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Abstract. All analytic solutions of the functional equation

|f (rexp(i0))|* + [f(D)* = |£(r)* + | f (exp(i6))|*
in the annulus
P={z€C: 1—e<|z|<1+¢€}
and in the domain

Di={z=re?cC: 1—e<r<l+e 0 (=00},

are found.

1. Introduction

Hiroshi Haruki in [1] studied the following functional equations

|f(rexp(i0))[* + [F(1)[* = | £(r)]* + | f (exp(if))?, (1)
and
| f(rexp(if))[| = [f(r)], (2)

where 7 > 0, 6 are real. Equation (1) can be obtained from (2). In fact, let us
put 7 = 1in (2). Then we have

|/ (exp(i0))| = [f(1)] (3)

for 8 € R. Next squaring (2) and (3) and adding them together we infer (1).
Thus (1) is a generalization of (2), i.e., if f is a solution of (2), then it is a
solution of (1). In paper [1] H. Haruki showed that all analytic solutions in
C\ {0} of (1) which are analytic at 0 or have a pole at this point can be written
as follows

f(z) =AzP + Bz7P, (4)

where A, B are complex constants and p is an integer.
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We are going to prove that the functions of the form (4) are unique analytic
solutions of (1) in the annulus

P={zeC: 1—-e<|z|<1+¢€},

where 0 < € < 1 is a constant. We shall also find all analytic solutions of (1)
in the domain

D:={z=re®cC: 1-e<r<l+e 0 (-6,0)},

where 0 < € < 1 and 0 < § < 7 are given constants. Moreover, we shall
determinate all analytic solutions in P and in D of (2) and of the equation

| (rexp (i6))| = | f (exp (i0))] - (5)

Of course, (1) is also a generalization of (5).

2. Solutions of (1), (2) and (5) in P

In this section we will be concerned with analytic solutions of equations (1),
(2) and (5) in the annulus P.

THEOREM 1

If f is an analytic solution of (1) in P, then there exist complex constants
A, B and an integer p such that (4) is valid. Conversely, for every complex
constants A, B and for every integer p, f given by (4) is a solution of (1).

Proof. Tt is easy to check that f given by (4) satisfies (1). The function
f(z) =0 1in P is a solution of (1) of the form (4). Suppose that an analytic
function f is a solution of (1) and f # 0. Of course,

Fre®) fre®) + [P = [£(r)]> + £ (6)

for € R and r € (1 —¢,1 + ¢€). Differentiating (6) at first with respect to r
and then with respect to # we successively infer

& (re YT 4 e f(re) T (re) = | )P

and
e (TR — e e ) + P (e T
— e O f(re!) f1re®)
=0.

Let us multiply the obtained equality by r and replace re by z. Then
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_ Pf1(2)f(2) =2 f(2) ] (2) + 2 () (2) = 2f (2)F'(2) = 0,
ie.,

S f"(2)f(2) + 2f'(2)F(2)] = 0 (7)
for all z € P. Since f # 0, we can find a disc V' C P such that f(z) # 0 for all

z € V. The equality f(z) = %, valid in this disc, and (7) imply

NEUOESIND
f(z)
for all z € V. Since an analytic function preserves domains, there exists a real
constant k such that

=0

2f(2) +2f'(2) — kf(z) =0 (8)

for all z € V. By the Identity Theorem formula (8) remains valid in P. (The
above part of the proof is due to H. Haruki, see [1], pp. 130-131). We can find
complex numbers a,, n € Z such that for all z € P,

flz)= Z anz".

n=—oo
Since
oo oo
f(z)= Z nanz"" (z) = Z n(n —1)anz""?
n=-—oo n=-—oo
we conclude that
o
0=22f"(2)+2f'(2) — kf(z) = Z [n(n—1)+n — kla,2",
n=—oo
whence
(n®* —k)a, =0  forallncZ (9)

We choose p € Z such that a, # 0. It is possible as f # 0. From (9) we get
that p? = k and

(n2 pr) an =0 for all n € Z.

So, if n? # p?, then a,, = 0, whence it follows that a, = 0 for all n # p and
n # —p. Thus

flz) =apz? +a_pz™?
for z € P, as desired.

The following two lemmas are quite obvious.

LEMMA 1
If the equality

Ae" 4 Ae 0 = A+ A
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holds true for all 6 € (=4,0), where A is a complex constant, a # 0 is a real
one, then A =0.

LEMMA 2
If the equality

aeaG +56—a9 _ Oé+ﬂ

holds true for all 8 € (=4,8), where a # 0, «, B are real constants, then
a=06=0.

Now we will consider equation (2). As we mentioned above, every solution
of (2) is a solution of (1). Thus if f is an analytic solution of (2), then f has to
be of form (4) for some complex constants A, B and some integer p. Assume
that p # 0. Substituting (4) to (2) we get

ABe??? L ABe~ 2" — AB + AB, 6 € R.
Lemma 1 yields A =0 or B = 0. Thus we have

THEOREM 2
If f is an analytic solution of (2) in the annulus P, then there exist a complex
constant A and an integer p such that

f(z) = AzP. (10)

Conversely, for every complex constant A and for every integer p, the function
f given by (10) is a solution of (2).

THEOREM 3
Every analytic solution of (5) in the annulus P is a constant function.

Proof. Suppose that f is a solution of (5). Then f has to be of form (4).
We may assume that p # 0. Combining (4) with (5) we obtain

|A|?r?P + |B|*r—2P = |A|? + | B|? forallr € (1 —¢€,1+¢).

Lemma 2 shows that A = B = 0, which completes the proof.

3. Solutions of (1), (2) and (5) in D

In this part of the paper we shall find all analytic solutions of equations
(1), (2) and (5) in the domain D := {re’? : 1 —e<r <14¢, 6 € (=6,0)},
where 0 < e <1 and 0 < § < 7. In the sequel z® denotes the principal branch
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of the power in D and log z is the principal branch of the logarithm of z, i.e.,
z% = exp (alog z) and log z = log |z| + i arg z for z € D, where argz € (=46, 9).

THEOREM 4
If an analytic function f satisfies (1) in D, then there exist complex constants
A, B and a € R or a € iR such that

f(z)=Az*+ Bz"“ (11)

Conversely, every function f of form (11) with arbitrary complex constants A,
B and arbitrary real or purely imaginary constant a is a solution of (1).

Proof. We may repeat the argument of the proof of Theorem 1. Thus we
observe that if an analytic function f satisfies (1) in D , then it has to be a
solution of the differential equation

2f"(2) +2f'(2) —kf(z) =0,  z€D, (12)
where k is a real constant. Let
G={logz: z € D}.

Of course, G is a domain. We define a function g : G — C as follows

g(u) = f(e").
g is analytic, f(z) = g(log z) for z € D and
ef(e") =g'(w), € f"(e")=¢"(u) =g (u), ued. (13)

It follows from (12) that
2t (e") + e f(e") —kf(e*) =0  forallu € G,
whence by (13)
g"(u) — kg(u) =0, ueG.
Solving this differential equation we get
g(u) = Ae®™ + Be™ ",

where A, B are suitable complex constants and a? = k. So a is a real constant
or a = ic, where ¢ € R. Putting u = log z we obtain (11). The first assertion
of the theorem follows.

For the second conclusion, let us take arbitrarily a € R, A, B € C and let f
be given by (11). We observe that

f(rew) = Ar@eifa +Br—ue—i9u7 f(ew) = Aetfa _|_Be—i9a7
flr)y=Ar®+ Br—, f(1)=A+ B.
Thus
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[f(re”) P+ 1 F(D)?
= (Ar®e"® 4 Br=%e= %) (Arte=%e 4 Br=") 4 (A + B)(A + B)
= |A]*r®* + |B]*r72% + ABe** 4 ABe™%%* 1 |A]? + |B]* + AB + AB
and
F(e) + 1)
= (Ae™® + Be ") (Ae"* 4 Be'®) + (Ar® + Br—®)(Ar® 4+ Br=%)
= |A> 4+ |B]* + ABe*" 4 ABe %" 1 |A>r®* + |B|*r 2" + AB + AB.
Now we assume that a = ic, where ¢ € R. Then
f (7,61’9) — Agicllogr+if) | po—ic(logr+if)
— Ae~f¢iclogr | pecd —iclogr
f (eiG) — Ae= + Be,
F(r) = Aeiclos™ 4 Be-iclogr,
f(1)=A+ B.
These formulas lead to
£ re™)? +1F ()P
= (Ae~feiclogr | Becfe—iclogry(fo—cOoiclogr | Pecboiclogry 4|4 4 |2
— [A]2e20 4 |B|2e20 4 ABe¥elosT 4 ABe-2iclogr
+|A*+ |B|* + AB+ AB
and
[FED)P +1f ()P = (Ae™ + Be?)(Ae™ + Be™)
4 (Aeiclogr 4 pe—iclogr)(fp—iclogr | Peiclogr)
= |A2e™2 +|B|*e** + AB + AB + |A|? + |B)?
1 ABericlogr | Ape-2iclogr
So in both cases the function f given by (11) satisfies (1), as required.

THEOREM 5
All analytic solutions of (2) in D are of the form

f(z) = Az°, (14)

where A is a complex constant and a is a real one.

Proof. Suppose that f is a non-constant analytic solution of (2) in D.
Since (1) is a generalization of (2) we can apply Theorem 4. Thus there exist
complex constants A, B and real or purely imaginary a # 0 such that f is
given by (11). At first we assume that a is real. Substituting (11) in (2) after
some easy calculations we obtain
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ABexp (—2iaf) + ABexp (2ia) = AB + AB
for 6 € (—4,d). Lemma 1 yields A = 0 or B =0 and f is of the form (14), as
required.
Now, we assume that a = ic, where c is real. Replacing in (2), f(z) by (11)
we infer the equality

|A|? exp (—2¢0) + | B|? exp (2¢) = |A]* + |B|?.
This together with Lemma 2 yields A = B = 0.

THEOREM 6
All analytic solutions of (5) in D are given by the formula

f(z) = Az', (15)

where A is a complex constant and ¢ is a real one.

Proof. We argue as in the preceding proof. Suppose that f is a non-
constant analytic solution of (5) in D. f has to be given by (11). Assume that
a is a real constant. Substituting (11) in (5) we get

|A|?r?® + |B]*r—2* = |A]? + |BJ?

forall r € (1 —¢,14¢€). From Lemma 2 we infer that A = B = 0. It remains to
consider a = ic, where c is real. Again substituting (11) in (5) we can obtain

ABexp (2iclogr) + ABexp (—2iclogr) = AB + AB.
The above formula and Lemma 1 yield (15).
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