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Dedicated to Professor Andrzej Zajtz, on occasion of his 70th birthday
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We show that small Seshadri constants in a general point of

a surface have strong geometrical implications, the surface is fibered by
curves computing the Seshadri constant. We give a sharp bound in terms
of the selfintersection of the given ample line bundle and discuss some
examples.
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Seshadri constants were introduced by Demailly [2] in the late 80’s in con-
nection with attempts to tackle the Fujita Conjecture. They express, roughly
speaking, how ample a line bundle is locally. Seshadri constants quickly gained
considerable interest on their own.

Recently Nakamaye [5] showed that these local invariants when studied at
a general point of a variety carry interesting global geometric information. In
particular he was interested in to which extend Seshadri constants capture
existence of morphisms to lower dimensional varieties. This problem was con-
sidered also by Hwang and Keum [3]. In both papers it is shown that a small
Seshadri constant in a generic point of a variety forces a fibration structure on
the variety. Here we prove that in case of algebraic surfaces the bound from
[3, Theorem 2] is in fact the optimal one. One could hope that on the contrary
a large Seshadri constant in a generic point prohibits in turn a fibration struc-
ture on the variety. We show that this need not to be the case and we answer
to the negative two related questions from [5].
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Let us first recall the following

Definition

Let X be a smooth projective variety, let L be a nef line bundle on X and let
x ∈ X be a fixed point. Then the real number
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ε(L, x) := inf

{

L.C

multx C
| C an irreducible curve passing through x

}

is the Seshadri constant of L at x.

In case of surfaces, it is well known that ε(L, x) ≤
√

L2. Moreover, if the

Seshadri constant is submaximal ε(L, x) <
√

L2, then a theorem of Campana
and Peternell (see [1]) assures that there exists a Seshadri curve Cx computing
ε(L, x) i.e.

ε(L, x) =
L.Cx

multx Cx

.

Nakamaye shows [5, Corollary 3] that if the Seshadri constant at every point

of X is sufficienly small, namely ε(L, x) <
√

1
3L2, then Seshadri curves form a

fibration on X i.e. they are fibers of a non-trivial morphism f : X −→ Y onto
a curve Y . We speak in this situation of a Seshadri fibration on X . Our main
result strengthens that of Nakamaye.

Theorem

Let (X, L) be a polarized surface and suppose that

ε(L, x) <

√

3

4
L2 (1)

at every point x ∈ X. Then there exists a non-trivial morphism f : X −→ Y
to a curve Y whose fibers are Seshadri curves. Moreover the above bound is

sharp.

The proof of our result builds upon the following Lemma due to Xu
[7, Lemma 1].

Lemma

Let X be a smooth projective surface, let (Ct, xt) be a one parameter family

of pointed curves on X and let m ≥ 2 be an integer such that multxt
Ct ≥ m.

Then

C2
t
≥ m(m− 1) + 1.

Proof of Theorem. Let Cx be a Seshadri curve at x ∈ X and suppose that
for x ∈ X general we have multx Cx ≥ m.

If m ≥ 2, then the assumption (1), the Hodge index Theorem and the
Lemma yield

3

4
m2L2 > (L.Cx)2 ≥ L2C2

x
≥ (m(m− 1) + 1)L2,

which is easily seen to be equivalent to (m− 2)2 < 0, a contradiction.
If m = 1 then again by the assumption (1) and the Hodge index Theorem

we get
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3

4
L2 > (L.Cx)2 ≥ C2

x
L2.

Since Cx moves in a family we have C2
x
≥ 0 and thus the above inequality

implies C2
x

= 0. Then a standard argument (see e.g. [5]) shows that for some
positive integer k > 0 the linear system |kCx| gives the desired fibration.
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The following examples show that our Theorem is optimal.

Example 2.1

Let (X, L) be a smooth cubic in P
3. Then

ε(L, x) =
3

2
=

√

3

4
L2

for x ∈ X general. Indeed, the hyperlane tangent at x cuts on X a curve
Cx ∈ |L|, which for x general is irreducible and has multiplicity 2. Of course,
the curves Cx do not define a fibration on X as they belong to a very ample
line series.

It may well happen that for ε(L, x) =
√

3
4L2 one gets a Seshadri fibration

on X .

Example 2.2

Let (X, L) be the Hirzebruch F1 surface with polarization L = 6C0 +7f , where
as usual f denotes the class of the fiber in the projective bundle P(OP1 ⊕
OP1(−1)) and C0 its zero section. In this case the fibers compute the Seshadri
constant of L at every point of X and we have

ε(L, x) = 6 =

√

3

4
L2.

One might ask whether there is a converse to our Theorem i.e. if the exis-
tence of a Seshadri fibration imposes some constrains on the Seshadri constant
at a general point. The following example shows that this is not the case, the
Seshadri constant can be arbitrarily close to its maximal possible value

√
L2.

Example 2.3

Let f : X −→ P
2 be the blow up of P

2 at a point P ∈ P
2 with the exceptional

divisor E and let L = H − λE be a Q-line bundle with H = f ∗OP2(1). Then

ε(L, x) = 1− λ

for x ∈ X \E. Indeed, the quotient 1−λ is computed by the proper transform
of the line through P and x.
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Moreover, if C ⊂ X is another irreducible curve through x, then C is of the
form C = dH −mE with m ≤ d− 1 and m + multx C ≤ d. Then

L.C

multx C
=

d−mλ

multx C
≥

{

m(1−λ)
multx C

if m ≥ multx C

d−λ multx C

multx C
if m ≤ multx C

}

≥ 1− λ.

Hence ε(L, x) =
√

(1−λ)2

1−λ
2 L2.
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Finally, we answer two questions from Nakamaye’s paper. First we address
the question if the existence on a surface X of a nef real class χ with χ2 = 0
implies that X admits a surjective morphism to a curve [5, Question 9].

Example 3.1

Let (X, Θ) be a principally polarized abelian surface with the endomorphism

ring End(X) ∼= Z[
√

d ], where d is a square free positive integer. Let M ∈
NS(X) be a line bundle with M2 = −2d corresponding to the endomorphism√

d under the group homomorphism

NS(X) 3 N −→ ϕ−1
Θ ◦ ϕN ∈ End(X).

Then Θ and M form an orthogonal basis of NS(X) and a line bundle aΘ+ bM
is ample if and only if

(aΘ + bM)2 > 0 and (aΘ + bM).Θ > 0.

It follows that

Nef(X) = R≥0 · (
√

dΘ + M) + R≥0 · (
√

dΘ−M)

and
√

dL±M are the only real nef classes with selfintersection 0. This shows
that there is no non-trivial morphism from the abelian surface X to a curve,
which in turn answers the above question negatively.

The last problem concerns pairs (X, L) consisting of a smooth projective
surface X and an ample line bundle L with selfintersection 1. On such a surface
ε(L, x) = 1 for x very general by the result of Ein and Lazarsfeld [4]. Nakamaye
asks, obviously motivated by P

2, if the Seshadri curves computing ε(L, x) on
X can be forced to form a fibration when one passes to a blow up of X at a
single point. The answer to this question is also negative.

Example 3.2

Let (X, Θ) be a principally polarized abelian surface with Picard number
ρ(X) = 1. Let f : Y −→ X be the blow up of X at a point P ∈ X with
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the exceptional divisor E. Then L = f∗Θ − E is ample and L2 = 1. Its
Seshadri constant at every point x away of E is computed by the proper trans-
form of a translate of the Θ-divisor passing through x and P . Indeed, there
are exactly two such translates and since ρ(Y ) = 2 the claim follows from
[6, Proposition 1.8]. Of course there doesn’t exist any point y ∈ Y such that
the translates of the Θ-divisor form a fibration on the blow up of Y at y.
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