| R ||* = n7, which, together with the last
result, implies

2
| RIP= = K (26)

n—1)

Now, let T be given by

Thiji = Rhjt — n(T(gijghl — Gnjgit)-

1)

Then, in view of (26), we get || T||> = 0. Thus, T = 0, which completes the
proof in the case v # 0. If B; does not identically vanish, then the proof is
quite similar.

3. Locally decomposable manifolds

We are now in a position to prove Theorem 1.

Proof of Theorem 1. By (2) and (5), we get

Crijl,r =0, (27)
which, in view of (8) and (7), yields

But (28), together with
C_'hijlc_'hijk- = UGk -

which holds for every 4-dimensional manifold [9], implies up; = 0. Hence, C =0
at some point. Since C' is parallel, it vanishes therefore everywhere, a contra-
diction. Thus dim M > 5.

Assume that (M, g) is locally irreducible. By (7) and Lemma 4, (M, g) is
locally symmetric and, in consequence, it must be Einsteinian. Thus, in view
of (28), we have

_ 1
WRriji = ————=K(gs; — pga),
PR = ST (P95 — piGan)
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which, by Lemma 10, shows that (M, g) is of constant sectional curvature.
Consequently, (M,g) is conformally flat, a contradiction. The last remark
completes the proof.

LEMMA 11

Let (M, g), dim M > 5, be of harmonic conformal curvature admitting a non-
homothetic conformal change of metric g — g = (exp2p)g such that (M, g) is
conformally symmetric. Assume that (M,g) is in some coordinate neighbour-
hood U decomposable into My x My, dmM; =r > 1, dimMs =s=n—r > 1.
(The metric of (M,g) is therefore in U of the form (11)). If one of the M/s,
say M, is either irreducible or Euclidean and there exists a point in U at which
the gradient of p does not vanish in the direction of My (i.e. po = p,q # 0 for
some a € {1,2,...,1}), then

(i) My is of constant sectional curvature (with constant scalar curvature)
and Ms is Finsteinian with parallel curvature tensor.

(ii) Condition (21) holds, where Q and N denote the scalar curvatures of My
and Ms, respectively.

Proof. Both M; and Mj are locally symmetric since M; x Ms does so (cf.
Lemma 7). On the other hand, because of (28), equations (12)-(14) imply

PaC%%pa =0, PaC%qa=0, paCpcp =0, paC?,5=0, (29)

whence, by (14), Sap = %anb, VC =0 and p, # 0, we get

_ 1 —1
Spp = —— (N -2 Q> JBD - (30)
n—1 r

The last result shows that M, is Einsteinian and that condition (21) holds.
Moreover, (12) yields

_ _ 1 2 +NY ,_ _
Cabed = Rabed — -Q— et (GadGbe — GacGod),
n—2\r n—1
which, because of (29), implies
_ 1 /2. Q+N
RY.g——— | -Q— Gbe — PeGbd) = 0. 31
Pl — (TQ — > (Pagve — Pegba) (31)

But from the last result, we have

EQ_T—l (EQ_Q—I—N>:07

T n—1
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which shows that in the case dim M > 1 equation (31) takes the form
na 1 — _
PaR%eq = m@(pdgbc — PeGbd)-

Since p, does not identically vanish, the assertion is therefore an immediate
consequence of Lemma 10. This completes the proof.

LEMMA 12

Let (M, g), dimM > 5 be of harmonic conformal curvature admitting a con-
formal change of metric g — g = (exp2p)g such that (M,g) is conformally
symmetric. Assume that (M,g) is in some coordinate neighbourhood U de-
composable into My x My x ... x My, where My is Fuclidean or irreducible
and the others of the Mis (j = 2,...,t) are irreducible and no one of them
is 1-dimensional (the metric of (M,g) is therefore in U of the form (10), cf.
Remark 1). If p # constant on U, then (M, g) is conformally flat or there is
only one of the M!s (i = 1,...,t) in the direction of which the gradient of p
does not identically vanish (i.e., there exists s € {1,2,...,t} such that for any
q # s the condition p;, = p;, = 0 holds everywhere on U, where (x%a) denote
coordinates in M;.)

Proof. Let t > 3. Suppose that among M/s there exist at least two such
in the direction of which the gradient of p does not identically vanish on U.
Without loss of generality, we may assume (it is enough to change the nu-
meration of coordinates if it is necessary) that the metric is in U of the form
(10) and that among (1) and (z) there exist at least two coordinates z1
and z*¢ such that both componets py, = p ., and py, = p., do not vanish
identically on U. Lemma 11 shows that both M; and M; are of constant sec-
tional curvature (with constant scalar curvatures), Ny = My x ... X M; and
Ny = My x ... x M;_; are Einsteinian and condition (21) holds.

Denote by @Q; the scalar curvature of M; and let ¢; = dim M;. Then, in
view of (21), we have

¢ ¢ ¢
a(l—q)> Qi+Q1> ¢ (1—2%‘) =0, (32)
i=2 i=2 i=2

t—1 t—1 t—1
@3 (1 - qu-) fall—0) Q=0 (59
i=1 i=1 i=1
On the other hand, Lemma 9 implies
1 . 1 .
QZ:q_QtQZ (2227at), leq_lQ1QZ (’l:l,,t—l), (34)
t

which, together with (32) and (33), yields
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0,

q1(1—q1)Q¢ + ¢ Q1 (1 - Z%)

t
=2

t

1
qt(1 = q)Q1 + 1 Q¢ (1 - Z%)

=1

0.

Consequently, we have

Q1 ((1—2%‘) (1—2_:%‘) —(1—611)(1—%)) =0,

whence it follows Q1 = @; = 0. Thus, both M; and M; are Euclidean, a
contradiction. Assume now that ¢ = 2 and that there exist py, b € {1,2,...,r}
and pp, B € {r+1,...,n}, which do not vanish on U (cf. Remark 1). Then, by
Lemma 11, both M; and M> are of constant sectional curvature and condition
(21) holds. Hence, in view of Lemma 8, M; x My is conformally flat. Since C
is parallel and it vanishes on U, it does so everywhere. Consequently, (M, g) is
conformally flat. The last remark completes the proof.

4. A local structure result

We are now in a position to prove the following result:

THEOREM 2

(i) Let (Mi,91) be of constant sectional curvature K (K = constant), F a
positive non-constant function on My, and (Maz, g2) a locally symmetric
Einstein manifold whose scalar curvature N = —s(s — 1)K, where s =
dim My. If (M2, g2) is not of constant sectional curvature and dim My +
dim Ms > 5, then M = My x My with the warped product metric g =
F2g1 + F?gy = (exp2log F) (g1 @ g2) is of harmonic conformal curvature
and it admits a non-homothetic conformal change of metric g — g such
that (M, g) is locally symmetric. Moreover, (M, g) is neither conformally
flat nor locally symmetric.

(ii) Let (M,g), dimM > 4 be of harmonic conformal curvature admitting
a non-homothetic conformal change of metric g — g = (exp2p)g such
that (M, g) is conformally symmetric. If (M, g) is not conformally flat,
then dim M > 5 and for each point x € M satisfying (gradp)(xz) # 0
coordinates can be chosen in a neighbourhood of x so that the metric of
M takes the above stated warped product form with properties described

Proof. (i) Obviously, coordinates can be locally chosen so that the metric
of M can be written as
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_ _—2p gab
il =e _ , 35
[9:5] [ gAB] (35)
where gap(z!, ..., 2") denote the components of g1, gap(z"*!, ..., 2™) the com-
ponents of go, 7 = dim M} = n— s and p = — log F' # constant is a function of
z',...,z" only. Thus,
(93] = €*gi;]- (36)

Since (M3, g1) is of constant sectional curvature (with constant scalar curva-
ture), (Ms,g2) is a locally symmetric Einstein manifold and condition (21)
holds, (M,g) is locally symmetric and equations (12)-(14) imply Cupea =
Cuape =0 and

_ _ 1
Capcp = Rapep — )N(QBCQAD — GBDJAC)- (37)

s(s—1

Moreover, one can easily check that condition (28) is satisfied. Hence, in view
of (36), (7), (8) and VC = 0, we obtain (27), which shows that (M, g) is of
harmonic conformal curvature. On the other hand, by virtue of (36) and the
definition of g it follows that (M, g) admits a non-homothetic conformal change
of metric g — g such that (M, g) is locally symmetric. Because of (37) and (7),
(M, g) is not conformally flat and, by Lemma 5, it cannot be locally symmetric.
The last remark completes the proof of (i).

(ii) Theorem 1 shows that dim M > 5 and (M, g) is a locally reducible
locally symmetric manifold. Consequently, its metric has locally the form (10),
where (M, g1) is either Euclidean or irreducible, and any other (M;,g;) is
neither reducible nor of dimension 1.

Denote by U a coordinate neighourhood in which gradp does not vanish
identically. Whithout loss of generality we may assume (it is enough to renu-
merate the coordinates if it is necassary) that (M7, g1) with g1 given by [gas],
a,b=1,2,...,r,is either Euclidean or irreducible, and that p.(z) # 0 for some
x € U and ¢ € {1,...,r}. Obviously, the metric (10) can be written in the
form (11), whence, by Lemma 11, it follows that (M7, g1) is of constant sec-
tional curvature (with constant scalar curvature), (M3, g2) is Einsteinian with
parallel curvature tensor and condition (21) holds. Moreover, Lemma 12 shows
that p is a non-constant function of z',...,z" only.

Assume now that (Mo, g2) is of constant sectional curvature. Then, because
of (37) and Caped = Caape = 0, the Weyl conformal curvature tensor C would
vanish on U. Since C is parallel by assumption, it would vanish everywhere
on M, a contradiction. Hence, in view of (35), (M, g) has in U the required
warped product form with F' # constant and properties described in (i). This
completes the proof.

REMARK 2
The main part of Theorem 2(i) is due to A. Derdziniski (cf. [1], p. 442).
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REMARK 3

In the case B # 0 the assertion of Lemma 10 follows also from a result of
Grycak (cf. [7], Theorem 1).

(1]
2]
3]
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