ANTONI CHRONOWSKI

Some properties of extensions of loops

The paper is a kind of sequel to the paper [3]. In the paper we shall analyse some aspects of the construction of extensions of loops given in [3]. Moreover, we shall consider this construction in the case when loops are groups.

Definitions of quasigroup, loop, subloop, normal subloop, coset, quotient loop are used according to Bruck [2].

DEFINITION 1. (cf. [3]). A loop \sum is said to be an extension of a loop K by a loop L if the following conditions hold:

(i) K is a normal subloop of the loop \sum_{i}

(ii) the guotient loop \sum / K and the loop L are isomorphic.

Let K be a normal subloop of a loop \sum . A mapping s: $\sum /K \longrightarrow \sum$ is called a selector if it satisfies the following condition:

Let L and K be loops. Let $f,g: L \rightarrow K$ be arbitrary mappings. By a product fg of the mappings f and g we mean a mapping fg: L \rightarrow K defined as follows:

(fg)(1) = f(1)g(1)

for l L.

THEOREM 1. Let \sum and L be loops. Let K be a normal subloop of the loop \sum . The loop \sum is an extension of the loop K by the loop L if and only if there exists a mapping δ : L - \sum fulfilling the following conditions:

$$(w_1) \qquad \bigwedge_{x \in \sum} \langle 1, k \rangle \in LxK \qquad x = O(1)k,$$

$$(\mathbf{W}_{2}) \qquad \bigwedge_{\mathbf{l}_{1},\mathbf{l}_{2} \in \mathbf{L}} \left[\mathcal{O}(\mathbf{l}_{1}\mathbf{l}_{2})\mathbf{K} = \left(\mathcal{O}(\mathbf{l}_{1})\mathbf{K} \right) \left(\mathcal{O}(\mathbf{l}_{2})\mathbf{K} \right) \right].$$

Proof. If the loop Σ is an extension of the loop K by the loop L, then the mapping $S = s \circ f$, where s: $\Sigma/K \rightarrow \Sigma$ is a selector and f: $L \rightarrow \Sigma/K$ is an isomorphism, satisfies conditions (w₁) and (w₂) (cf. [3]).

Let a mapping $\mathfrak{O}: \mathbb{L} \to \Sigma$ satisfies conditions (w_1) and (w_2) . We define a mapping $f: \mathbb{L} \to \Sigma/\mathbb{K}$ as follows: $f(1) = \mathfrak{O}(1)\mathbb{K}$

for leL.

As an easy consequence of conditions (w_1) and (w_2) we obtain that the mapping f is an isomorphism. Then the loop \sum is an extension of the loop K by the loop L.

THEOREM 2. Let a loop Σ be an extension of a loop K by a loop L. A mapping $\mathcal{O} : L \rightarrow \Sigma$ satisfies conditions (\mathbf{w}_1) and (\mathbf{w}_2) if and only if $\mathcal{O} = \mathbf{s} \circ \mathbf{f}$, where $\mathbf{s} \colon \Sigma/K \rightarrow \Sigma$ is a selector and $\mathbf{f} \colon L \rightarrow \Sigma/K$ is an isomorphism.

Proof. Let $\mathfrak{S}: L \to \Sigma$ satisfies conditions (w_1) and (w_2) . We define a mapping $f: L \to \Sigma/K$ as follows: $f(1) = \mathfrak{S}(1)K$

for l \in L. The mapping f is an isomorphism of the loops L and \sum/K . Define a selector s: $\sum/K \rightarrow \sum$ by the rule: s(f(1)) = O(1)

for leL. Hence S=sof.

If $G = s \circ f$, where $s: \sum /K \to \sum$ is a selector and f: $L \to \sum /K$ is an isomorphism, then conditions (w_1) and (w_2) are fulfilled (cf. [3]).

LEMMA 1. Let a loop Σ be an extension of a loop K by a loop L. Let $\mathfrak{C}_1 = \mathfrak{s}_1 \circ \mathfrak{l}_1$, where $\mathfrak{s}_1 \colon \Sigma/K \to \Sigma$ is a selector and $\mathfrak{l}_1 \colon L \to \Sigma/K$ is an isomorphism. Then for an arbitrary automorphism $\mathcal{R} \in \operatorname{Aut}(L)$ and an arbitrary mapping $\delta \colon L \to K$ the mapping $\mathfrak{C} = (\mathfrak{C}_1 \circ \mathfrak{R})\delta$ satisfies conditions (\mathfrak{w}_1) and (\mathfrak{w}_2) .

Proof. At first, we shall prove that the mapping of we can represent in the form $\delta = s \circ f$, where $s: \sum /K \rightarrow \sum$ is a selector and $f: L \rightarrow \sum /K$ is an isomorphism. The mapping δ can be written as $\delta = (s_1 \circ f_1 \circ X)\delta$. Put $f = f_1 \circ X$. Of course, $f: L \rightarrow \sum /K$ is an isomorphism and $\delta = (s_1 \circ f) \delta$.

A mapping s: $\sum/K \rightarrow \sum$ defined by the following rule: s(f(1)) = s₁(f(1)) $\delta(1)$

for lGL is a selector.

Thus $\sigma(1) = s_1(f(1)) \delta(1) = s(f(1)) = (s \circ f)(1)$ for an arbitrary l L, hence $\sigma = s \circ f$. Applying Theorem 2 we get that the mapping σ satisfies conditions (w_1) and (w_2) .

THEOREM 3. Let a loop \sum be an extension of a loop K by a loop L. Let $\mathcal{G}_1 = s_1 \circ f_1$, where $s_1: \sum/K \rightarrow \sum$ is a selector and $f_1: L \rightarrow \sum/K$ is an isomorphism. Let $\mathcal{G}: L \rightarrow \sum$ be an arbitrary mapping. The mapping \mathcal{G} satisfies conditions (w_1) and (w_2) if and only if there exist an automorphism $\mathcal{R} \in \operatorname{Aut}(L)$ and a mapping $\mathcal{G}: L \rightarrow K$ such that $\mathcal{G} = (\mathcal{G}_1 \circ \mathcal{R}) \mathcal{S}$.

Proof. If a mapping \mathcal{C} : L $\rightarrow \Sigma$ satisfies conditions (w₁) and (w₂), then according to Theorem 2 $\mathcal{C} = s \circ f$, where s: $\Sigma/K \rightarrow \Sigma$ is a selector and f: L $\rightarrow \Sigma/K$ is an isomorphism. Notice that the mapping

$$(1) \qquad \qquad \Re = f_1^{-1} \circ f_1$$

is an automorphism of the loop L. And so we have $f = f_1 \circ \mathcal{R}$ and $\sigma = s \circ f_1 \circ \mathcal{R}$. Moreover,

(2) $s((f_1 \circ \mathcal{X})(1))K = s_1((f_1 \circ \mathcal{X})(1))K$

for l∈L. Using equality (2) one can define a mapping E:L → K as follows:

(3) $s((f_1 \circ \Re)(1)) = s_1((f_1 \circ \Re)(1))\delta(1)$ for leL. Since $\sigma = s \circ f_1 \circ \Re$ and so $\sigma(1) = (s \circ f_1 \circ \Re)(1) = ((s_1 \circ f_1 \circ \Re)(1))\delta(1) = (\sigma_1 \circ \Re)(1)\delta(1)$ for $l \in L$. Then $\sigma = (\sigma_1 \circ \mathcal{R}) \delta$, where $\mathcal{R} \in \operatorname{Aut}(L)$ is an automorphism defined by rule (1) and $\delta : L \rightarrow K$ is a mapping defined by formula (3).

If there exist an automorphism $\mathcal{R}\in \operatorname{Aut}(L)$ and a mapping $\delta: L \to K$ such that $\delta = (\sigma_1 \circ \mathcal{R})\delta$, then from Lemma 1 we get that δ satisfies conditions (w_1) and (w_2) .

For ease of reference we now write the following definition (cf. [3]).

Let L and K be loops. Let Ψ : L × K × L × K → K be any mapping fulfilling the following conditions:

1° $\varphi(1, k, 1, 1) = \psi(1, 1, 1, k) = k$,

2°
$$\varphi(1, k_1, 1, k_2) = k_1 k_2,$$

3° the mapping $\psi(l_1,k_1,l_2,\cdot): K \to K$ is a bijection, 4° the mapping $\psi(l_1,\cdot,l_2,k_2): K \to K$ is a bijection,

for 1, l_1 , $l_2 \in L$ and k, k_1 , $k_2 \in K$.

DEFINITION 2. An algebraic structure $(L \times K, \circ)$ with an operation \circ defined by the formula:

 $\langle l_1, k_1 \rangle \circ \langle l_2, k_2 \rangle = \langle l_1 l_2, \Psi(l_1, k_1, l_2, k_2) \rangle$ for arbitrary pairs $\langle l_1, k_1 \rangle, \langle l_2, k_2 \rangle \in L \times K$ is called a product $\langle L ; K \rangle_{\Psi}$.

A product $\langle L ; K \rangle \varphi$ is a loop (cf. [3]).

Let a loop Σ be an extension of a loop K by a loop L. Let $s, s_1: \Sigma/K \rightarrow \Sigma$ be selectors such that $s(K) = s_1(K) =$ = 1 and let $f, f_1: L \rightarrow \Sigma/K$ be isomorphisms. We define mappins $\mathcal{O}, \mathcal{O}_1: L \rightarrow \Sigma$ in the following way:

 $G = s \circ f$ and $G_1 = s_1 \circ f_1$.

By means of the mappings \mathcal{G} and \mathcal{G}_1 we define mappings ψ , ψ_1 : L x K x L x K - K by the formulas:

 $(\sigma(1_1)k_1)(\sigma(1_2)k_2) = \sigma(1_11_2)\psi(1_1,k_1,1_2,k_2),$

 $(G_1(l_1)k_1) (G_1(l_2)k_2) = G_1(l_1l_2) \P_1(l_1,k_1,l_2,k_2)$ for $l_1,l_2 \in L$ and $k_1,k_2 \in K$. The loops $\langle L ; K \rangle_{\varphi}$ and $\langle L ; K \rangle_{\varphi_1}$ are extensions of the loop $K^{\texttt{H}} = \{\langle 1 ; k \rangle: k \in K\}$ by the loop L (cf. [3]). The extensions $\langle L ; K \rangle_{\varphi}$ and $\langle L ; K \rangle_{\varphi}$ are isomorphic. Indeed, mappings $F: \sum - \langle L ; K \rangle_{\varphi}$ and $F_1: \sum - \langle L ; K \rangle_{\varphi_1}$ defined by the rules:

> $F(\mathbf{x}) = F(\mathcal{O}(1)\mathbf{k}) = \langle \mathbf{1}, \mathbf{k} \rangle,$ $F_1(\mathbf{x}) = F_1(\mathcal{O}_1(\mathbf{1}_2)\mathbf{k}_1) = \langle \mathbf{1}_1, \mathbf{k}_1 \rangle,$

for an arbitrary $\mathbf{x} = \mathcal{O}(1)\mathbf{k} = \mathcal{O}_1(1_1)\mathbf{k}_1 \in \Sigma$ are isomorphisms (cf. [3]). Then the mapping $\hat{\Psi} = \mathbf{F}_1 \circ \mathbf{F}^{-1}$ is an isomorphism of the extensions $\langle \mathbf{L}; \mathbf{K} \rangle_{\varphi}$ and $\langle \mathbf{L}; \mathbf{K} \rangle \varphi_1$.

According to Theorem 2 the mappings \mathcal{S} and \mathcal{S}_1 satisfy conditions (w_1) and (w_2) . It follows from Theorem 3 that $\mathcal{S} = (\mathcal{S}_1 \circ \mathcal{X})\mathcal{S}$ for some $\mathcal{X} \in \operatorname{Aut}(L)$ and mapping $\mathcal{S} : L = K$. In the quotient loops $\langle L ; K \rangle q / K^{\text{H}}$ and $\langle L ; K \rangle q / K^{\text{H}}$ all cosets have the same form $\{1\} \times K$ for every $l \in L$. It is easy to see that the loops $\langle L ; K \rangle q / K^{\text{H}}$ and $\langle L ; K \rangle q / K^{\text{H}}$ are identical.

A mapping g: L \rightarrow \langle L, K $\rangle \phi / K^{H}$ defined as follows: g(1) = {1} x K

for $l \in L$ is an isomorphism (cf. [3]). By means of the mapping g and the automorphism $\mathcal{R} \in Aut(L)$ we define an

isomorphism $g_1: L \rightarrow \langle L, K \rangle \varphi / K^H$ putting $g_1 = g \circ X$. Notice that $g(1) = \{\langle 1, k \rangle : k \in K\}$ and $g_1(1) =$ $= \{\langle 1_1, k \rangle : 1_1 = \mathcal{X}(1) \land k \in K\}$ for every $1 \in L$. We shall prove that $\Psi(g(1)) = g_1(1)$ for $1 \in L$. If $\langle 1, k \rangle \in g(1)$ then $\Psi(\langle 1, k \rangle) = F_1(F^{-1}(\langle 1, k \rangle)) = F_1(\mathcal{S}(1)k)$. Since $\mathcal{S}(1) = (\mathfrak{S}_1 \circ \mathcal{X})(1) \mathcal{S}(1) = \mathcal{S}_1(1_1) \mathcal{S}(1)$, where $1_1 = \mathcal{R}(1)$ and so $\Psi(\langle 1, k \rangle) = F_1(\mathcal{S}(1)k) = F_1((\mathcal{S}_1(1_1) \mathcal{S}(1))k) =$ $= F_1(\mathcal{S}_1(1_1) \mathcal{S}(1)) \circ F_1(k) = \langle 1_1, \mathcal{S}(1) \rangle \circ \langle 1, k \rangle =$ $= \langle 1_1, \Psi_1(1_1, \mathcal{S}(1), 1, k) \rangle \in g_1(1)$. Since the mappings Ψ , g, g_1 are isomorphisms, then the inclusion $\Psi(g(1)) \subset g_1(1)$ implies the equality $\Psi(g(1)) =$

= $g_1(1)$ for every l∈L. Notice that $\Psi(\langle 1, k \rangle) =$ = $F_1(F^{-1}(\langle 1, k \rangle)) = F_1(\Im(1)k) = F_1(\Im_1(1)k) = \langle 1, k \rangle$ for every k∈K.

In the grup theory is known the following definition of an extension of groups (cf. [4]).

DEFINITION 3. A group \sum is said to be an extension of a group K by a group L if the following conditions hold: (i) K is a normal subgroup of the group \sum ,

(ii) the quotient group Σ/K and the group L are isomorphic.

Let a group Σ be an extension of a group K by a group L. Let s: $\Sigma/K \rightarrow \Sigma$ be a selector such that s(K) = 1and let f: $L \rightarrow \Sigma/K$ be an isomorphism. We define a mapping G : $L \rightarrow \Sigma$ as follows:

Let 4: L x K x L x K - K be a mapping defined by the

following rule:

(4) $(\mathcal{S}(l_1)k_1)(\mathcal{S}(l_2)k_2) = \mathcal{S}(l_1l_2)\Psi(l_1,k_1,l_2,k_2)$ for arbitrary $l_1, l_2 \in L$ and $k_1, k_2 \in K$.

We shall prove that the mapping φ has the form:

$$\varphi(1_{1},k_{1},1_{2},k_{2}) = \lambda(1_{1},1_{2})\mu(k_{1},1_{2})k_{2}$$

for arbitrary $l_1, l_2 \in L$ and $k_1, k_2 \in K$, where mappings $\mathcal{N} : L \times L \rightarrow K$ and $\mathcal{U} : K \times L \rightarrow K$ satisfy the following conditions:

In view of Theorem 2 the mapping \mathcal{S} satisfies condition (w₂) which may be written in the form: (5) $(\mathcal{S}(l_1) \mathcal{S}(l_2)) \mathbb{K} = \mathcal{S}(l_1 l_2) \mathbb{K}$ for arbitrary $l_1, l_2 \in L$.

Using (5) we can define a mapping $h : L \ge L \rightarrow K$ in the following way:

$$\sigma(1_1)\sigma(1_2) = \sigma(1_11_2)\lambda(1_1,1_2)$$

for arbitrary $l_1, l_2 \in L$.

A mapping L: K x L -> K we define by the rule:

$$\mu(k, 1) = O(1)^{-1}kO(1)$$

for arbitrary l E L and k E K.

We shall prove that the mappings λ and μ satisfy conditions $(a_1) - (a_7)$. It is easy to check that conditions $(a_1) - (a_4)$ hold. If $k_1, k_2 \in \mathbb{K}$ and $l \in L$, then $\mu(k_1, k_2, l) =$ $= \mathcal{O}(1)^{-1} k_1 k_2 \mathcal{O}(1) = (\mathcal{O}(1)^{-1} k_1 \mathcal{O}(1)) (\mathcal{O}(1)^{-1} k_2 \mathcal{O}(1)) =$ = $\mu(k_1, 1) \mu(k_2, 1)$ and so condition (a_5) is fulfilled. If keK and l₁, l₂ eL, then $\mu(k, l_1 l_2) = d(l_1 l_2)^{-1} k d(l_1 l_2) =$ = $\left[\delta(l_1) \delta(l_2) \lambda(l_1, l_2)^{-1} \right]^{-1} k \left[\sigma(l_1) \sigma(l_2) \lambda(l_1, l_2)^{-1} \right] =$ = $\lambda(l_1, l_2) \delta(l_2)^{-1} (\delta(l_1)^{-1} k \delta(l_1)) \delta(l_2) \lambda(l_1, l_2)^{-1} =$ $= \lambda(1_1,1_2) (\mathfrak{G}(1_2)^{-1} \mathfrak{U}(k,1_1) \mathfrak{G}(1_2)) \lambda(1_1,1_2)^{-1} =$ = $\lambda(1_1,1_2) \mu(\mu(k,1_1),1_2) \lambda(1_1,1_2)^{-1}$ and so condition (a6) is fulfilled. If 1,12 EL and k1,k2 EK, then $(6)(\sigma(1_1)k_1)(\sigma(1_2)k_2) = \sigma(1_11_2)\lambda(1_1,1_2)\mu(k_1,1_2)k_2.$ Indeed, $(\mathcal{O}(1_1)k_1)(\mathcal{O}(1_2)k_2) =$ $= \delta(1_1)\delta(1_2)(\delta(1_2)^{-1}k_1\delta(1_2))k_2 =$ $= \delta(1_1) \delta(1_2) \mu(k_1, 1_2) k_2 = \delta(1_1 1_2) \lambda(1_1, 1_2) \mu(k_1, 1_2) k_2.$ If $l_1, l_2, l_3 \in L$ and $k_1, k_2, k_3 \in K$, then $(\mathcal{G}(1_1)k_1)[(\mathcal{G}(1_2)k_2)(\mathcal{G}(1_3)k_3)] = [(\mathcal{G}(1_1)k_1)(\mathcal{G}(1_2)k_2)](\mathcal{G}(1_3)k_3).$ Using (6) we have: $(\delta(1_1)k_1)[(\delta(1_2)k_2)(\delta(1_3)k_3)] =$ = $(\mathcal{G}(1_1)k_1) [\mathcal{G}(1_21_3)(\lambda(1_2,1_3)\mu(k_2,1_3)k_3] =$ = $\delta(1_1 1_2 1_3) \lambda(1_1, 1_2 1_3) \mu(k_1, 1_2 1_3) \lambda(1_2, 1_3) \mu(k_2, 1_3) k_3;$ $[(d(1_1)k_1) (d(1_2)k_2)](d(1_3)k_3) =$ = $[d(l_1 l_2) (\lambda(l_1, l_2) \mu(k_1, l_2) k_2)] (d(l_3) k_3) =$

= $\delta(l_1l_2l_3)\lambda(l_1l_2,l_3)\mu(\lambda(l_1,l_2)\mu(k_1,l_2)k_2,l_3)k_3$. Hence, $\lambda(l_1,l_2l_3)\mu(k_1,l_2l_3)\lambda(l_2,l_3)\mu(k_2,l_3) =$ = $\lambda(l_1l_2,l_3)\mu(\lambda(l_1,l_2)\mu(k_1,l_2)k_2,l_3)$. Applying conditions (a₆) and (a₅) to the left side and the right side of the above equality, respectively, we get: $\lambda(l_1,l_2l_3)\lambda(l_2,l_3)\mu(\mu(k_1,l_2),l_3)\lambda(l_2,l_3)^{-1}\lambda(l_2,l_3)\mu(k_2,l_3) =$ = $\lambda(l_1l_2,l_3)\mu(\lambda(l_1,l_2),l_3)\mu(\mu(k_1,l_2),l_3)\mu(k_2,l_3)$ and this means that condition (a₇) holds. Comparing equalities (4) i (6) we obtain

$$\Psi(\mathbf{1}_{1},\mathbf{k}_{1},\mathbf{1}_{2},\mathbf{k}_{2}) = \lambda(\mathbf{1}_{1},\mathbf{1}_{2})\,\Psi(\mathbf{k}_{1},\mathbf{1}_{2})\mathbf{k}_{2}$$

for li,lo EL and ki,ko EK.

It follows from [3] that the group \sum and the loop $\langle L; K \rangle_{\psi}$, where ψ is a mapping defined by formula (4) are isomorphic, thus $\langle L ; K \rangle_{\psi}$ is a group.

If a mapping Ψ : L X K X L X K \rightarrow K has the form (7) $\Psi(l_1, k_1, l_2, k_2) = \lambda(l_1, l_2) \mu(k_1, l_2) k_2$ for arbitrary $l_1, l_2 \in L$ and $k_1, k_2 \in K$, where mappings λ : L X L \rightarrow K and μ : K X L \rightarrow K satisfy conditions (a₁) - (a₇), then $\langle L ; K \rangle_{\Psi}$ is a group.

It is easy to check that conditions $1^{\circ} - 4^{\circ}$ of Definition 2 are fulfilled, then $\langle L ; K \rangle_{\downarrow}$ is a loop.

We shall show that the operation \circ in the loop $\langle L ; K \rangle_0$ is associative.

If $l_1, l_2, l_3 \in L$ and $k_1, k_2, k_3 \in K$, then $\langle l_1, k_1 \rangle \circ [\langle l_2, k_2 \rangle \circ \langle l_3, k_3 \rangle] =$ $= \langle l_1 l_2 l_3, \varphi(l_1, k_1, l_2 l_3, \varphi(l_2, k_2, l_3, k_3)) \rangle$

and
$$[\langle l_1, k_1 \rangle \circ \langle l_2, k_2 \rangle] \circ \langle l_3, k_3 \rangle =$$

= $\langle l_1 l_2 l_3, \Psi(l_1 l_2, \Psi(l_1, k_1, l_2, k_2), l_3, k_3) \rangle$.
Applying (a_6) , (a_7) and (a_5) we obtain:
 $\Psi(l_1, k_1, l_2 l_3, \Psi(l_2, k_2, l_3, k_3)) =$
= $\lambda(l_1, l_2 l_3) \mu(k_1, l_2 l_3) \lambda(l_2, l_3) \mu(k_2, l_3) k_3 =$
= $\lambda(l_1, l_2 l_3) \lambda(l_2, l_3) \mu(\mu(k_1, l_2), l_3) \lambda(l_2, l_3)^{-1} \lambda(l_2, l_3) \mu(k_2, l_3) k_3 =$
= $\lambda(l_1, l_2 l_3) \lambda(l_2, l_3) \mu(\mu(k_1, l_2), l_3) \mu(k_2, l_3) k_3 =$
= $\lambda(l_1 l_2, l_3) \mu(\lambda(l_1, l_2), l_3) \mu(\mu(k_1, l_2), l_3) \mu(k_2, l_3) k_3 =$
= $\lambda(l_1 l_2, l_3) \mu(\lambda(l_1, l_2) \mu(k_1, l_2) k_2, l_3) k_3 =$
= $\lambda(l_1 l_2, l_3) \mu(\lambda(l_1, l_2) \mu(k_1, l_2) k_2, l_3) k_3 =$
= $\Psi(l_1 l_2, \Psi(l_1, k_1, l_2, k_3), l_2, k_3)$.
Thus $\langle L ; K \rangle_{\Psi}$ is a group.

It follows from the considerations in [3] that the group $\langle L ; K \rangle_{\varphi}$, where the mapping φ has form (7), is an extension up to isomorphism of the group K by the group L.

In this way the problem of determination of all extensions of a group K by a group L can be reduced to the construction of all products $\langle L ; K \rangle_{\gamma}$, where the mapping γ has form (7).

References

- [1] Belousov V.D., Foundations of the theory of quasigroups and loops /Russian/. Nauka, Moscow, 1967.
- [2] Bruck R.H., A survey of binary systems. Springer, Berlin

 Heidelberg New York, 1966.

- [3] Chronowski A., On Schreier extension of loops. Dem. Math., Vol. XV, No 1 /1982/, 105-112.
- [4] Kuros A.G., The theory of groups /Russian/. Nauka, Moscow, 1967.