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Abstract. The concept of a smooth oriented angle in an arbitrary affine
space is introduced. This concept is based on a kinematics concept of a
run. Also, a concept of an oriented angle in such a space is considered.
Next, it is shown that the adequacy of these concepts holds if and only
if the affine space, in question, is of dimension 2 or 1.

0. Preliminaries

Let us consider an arbitrary affine space, i.e. a triple
(E,V,7), (0)

(see [B-B]), where E is a set, V is an arbitrary vector space over reals and —~
is a function which to any points p,q € E assigns a vector pg  of V in such a
way that

1) pg + qr = pr forp,q,r € E,
2) pg =0iff p=gqforp,qeE,
3) for any p € E and any vector  of V there exists ¢ € E with pg’ = .

The unique point ¢ for which pg° = z will be denoted by p + x. The set of
all vectors of the vector space V will be denoted by V. The fact that W is a
vector subspace of V' will be written as W < V. For any sets M, N, X, Y, P
such that MUN CR, XUY CV,PC E,anybeR,yeV and p € E we set

M+N={a+b;aeM&be N}, M+b=M+{b},
MN = {ab; ac M & be N}, bM = {b} M,
MX ={ax; ae M &z € X}, bX = {b} X,

X+Y={zs+y;z2eX &yeY},

P+X={p+x;peP&zreX}, p+X ={p}+X.

AMS (2000) Subject Classification: 51N10, 51N20, 51L10.
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A subset H of E is a hyperplane in an affine space (0) iff there exist p € E
and W <V such that

H=p+W. (1)

The subspace W of V' for which (1) holds will be denoted by V. The affine
space

(H, Vi, —H), (2)

where —# is the restriction of the function — to the set H x H, is called the
subspace of (0) determined by the hyperplane H. The triple (2), where H = (),
Va <V, Vg = {0} and —H — () is an affine space and will be treated as a
subspace of (0) as well. Also, the set () will be considered as a hyperplane in
(0). We will write W <, V instead of to state that a vector subspace W of V is
of codimension k in V. In particular, W <; V means that W is of codimension
1in V. We say that H is a hyperplane of codimension k in the affine space (0)
iff Vg < V.
Any set P of points of the affine space (0), i.e. P C E, such that

P=H+Rye, (3)

where H is a hyperplane of codimension 1 in (0), e € V.\ Vi, Ry = (0;+00),
is said to be a halfspace of (0). The hyperplane H in (3) uniquely determined
by P is called the shore of the halfspace P and denoted by P°. The set P\ P°
will be called the interior of the halfspace P and denoted by P,. It is easy to
check that the set P~ of the form E \ P, is also a halfspace and the equalities

(P7)’=P° and (P7), =E\P (4)

hold. The set E\ P will be denoted by P_. The halfspace P~ is called the
opposite one to P. It is easy to verify that (3) yields also

P, =P°+ (0;+0)e, P"=P°4+Ry(—e), P_=P°+(—c0;0)e (5)

where e € V\ Vi and H = P°.
Let B be a base of a vector space V. For any v € V there exists a unique
real function vp defined on B such that {e; e € B & vp (e) # 0} is finite and

V:ZVB (e)e, (6)

where the sign of addition in (6) denotes of course a finite operation. This
formula will be very useful.

For any topology T (see [K]) the set of all points of T will be denoted by T,
i.e. by definition we have

T=J7T. (7)
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For any set A C T the induced to A topology from the topology T will be
denoted by T|A, i.e. TJA={BnNA; Be T}.

For any affine space (0) the smallest topology containing the set of all sets
P, , where P is a halfspace of (0) will be called the topology of the affine space
(0) and denoted by top(E,V, ). It is easy to check that for any hyperplane
H in (0) we have

top(H, Vg, "H) = top(E,V, 7)|H. (8)

Let f be any function. The domain of f will be denoted by Dy. For any
A C Dy the restriction of the function f to the set A and the f-image of A
will be denoted by f|A and fA, respectively. Any function may be treated as
a set, of ordered pairs, and then

Dy=A{x; Iy ((x,y) € N},  flA={(z,9); (v,y) € f &z € A}
and
fA={y; Jxe A ((z,y) € /)}.
For any set B the f-preimage f~1'B is defined by

f7'B={x; ye B ((z,y) € f)}

or, equivalently, f'B = {z; x € Dy & f (x) € B}.
Let f be a function with Dy C R, fDy C E,t € R and p € E. We say that
f tends to p at t in the affine space (0) and we write
F@)—p (0 (BV.7) )

iff for any U € top(E,V, ) such that p € U there exists § > 0 for which
f(x) € U whenever 0 < |z —t| < §. It is easy to prove the following

PROPOSITION 1
For any function f with Dy CR, fDy CE, anyt € R and p € E we have (9)
if and only if for any base B of vector space V and any e € B we have

-

pf(z) B(e) —>0. (10)

r—t

For any vector space V' we have well defined the affine space aff V' as
(V,V,7), where vw* = w — v for vyvwe V. Let Dy C R and fD; C E.
Setting

f={tv) te D (D)) & S5 FOF(@) —v (i affV)}, (1)

z—t T—t
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where for any set A C R, A’ denotes the set of all cluster points of A, we have
defined the derivative function f’ of a function f. A function f: Dy — E,
Dy C R, is differentiable iff

Denoting the natural topology of R by R we have the topology R|D;. The

function f satisfying (12) and having the continuous derivative function f’ from
R|D; to topaff V' is said to be smooth in (E,V, 7).

1. Runs, o-turns, and smooth oriented angles

Before introducing the concept of smooth oriented angle in an arbitrary
affine space we introduce a concept of a run and a turn. Any function f
smooth in (E,V, ™) with Dy = (a;b), a < b, is said to be a run in (E,V, 7).
Let o € E. Any run f satisfying one of the following conditions:

f(t)= fw)#o0 fortue Dy, (01f)
or
f'(t), of(t) are linearly independent for ¢ € Dy, (02f)

is said to be an o-turn in (E,V, ). The set of all o-turns in (E,V, ™) will
be denoted by T,(E,V, ). In this set we introduce an equivalence =, setting
f=ogiff f,g € T,(E,V,7) and there exist real smooth functions A and ¢
such that

(i) Dy = Dx =Dy and D, = Dy,

—_—

R
(i) A(t) >0, ¢'(t) > 0 and og(p(t)) = A(t)of(t) fort e Dy.
Denoting by T,(E,V, ™)/ =, the set of all cosets in T,(F,V, ) given by
the equivalence =, we may define the set soa(E,V, ™) by the equality
soa(E,V,7) = | To(E,V,7)/ =, .
ocelk
Any element of this set is said to be a smooth oriented angle in the affine space

(B, V, 7).

PropoOSITION 2
Foranyo€ E, a € T,(E,V,7)/ =, and g € a we have

a= | (opo),
pEgDy

where
a= Ufo and (opx) ={o+top’; t>0}.
f€a
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Proof. Let f € a. We have then f =, g. Taking any ¢ € fD; we get
g = f(t), t € Dy. Then there exist functions A, ¢ such that (i) and (ii) hold.
Setting p = g(¢(t)) we get og = ﬁw, which yields ¢ € (opoo), where
p € gDy. Now, let ¢ € (opoo), where p € gD,. We have then oq = sop,
—_—
where p = g (u), u € Dy and s > 0. Setting Dy = D, and f(t) = o+ sog(t)
— —
fort € Dy weget f =, gand g=o0+sop  =o+sog(u) = f(u) € fDy, so
(opoo) C a.

PROPOSITION 3
For anyo € E and a € T,(E,V,7)/ =, if o € U € top(E,V, ), then there
exists g € a such that gDy C U.

Proof. Let f € a and s > 0. Setting Dy, = Dy and
—
fs(t)=o+sof (¢) fort € Dy
we have, of course, fs =, f, so fs € a. We will prove that

for any halfspace P with o € P there exists ¢ > 0 such that (%)
for any s € (0;¢) the relation f;Dy C Py holds.

Let P be a halfspace such that o € P;. Then we have P = o+ W +(—(3; +00) e,
where W <; V, e € V\W and 8 > 0. Then P; = o+ W +(—0; +0o0)e. For any
t € Dy we have of (t) =w(t) + p(t) e. From continuity of f by Proposition 1
it follows that u is continuous. Thus, p is bounded. So, there exists m > 0 such
that |u(t)] < m for t € Dy. Hence it follows that ofs(t) = sw(t) + su(t)e €
W + (—sm;+oo)e, so fs(t) € o+ W + (—sm;+oo)e C Py for t € Dy, as
0<s<Z.

Now, assume that o € U € top(E,V, ). Then there exist halfspaces
Py,...,P, such that o € Py N...N P,y CU. By (%) for any j € {1,...,n}
we get €; > 0 such that f;Dy C P as s € (0;¢;). Setting g = f,, where
0 < s <min{ey,...,e,}, we get gDy C U.

ProposITION 4
Ifo,q € E and a € T,(E,V, )/ =, NTL(E,V, )/ =4, then o =q.

Proof. Let us suppose that o # ¢q. Take any U € top(E,V, ™) such that
g € U. Since a € Ty (E,V, ™)/ =4, by Proposition 3 there exists g € a such
that gDy, C U. From the condition a € T,(E,V, )/ =, it follows that a C
To(E,V,7). Therefore g € To(E,V, ), so gD, C U\ {0}, and by Proposition
2 we get

aCA where A = ﬂ U (0p o).

quetop(E,V,*)) peU\{o}
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Now, we will prove that A C (0qoo). Assume that there exists a point = €
A\ (0qoo). Let us set C = {0q , 0z }, whenever oz  and og are linearly
independent and C' = {0g '} in the opposite case. Then there exists a base B
of V- with C C B. Let W be the vector subspace of V' generated by B\ {e},
where e = og . Let us set

P:O+E+R+6.

So, we have P° = o+ W and Py = o+ W + (0;+o0)e. First, we suppose
that oz  and og are linearly independent. Then z = 0o+ oz € o+ W = P°.
If we assume that « € (J,cp, (0po0), then we get p € Py with z € (opoo).
Then it should be in turn, p = o+ w +te, w € W, t >0,z = o+ uop ,
u > 0, © = o+ uw + ute € P4, which is impossible. Therefore we have
x ¢ UpEP+ (opoo) D A. So, oxr  and og should be linearly dependent. Thus,

or =a-0q,acR. Because of x ¢ (0goo) we get a < 0. Thus z € P_. By
definition of P_ we have

P_n U (opoo) =0,
pEPy

what yields ¢ ¢ A. So, we have A C (0go0). Hence it follows that a C (0qo0)
and similarly a C (gooo). By Proposition 2 we get (opoo) C a for some
p € gDg. This yields (opoo) C (0goo) N (gooo), which is impossible.

The point o € E such that a € T,(E,V, )/ =, is called the vertez of a.
Notice that if f,g € a € To(E,V,7)/ =0, Dy = {(a;b), and Dy = (c;d),
then (o f(a) 00) = (0 g(c) o0) and (o f(b) c©) = (0 g(d) o), where

{opoo) = {o+sop’; s >0} for p € E. (13)

The sets (o f(a) 0o) and (o f(b) co) we called the former side and the latter one
of a, respectively.

2. Oriented angles

Consider any affine space (0) and any o € E. The set of all functions L such
that Dy, is a closed segment in R and there exists a function f with Dy = Dy,
continuous from R|D; to top(E,V, ) such that for any ¢t € D; we have

oF f(t) and  L(t) = {0 f(t)o0), (L)
(o f (t) o0) is defined by (13), and one of the following two conditions
(1L) L(t) = L(u) for t,u € Dy,



Oriented angles in affine space 237

(2L) for any t € Dy, there exists § > 0 for which

LDy N (t— 63t +6)is 1-1,
is satisfied will be denoted by (o; E,V, 7). We set

(B, V,7) =BV, ™)

oel

and L = M iff L, M € (E,V, ) and there exists a real continuous increasing
function ¢ such that D, = Dr, 9D, = Dys and M o = L. It is easy to see
that = is an eqiuvalence.

Elements of the set (E,V, ™)/ = of all cosets of = will be called oriented
angles in the affine space (0). The point o such that the equality in (L) is
satisfied depending only on the oriented angle for which L belongs is called the
vertex of this oriented angle. Any oriented angle for which constant function L
belongs is said to be zero angle in the affine space (0).

PROPOSITION 5
For any smooth oriented angle a in the affine space (0) we have the oriented
angle <a> well defined by the formula

<a> = [f,] (14)

where fo(t) = (0 f(t)oo) fort € Dy, f € a € To(E,V,7)/ =,, L € [L] €
(B, V,7)/ = for L € (E,V, 7). The function

soa(E,V,7) 32 ar— <a> (15)

is 1-1. If dimV > 2, then there exists an oriented angle in (0) which is not of
the form <a>, where a is a smooth oriented angle in (0).

LEMMA

If 11, Iy are real functions, fi, fa are vector ones with Dy, = D;, = Dy, =
Dy, CR, f(x) —¢ (in aff (V') ), j € {1,2}, e1, e2 are linearly independent
iV and

Li(z) (@) +la(2) f2(2) —— v (in aff V),

then there exist reals c1, co such that 1;(x) 7% je{1,2}.
r—

Proof. There exists a base B in V containing {e1,ea}. By Proposition 1
we have g;(z) — vp(e;) where

x

gi(x) = h(z) fr(z)B(ei) + la(z) f2(2) B(€:) (16)
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and

fi(z)B(ei) — e;p(ei) = 0 (6;i — Kronecker’s delta),

so det [fj(z)B(ei); 4,5 < 2] — 1. Therefore, by (16),
xTr—

L (x) = g1(x) fa(z)B(e1) () —— vp(er) 21 .
YU e@) B@se)| T [vales) o)
and
fi(z)s(e1) g1(x) 011 vB(e1)
lo(z) = m(r) —— = cg,
2() fi(z)p(e2) ga2(x) ( )zﬁt 912 vp(e2) ?
where m(z) = 1/det [f;(x)p(e;); 1,7 < 2] and ¢; = vp(e;).

Proof of Proposition 5. Correctness of the definition of <a> by (14) is
evident. To prove that (15) is 1-1 assume that <a> = <b>, where a €
To(E,V,77)/ =¢ and b € T,(E,V,™)/ =,. We have (14) and

<b> = [g4], where gq(u) = (g g(u) 00) for u € Dy, g € b. (14"

By definition of = we get a continuous increasing function ¢ such that D, =

Dy, 9D, = Dy and gg0¢ = fo, ie. by (14) and (14'), (gg(p(t))o0) =
o f(t)oo) for t € Dy. Hence ¢ = o and for any t € Dy there is
f f

—_—

Alt) >0 with og(p(t)) = A(t)of(t) . (17)

This yields, in turn,

At +s)of(t+s) = og(e(t +5)) — og(p(t)) =At) of ()

and

of (t + s) — of(t) #0.

According to Lemma we get A(t + s)—0> (t). So, A is continuous. We have

§—

also

- =

(p(t+5) = (1) srra—o 9()glp(t +5)) = LAt +5) — A1) of (1)
=A(t+s)- T f(t) flt+5),

|

S 9Dt +5) — o (o(1))

and
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First, we consider the case when o—turns f and ¢ satisfy conditions (02f)
and (02g), respectively. Then by Lemma we have

ot + s) — () At +s) — At)

. — o'(t) and . — N(t).
Thus,
@'()g (p(t) = N () of(t) =At)f'(t)  forte Dy. (18)

From the fact that ¢ is increasing it follows that ¢'(t) > 0. By (02f) we
have ¢’(t) > 0. According to Lemma by (18) and (02f) we conclude that the
functions ¢’ and X are continuous. In other words, ¢ and A are smooth. So,

f =0 g and we have a = b.
B

Now, let us assume (olf). Setting of(t) = e, by (17), we get og(u) =
p(u)e, where p(u) = Me~(u)) for u € Dy. Thus

§ (u(u+5) = p(u) - e = L g(u)g(u+s) —g'(u).

—
By Lemma we get ¢'(u) = p/(u)e. Hence it follows that ¢'(u), og(u) are not
linearly independent. Therefore (olg) holds. Thus, taking any u,u, € Dy by

(17) we get p(ur)e = og(uy) = og(u) = p(u)e, and p(u) = p(uy), which
yields g =, f, i.e. a =b. Therefore (15) is 1-1.

Assuming that dimV > 2 we get three vectors e1, e, e linearly indepen-
dent in V. Let us set
e e1 + u(es — eq), when 0 <u <1,
og(u) = {62 + (u—1)(es —e2), whenl<u<2,
and L(u) = (og(u)oo) for u € (0;2). Let us suppose that there exists f €
T,(E,V,7) such that [L] = [fo], where fo(t) = (o f (t) o0) for t € Dy. Then
there exist a continuous and increasing function ¢ for which D, = Dy, Loy =
fo, Dy = Dy, = (0;2). Thus, for some function A with Dy = D, (17) holds.

—_—
Let us set t; = ¢~ 1(1). Hence it follows that of(t) = ai(t)e; + aa(t)es as
—_
t€ Dy, t <ty and of(t) = Pa(t)es + F3(t)es as t € Dy, t > t1, where a1, ag,
(B2, B3 are real functions. Thus, by Lemma we get
f'(t1) = ai(tr)er + aj(ti)ez = By(tr)ez + Bt )es.
Then o (t1) = 0= B4(t1). So, f'(t1) = ah(t1)ea. On the other hand,

_ _— ;. 1

of (t1) = sy 09(e(t1)) = sy 09(1) = xgyee
—_—
The vectors f/(¢1) and of(t1) are linearly dependent. So, (02f) does not hold.
_— —
Therefore (01f) is satisfied, which yields og(¢(t)) = A(t) of(t1) for ¢t € D,
— —_—
ie. og(u) = A t(u))of(t1) foru € (0;2), which is impossible.
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3. Oriented angles in an Euclidean plane

Let us consider an Euclidean plane, i.e. an affine space (0), dimV = 2,
together with a positively defined scalar product V.x V 3 (v,w) —v-we R.
For any v € V we set |v| = /v - v and for any function f defined on the segment
of R with values in E we set Dy = (a;b) and for t € Dy

k
|f(t):sup{Z‘f(ti)f(ti+1) ; a:to<...<tk:t&k€N}. (19)

The function |f| defined by (19) has values in RU {+o0}, in general.

ProproOSITION 6
In the Euclidean plane for any oriented angle A € (E,V,)/ = there ex-
ists a unique continuous function f: Dy — E such that Dy = (0;¢), ¢ > 0,

(0f (-) o) € A,

-

‘of(s) ‘:1 for s € Dy, (20)
o is a vertex of A, and one of the following conditions

[f[(s) =0 forse Dy, (0; £)

|fl(s)=s  forse Dy (1)

is satisfied. We have f € a € T,(E,V,7)/ =, and A = <a>, where <a> is
the oriented angle defined by (14).

Proof. Let L € A€ (E,V,7)/ =. Then there exists a continuous function
h such that Dy, = Dy, = (a;b) and L(t) = (o h(t) 0o) for t € Dj,. We consider
two cases. First, when (1 L) is satisfied. Then, setting ¢ = b — a and

f(s) =0+ —2——oh(a+s) for s € (0;¢)
‘oh(u—&-s) ’

we see that
f(s)=f(t) for s,t € Dy (21)
and
(0f (") ) =(s— L(a+s)) € A.

The condition (0; f) holds in this case. From (0; f) it follows (21). In the
second case we assume (2 L). Thus, for any ¢ € D, we have d; > 0 such that
the function L|Dy, N (¢t —d;;t+0;) is 1-1. Then there exist 71,...,7, € Dy, such
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Sy 5r
that < ... <m and Dy C U}Zl(aj;bj), where a; = 7; — =%, by = 7; + -,

2
We have then 1-1 functions
L|DLm<CLj;bj>, je{l,,l}

Setting, g(t) = o + ‘_,‘ oh(t) we get ‘og(t) ‘ =1 and L(t) = {(0g(t) o)

for t € Dy, and 1-1 functions g|Dy N {(a;; b;), Dy = Dy. We may assume that
a1 = a and by = b, so Dr, N {a;;b;) = (a;;b;) and setting g; = g| (a;; b;) we get

lg;l (t) <2m  fort € (a;:b;).

Hence it follows that for any t € D, we have

91 (#) < lgl (b Zlgjl ) < 2lm < +oo.

Then the function |g| is finite continuous and increasing. Taking the inverse
function | g\_l to |g| and setting f = g o |g|_1 we get the continuous function
f with Dy = (0;¢), where ¢ = |g| (b). It is easy to see that |f]| is continuous
and increasing and L (|g\_1 (s)) = (0 f(s) o0) for s € Dy. Therefore, we have
(1;f) and (0 f (-) o0) = Lo |g| " = L, so (o f(-)o0) € A. From (20) and (1; f)
it follows that there exist orthonormal vectors ey, es € V such that
—
of(s) =coss-e;+sins- e for s € Dy.

Thus f is smooth. Taking a € T,(E,V, )/ =, such that f € a we get
A= <a>.

To prove that f is uniquely determined we take a continuous function

—
fi: Dy, = B with Dy, = (1), e > 0, {01 () 00) € A [ofa(®) | = 1
for t € Dy, and satisfying (0; f1) or (1; f1). Then there exists a real continuous
increasing function ¢ such that D, = Dy and ¢ D, = Dy, and (o fi(¢(s)) 00) =
—— —
(o f(s)oo) for s € Dy. Thus, ofi1(p(s)) = A(s)of(s) , where A(s) > 0 for
—> —_—

s € Dy. Hence it follows that 1 = ‘ofl ‘ = (s ‘of(s) ‘ = A(s), so
fiop = f. This yields |f1]|o|p| = |f]. If (0; f1) holds, then |f1| = 0, so |f| = 0.
If (1; f1) is satisfied, then ¢ = |f| = id(g;cy. Therefore f; = f.

COROLLARY
If (0) is an affine plane, i.e. dimV = 2, then the function in (15) is 1-1 and
maps soa(E,V, ) onto (E,V, )/ =.

Indeed, taking any positively defined scalar product in V' we get an Eu-
clidean space and we may apply Proposition 6.
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4. Conclusion

The case when the affine space is 1-dimensional is not of importance however
from purely logical point of view the definition of the set (E, V, )/ = is correct.

REMARK
If the affine space (0) is 1-dimensional, then all elements of (E,V,
zero angles and (15) is 1-1 and maps soa(E,V, ) onto (E,V, ™)/ =.

)/ = are

Indeed, for any A € (E,V, )/ = there is L € A, so L(t) = (o f(t) o0) and
o # f(t) for t € D, where f: Dy, — E is continuous and (1 L) or (2 L) holds.
Let 0 #£ e € V. Then of(t) = A(t)e, 0 # A(t) € R. According to Lemma
A is continuous. Thus A(¢t) > 0 for ¢t € Dy or A(t) < 0 for t € Dy. We may
assume that A(t) > 0. Therefore L(t) = (opoo), where p = o+ e. Setting
fi(t) = p for p € Dy, we get a smooth function f; for which L(t) = (o f1(t) 00)
ast € Dr. Then we have (1L). For a € T,(E,V,)/ =, such that f; € a we
get <a> = A.

Proposition 5, Corollary to Proposition 6 and the above Remark allows us
to conclude our consideration by

THEOREM

For any affine space (0) the function (15) is 1-1. This function maps the set
soa(E,V, ) of all smooth oriented angles in the affine space (0) onto the set
(E,V,7)/ = of all oriented angles in (0) if and only if dimV =2 or dimV = 1.
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