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Dedicated to Professor Andrzej Zajtz
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ZF[]\_^ ` acb ^ d
All analytic solutions of the functional equation

|f(r exp(iθ))|2 + |f(1)|2 = |f(r)|2 + |f(exp(iθ))|2

in the annulus
P := {z ∈ C : 1 − ε < |z| < 1 + ε}

and in the domain

D := {z = re
iθ

∈ C : 1 − ε < r < 1 + ε, θ ∈ (−δ, δ)},

are found.

eHfhg iFj_kcl0m0n0ocj_p l0i

Hiroshi Haruki in [1] studied the following functional equations

|f(r exp(iθ))|2 + |f(1)|2 = |f(r)|2 + |f(exp(iθ))|2, (1)

and

|f(r exp(iθ))| = |f(r)|, (2)

where r > 0, θ are real. Equation (1) can be obtained from (2). In fact, let us
put r = 1 in (2). Then we have

|f(exp(iθ))| = |f(1)| (3)

for θ ∈ R. Next squaring (2) and (3) and adding them together we infer (1).
Thus (1) is a generalization of (2), i.e., if f is a solution of (2), then it is a
solution of (1). In paper [1] H. Haruki showed that all analytic solutions in
C\{0} of (1) which are analytic at 0 or have a pole at this point can be written
as follows

f(z) = Azp + Bz−p, (4)

where A, B are complex constants and p is an integer.
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We are going to prove that the functions of the form (4) are unique analytic
solutions of (1) in the annulus

P := {z ∈ C : 1− ε < |z| < 1 + ε},

where 0 < ε ≤ 1 is a constant. We shall also find all analytic solutions of (1)
in the domain

D := {z = reiθ ∈ C : 1− ε < r < 1 + ε, θ ∈ (−δ, δ)},

where 0 < ε ≤ 1 and 0 < δ ≤ π are given constants. Moreover, we shall
determinate all analytic solutions in P and in D of (2) and of the equation

|f (r exp (iθ))| = |f (exp (iθ))| . (5)

Of course, (1) is also a generalization of (5).
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In this section we will be concerned with analytic solutions of equations (1),
(2) and (5) in the annulus P .

Theorem 1

If f is an analytic solution of (1) in P , then there exist complex constants

A, B and an integer p such that (4) is valid. Conversely, for every complex

constants A, B and for every integer p, f given by (4) is a solution of (1).

Proof. It is easy to check that f given by (4) satisfies (1). The function
f(z) ≡ 0 in P is a solution of (1) of the form (4). Suppose that an analytic
function f is a solution of (1) and f 6≡ 0. Of course,

f(reiθ)f(reiθ) + |f(1)|2 = |f(r)|2 + |f(eiθ)|2 (6)

for θ ∈ R and r ∈ (1 − ε, 1 + ε). Differentiating (6) at first with respect to r
and then with respect to θ we successively infer

eiθf ′(reiθ)f(reiθ) + e−iθf(reiθ)f ′(reiθ) =
d

dr
|f(r)|2

and

re2iθf ′′(reiθ)f(reiθ)− re−2iθf(reiθ)f ′′(reiθ) + eiθf ′(reiθ)f(reiθ)

− e−iθf(reiθ)f ′(reiθ)

= 0.

Let us multiply the obtained equality by r and replace reiθ by z. Then
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z2f ′′(z)f(z)− z2f(z)f ′′(z) + zf ′(z)f(z)− zf(z)f ′(z) = 0,
i.e.,

=[z2f ′′(z)f(z) + zf ′(z)f(z) ] = 0 (7)

for all z ∈ P . Since f 6≡ 0, we can find a disc V ⊂ P such that f(z) 6= 0 for all

z ∈ V . The equality f(z) = |f(z)|2

f(z) , valid in this disc, and (7) imply

=

[

z2f ′′(z) + zf ′(z)

f(z)

]

= 0

for all z ∈ V . Since an analytic function preserves domains, there exists a real
constant k such that

z2f ′′(z) + zf ′(z)− kf(z) = 0 (8)

for all z ∈ V . By the Identity Theorem formula (8) remains valid in P . (The
above part of the proof is due to H. Haruki, see [1], pp. 130-131). We can find
complex numbers an, n ∈ Z such that for all z ∈ P ,

f(z) =

∞
∑

n=−∞

anzn.

Since

f ′(z) =

∞
∑

n=−∞

nanzn−1, f ′′(z) =

∞
∑

n=−∞

n(n− 1)anzn−2

we conclude that

0 = z2f ′′(z) + zf ′(z)− kf(z) =

∞
∑

n=−∞

[n(n− 1) + n− k]anzn,

whence

(n2 − k)an = 0 for all n ∈ Z. (9)

We choose p ∈ Z such that ap 6= 0. It is possible as f 6= 0. From (9) we get
that p2 = k and

(

n2 − p2
)

an = 0 for all n ∈ Z.

So, if n2 6= p2, then an = 0, whence it follows that an = 0 for all n 6= p and
n 6= −p. Thus

f(z) = apz
p + a−pz

−p

for z ∈ P , as desired.

The following two lemmas are quite obvious.

Lemma 1

If the equality

Aeiaθ + Ae−iaθ = A + A
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holds true for all θ ∈ (−δ, δ), where A is a complex constant, a 6= 0 is a real

one, then A = 0.

Lemma 2

If the equality

αeaθ + βe−aθ = α + β

holds true for all θ ∈ (−δ, δ), where a 6= 0, α, β are real constants, then

α = β = 0.

Now we will consider equation (2). As we mentioned above, every solution
of (2) is a solution of (1). Thus if f is an analytic solution of (2), then f has to
be of form (4) for some complex constants A, B and some integer p. Assume
that p 6= 0. Substituting (4) to (2) we get

ABe2ipθ + ABe−2ipθ = AB + AB, θ ∈ R.

Lemma 1 yields A = 0 or B = 0. Thus we have

Theorem 2

If f is an analytic solution of (2) in the annulus P , then there exist a complex

constant A and an integer p such that

f(z) = Azp. (10)

Conversely, for every complex constant A and for every integer p, the function

f given by (10) is a solution of (2).

Theorem 3

Every analytic solution of (5) in the annulus P is a constant function.

Proof. Suppose that f is a solution of (5). Then f has to be of form (4).
We may assume that p 6= 0. Combining (4) with (5) we obtain

|A|2r2p + |B|2r−2p = |A|2 + |B|2 for all r ∈ (1− ε, 1 + ε).

Lemma 2 shows that A = B = 0, which completes the proof.
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In this part of the paper we shall find all analytic solutions of equations
(1), (2) and (5) in the domain D := {reiθ : 1 − ε < r < 1 + ε, θ ∈ (−δ, δ)},
where 0 < ε ≤ 1 and 0 < δ ≤ π. In the sequel za denotes the principal branch
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of the power in D and log z is the principal branch of the logarithm of z, i.e.,
za = exp (a log z) and log z = log |z|+ i arg z for z ∈ D, where arg z ∈ (−δ, δ).

Theorem 4

If an analytic function f satisfies (1) in D, then there exist complex constants

A, B and a ∈ R or a ∈ iR such that

f(z) = Aza + Bz−a. (11)

Conversely, every function f of form (11) with arbitrary complex constants A,

B and arbitrary real or purely imaginary constant a is a solution of (1).

Proof. We may repeat the argument of the proof of Theorem 1. Thus we
observe that if an analytic function f satisfies (1) in D , then it has to be a
solution of the differential equation

z2f ′′(z) + zf ′(z)− kf(z) = 0, z ∈ D, (12)

where k is a real constant. Let

G = {log z : z ∈ D}.

Of course, G is a domain. We define a function g : G −→ C as follows

g(u) := f(eu).

g is analytic, f(z) = g(log z) for z ∈ D and

euf ′(eu) = g′(u), e2uf ′′(eu) = g′′(u)− g′(u), u ∈ G. (13)

It follows from (12) that

e2uf ′′(eu) + euf ′(eu)− kf(eu) = 0 for all u ∈ G,

whence by (13)

g′′(u)− kg(u) = 0, u ∈ G.

Solving this differential equation we get

g(u) = Aeau + Be−au,

where A, B are suitable complex constants and a2 = k. So a is a real constant
or a = ic, where c ∈ R. Putting u = log z we obtain (11). The first assertion
of the theorem follows.

For the second conclusion, let us take arbitrarily a ∈ R, A, B ∈ C and let f
be given by (11). We observe that

f(reiθ) = Araeiθa + Br−ae−iθa, f(eiθ) = Aeiθa + Be−iθa,

f(r) = Ara + Br−a, f(1) = A + B.

Thus
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|f(reiθ)|2 + |f(1)|2

= (Araeiθa + Br−ae−iθa)(Arae−iθa + Br−aeiθa) + (A + B)(A + B)

= |A|2r2a + |B|2r−2a + ABe2iθa + ABe−2iθa + |A|2 + |B|2 + AB + AB

and

|f(eiθ)|2 + |f(r)|2

= (Aeiθa + Be−iθa)(Ae−iθa + Beiθa) + (Ara + Br−a)(Ara + Br−a)

= |A|2 + |B|2 + ABe2iθa + ABe−2iθa + |A|2r2a + |B|2r−2a + AB + AB.

Now we assume that a = ic, where c ∈ R. Then

f
(

reiθ
)

= Aeic(log r+iθ) + Be−ic(log r+iθ)

= Ae−cθeic log r + Becθe−ic log r,

f
(

eiθ
)

= Ae−cθ + Becθ,

f(r) = Aeic log r + Be−ic log r,

f(1) = A + B.

These formulas lead to

|f(reiθ)|2 + |f(1)|2

= (Ae−cθeic log r + Becθe−ic log r)(Ae−cθe−ic log r + Becθeic log r) + |A + B|2

= |A|2e−2cθ + |B|2e2cθ + ABe2ic log r + ABe−2ic log r

+ |A|2 + |B|2 + AB + AB

and

|f(eiθ)|2 + |f(r)|2 = (Ae−cθ + Becθ)(Ae−cθ + Becθ)

+ (Aeic log r + Be−ic log r)(Ae−ic log r + Beic log r)

= |A|2e−2cθ + |B|2e2cθ + AB + AB + |A|2 + |B|2

+ ABe2ic log r + ABe−2ic log r.

So in both cases the function f given by (11) satisfies (1), as required.

Theorem 5

All analytic solutions of (2) in D are of the form

f(z) = Aza, (14)

where A is a complex constant and a is a real one.

Proof. Suppose that f is a non-constant analytic solution of (2) in D.
Since (1) is a generalization of (2) we can apply Theorem 4. Thus there exist
complex constants A, B and real or purely imaginary a 6= 0 such that f is
given by (11). At first we assume that a is real. Substituting (11) in (2) after
some easy calculations we obtain
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AB exp (−2iaθ) + AB exp (2iaθ) = AB + AB

for θ ∈ (−δ, δ). Lemma 1 yields A = 0 or B = 0 and f is of the form (14), as
required.

Now, we assume that a = ic, where c is real. Replacing in (2), f(z) by (11)
we infer the equality

|A|2 exp (−2cθ) + |B|2 exp (2cθ) = |A|2 + |B|2.

This together with Lemma 2 yields A = B = 0.

Theorem 6

All analytic solutions of (5) in D are given by the formula

f(z) = Azic, (15)

where A is a complex constant and c is a real one.

Proof. We argue as in the preceding proof. Suppose that f is a non-
constant analytic solution of (5) in D. f has to be given by (11). Assume that
a is a real constant. Substituting (11) in (5) we get

|A|2r2a + |B|2r−2a = |A|2 + |B|2

for all r ∈ (1− ε, 1+ ε). From Lemma 2 we infer that A = B = 0. It remains to
consider a = ic, where c is real. Again substituting (11) in (5) we can obtain

AB exp (2ic log r) + AB exp (−2ic log r) = AB + AB.

The above formula and Lemma 1 yield (15).
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