MAREK CZERNI

Asymptotical interval stability for a linear homogeneous functional equation

1. INTRODUCTION

This paper is a continuation of [l] and it is devoted to investigation of asymptotical interval stability for a linear homogeneous functional equation

(1) $\qquad \qquad \Psi[f(x)] = g(x) \Psi(x),$

where f and g are given functions and \oint is an unknown **function. We shall be interested in real, continuous solutions of equation (1).**

G.A.Shanholt has proved in [4] stability theorems for a difference equation. Similar re'sults for a nonlinear functional equation of first order are presented in [2], [5j» In this paper we will use the definition of asymptotical stability given in [4] and we shall give some necessary and sufficient conditions for asymptotical interval stability for equation (1).

2. PRELIMINARIES

The given functions f and g will he subjected to certain conditions.

Hypothesis (H^). The function f is defined, strictly increasing and continuous in an interval $I = (o,d)$ **,** $d > o$ **and it fulfils the condition**

 $o \leq f(x) \leq x$ for $x \in I$.

Hypothesis (H_2) . The function g is defined and continuous in the interval I and $g(x) \neq 0$ for $x \in I$.

The following theorem from [3j will be useful in the sequel:

THEOREM 1. If hypothesis (H^), (H2) are fulfilled then equation (1) has in I a continuous solution ^ depending on an arbitrary function. More precisely, for any $x_{0} \in I$ and an arbitrary continuous function $-\varphi_0: I_0 \rightarrow R$, where I_{α} := $[f(x_{\alpha}),x_{\alpha}]$, fulfilling the condition (2) $\psi_{0} [f(x_{0})] = g(x_{0}) \psi_{0}(x_{0}),$ there exists exactly one continuous solution φ of equation

(1) in I such that $\varphi(x) = \varphi_0(x)$ for $x \in I_0$.

We will denote this solution by $\phi(\cdot,x_0,\phi_0)$ and the **class of continuous functions fulfilling the condition** (2) by $B(x_0)$. Moreover, we adopt the following notation: **P(a,b) is either an open interval (a,b) or a semiclosed interval [a,b) or (a,b] or a closed interval [a,b] where** $-\infty$ < a < b < ∞ . Similarly we will denote the infinite intervals by $P(a,\infty)$, $P(-\infty,b)$. If $a = b$, then the interval

 $[a,b]$ we denote by $\{a\}$. Moreover by G_n we will denote **the functional sequence**

$$
G_{n}(x) := \prod_{i=0}^{n-1} g[f^{i}(x)] \quad \text{for } x \in I, \quad n \in \mathbb{N}.
$$

Now we will accept the following definition of interval stability for equation (1) (see [1]).

DEFINITION 1. Let $-\infty < a < b < \infty$ **.** P(a,b) is stable **if for every** $\epsilon > 0$ **and** $x_{0} \in I$ **there exists a** $\epsilon =$ $=$ $\delta(x_0, \epsilon)$ > **o** such that for an arbitrary function $\oint_{0} \in B(x_{0})$ fulfilling the inequalities $-(3)$ $\varphi_0(x) < b + \delta$ for $x \in I_0$, (4) $\varphi_0(x) > a - \delta$ for $x \in I_0$,

the solution $\phi(\cdot,x_0, \phi_0)$ of equation (1) fulfils the **inequalities**

(5) $\varphi(x, x_0, \varphi_0) < b + \varepsilon$ for $x \in (0, x_0],$ (6) $\varphi(x,x_0, \varphi_0) > a - \epsilon$ for $x \in (0,x_0]$.

DEFINITION 2. Let $b \in R$ **.** $P(-\infty, b)$ **is stable if for every** $\epsilon > 0$ and $x_0 \in I$ there exists a $\delta = \delta(x_0, \epsilon) > 0$ such that for an arbitrary function $\varphi_0 \in B(x_0)$ fulfilling (3) the solution $\varphi(\cdot, x_o, \varphi_o)$ of equation (1) fulfils (5).

DEFINITION 3. Let $a \in R$ **.** $P(a_1 \infty)$ **is stable if for every** $\mathcal{E} > 0$ and $\mathbf{x}_0 \in \mathbf{I}$ there exists a $\delta = \delta(\mathbf{x}_0, \epsilon) > 0$ such that for an arbitrary function $\varphi_0 \in B(x_0)$ fulfilling (4) the solution $\varphi(\cdot,x_0, \varphi_0)$ of equation (1) fulfils (6).

We will, adopt the following definition of attractor and of asymptotic interval stability (see $[2]$, $[4]$).

DEFINITION 4. Let $-\infty < a \leq b < \infty$ **.** $P(a,b)$ is an attractor if for every $x_0 \in I$ there exists an $\eta = \eta(x_0) > 0$ such that for an arbitrary function $\varphi_{0} \in B(x_{0})$ fulfilling **the inequalities**

- (7) $\varphi_0(x) < b + \eta$ for $x \in I_0$,
	-

(8) $\varphi_0(x) > a - \eta$ for $x \in I_0$,

the solution $\phi(\cdot, x_0, \phi_0)$ of equation (1) fulfils the con**dition**

lim dist $(\varphi(f^{n}(x),x_{0},\varphi),P(a,b)) = 0$ for $x \in I_{0}$. **n -►°o DEFINITION 5. Let** $b \in R$ **.** $P(-\infty, b)$ **is an attractor if** for every $x_0 \in I$ there exists an $\eta = \eta(x_0) > 0$ such that for an arbitrary function $\psi_{\alpha} \in B(x_{\alpha})$ fulfilling (7) the solution $\psi(\cdot, x_0, \phi_0)$ of equation (1) fulfils the con**dition**

lim dist $(\varphi(f^n(x),x_0,\varphi))$, $P(-\infty,b)) = 0$ for $x \in I_0$. **n-» oo**

DEFINITION 6. Let $a \in R$ **.** $P(a, \infty)$ **is an attractor if** for every $x_0 \in I$ there exists an $\eta = \eta(x_0) > 0$ such that for an arbitrary function $\varphi_0 \in B(x_0)$ fulfilling (8) the solution $\psi(\cdot, x_0, \varphi_0)$ of equation (1) fulfils the con**dition**

lim dist $(\varphi(f^n(x),x_n,\varphi_n),P(a,\infty)) = 0$ for $x \in I_0$. $n - \infty$ **DEFINITION 7.** Let $-\infty < a \le b < \infty$. P(a,b), P($-\infty$,b), **P(a,c») are asymptotically stable a.s. if P(a,b),** P(-∞,b), P(a,∞) are stable and they are attractors res**pectively .**

In the end of this section we present theorems from [1] on interval stability which will be useful in the sequel. At first we will assume that f fulfils hypothesis (H₁) **and g fulfils the following:**

Hypothesis (H_x) . The function g is defined and con**tinuous in the interval I and** $g(x) > 0$ **for** $x \in I$ **.**

LEMMA 1. Let hypothesis $(H_{\overline{2}})$ be fulfilled and **o** \langle a \leq b \langle ∞ or $-\infty$ \langle a \leq b \langle o. Then the inequality

min
$$
\left\{\frac{a}{b}, \frac{b}{a}\right\}
$$
 \leq \leq $\left\{\frac{a}{b}, \frac{b}{a}\right\}$ for $x \in I$

is a necessary and sufficient condition that for every $x_0 \in I$ and δ > 0 there exists a $y_0 \in (a - \delta, b + \delta)$ such that $g(x_0)y_0 \in (a - \delta, b + \delta)$.

THEOREM 2. Let hypotheses (H_1) **,** (H_3) **be fulfilled and** either $o < a < b < \infty$ or $-\infty < a < b < o$. P(a,b) is stable **if and only if one of the following conditions is fulfilled:**

(11)
$$
g(x) > min\left\{\frac{a}{b}, \frac{b}{a}\right\}
$$
 for $x \in I$.

THEOREM 3. Let hypotheses (&,) , (Hj) be fulfilled and a *⁴* **<o. [a} is stable if and only if one of the following conditions is fulfilled:**

(12) There exists an $x_0 \in I$ such that $g(x) = 1$ for $x \in (0, x_0]$ and $g(x) \neq 1$ for $x \in (x_0, d)$, $g(x) = 1$ for $x \in I$, $g(x)$ $\lt 1$ for $x \in I$, (15) $g(x) > 1$ for $x \in I$.

THEOREM 4. Let hypotheses (H^) , (Hj) be fulfilled and $-\infty$
b < \circ < a< ∞ . $P(-\infty, b)$ or $P(a, \infty)$ is stable if and **only if**

(16) $g(x) \geqslant 1$ for $x \in I$.

THEOREM 5. Let hypotheses (H_1) **,** (H_3) **be fulfilled and** $\text{either } -\infty \leq a \leq a \leq b \leq \infty \text{ or } -\infty \leq a \leq b \leq \infty$. $P(a,b)$ **is stable if and only if**

 (17) $g(x) \leq 1$ for $x \in I$.

Now we define the following function:

$$
M(x) := \sup_{n \in N} \left\{ \max_{t \in [f(x),x]} G_n(t) \right\} \text{ for } x \in I.
$$

THEOREM 6. Let hypotheses (Łj), (.H^) be fulfilled. The inequality

 $M(x) < \infty$ for $x \in I$

is a necessary and sufficient condition for $\{o\}$, $P(o, \infty)$ and $P(-\infty, 0)$ to be stable.

Lastly we will assume that f fulfils hypothesis (H^) and g fulfils the following:

Hypothesis (H_a) . The function g is defined and continuous in the interval I and $g(x) < 0$ for $x \in I$.

THEOREM 7. Let hypotheses (H^), (H^) be fulfilled. Then the intervals P(o,b) and P(a,o) where $-\infty$ \leq a \leq o \leq b \leq o and P(- ∞ , b) and P(a, ∞) where ∞ $\langle a \rangle$ $\langle b \rangle$ $\langle b \rangle$ ∞ are unstable.

We define two functions:

$$
p(x) := \inf_{n \in \mathbb{N}} \left\{ \min_{t \in [f(x), x]} G_{2n+1}(t) \right\},
$$

$$
P(x) := \sup_{n \in N} \left\{ \max_{t \in [f(x), x]} G_{2n}(t) \right\}
$$

for $x \in I$.

THEOREM 8. Let hypotheses (H^)» (H^) be fulfilled,.

{0} is stable if- and only if the following conditions are fulfilled!

- $p(x) > -\infty$ for $x \in I$,
- $P(x) < \infty$ for $x \in I$.

THE0BEM **9, Let hypotheses (H^), (H^) be fulfilled and** $-\infty$ <a < $0 \le b \le \infty$. P(a,b) is stable if and only if **(21)** max $\left\{\frac{a}{b}, \frac{b}{a}\right\} \leqslant g(x)$ for $x \in I$.

3. NECESSARY AND SOEEICIENT CONDITIONS

FOR ASYMPTOTICAL INTERVAL STABILITY

 $3.1.$ The case $R(x) > 0$ for $x \in I$. In this section we **will assume that f fulfils hypothesis (H^) and g fulfils hypothesis (H^).**

We define the following functions:

$$
1(x) := \inf_{t \in [f(x), x]} \{ \lim_{n \to \infty} G_n(t) \},
$$

$$
L(x) := \sup_{t \in [f(x), x]} \{ \lim_{n \to \infty} G_n(t) \},
$$

$$
\overline{L}(x) := \sup_{t \in [f(x), x]} \{ \lim_{n \to \infty} \sup G_n(t) \}.
$$

Notice that (16) or (17) implies that lim G_n(x) exists **n-»** 5**o** for $x \in I$.

At first we consider P(a,b) where either $-\infty$ $6a$ $60 < b < \infty$ or $-\infty$ $6a < b < b$ 60 .

THEOREM 10. Let hypotheses QLj), (Hj) be fulfilled and $either$ - ∞ \leq $a \leq o \leq b \leq \infty$ or $-\infty$ \leq $a \leq o \leq b \leq \infty$. P(a,b) is **a.s. if and only if the following condition is fulfilled** $g(x) \leq 1$, $L(x) \leq 1$ for $x \in I$.

P r o of. Suppose that (22) holds. According to Theorem 5» P(a,b) is stable. Thus it is sufficient to prove that P(a,b) is an attractor. At first we consider the case where $o \le L(x) \le 1$ for $x \in I$. Let $x \in I$ and we put $T(x_0) := \min \left\{ \frac{a(L(x_0) - 1)}{L(x_0)} \right\}$ **b**(1 - L(x₀)) $\overline{L(x_0)}$, $\overline{L(x_0)}$ **.** From (22) we have $\eta(x_0) > 0$. Then for $\phi_0 \in B(x_0)$ such that (7) and **(8) hold we have the inequalities:**

$$
\begin{aligned}\n0 &\leq \lim_{n \to \infty} \varphi(f^n(x), x_0, \varphi_0) = \lim_{n \to \infty} G_n(x) \varphi_0(x) < \\
&\leq L(x_0) \left[b + \frac{b(1 - L(x_0))}{L(x_0)} \right] < b, \text{ when } \varphi_0(x) \geq 0, \\
&\leq L(x_0) \left[a - \frac{a(L(x_0) - 1)}{L(x_0)} \right] < \lim_{n \to \infty} G_n(x) \varphi_0(x) = \\
&= \lim_{n \to \infty} \varphi(f^n(x), x_0, \varphi_0) < 0, \text{ whereas for } \varphi_0(x) < 0. \\
&\leq \lim_{n \to \infty} \varphi(f^n(x), x_0, \varphi_0) < 0, \text{ whereas for } \varphi_0(x) < 0.\n\end{aligned}
$$
\nThus $P(a, b)$ is an attractor and, consequently, it is a.s.

The case where there exists an $x_0 \in I$ such that $L(x_0) = 0$ is very simple. Then for every $\eta > 0$ and $\psi_{s} \in B(x_{0})$ such that (7) and (8) hold we have $\lim \varphi(f^n(x),x_{0},\varphi_0) = 0$ for $x \in I_0$ and, consequently, **n-»«o P(a,b) is a.s.**

Now let us suppose that P(a,b) is a.s. Prom Theorem 5 we have (17) which implies inequalities $o \le L(x) \le 1$ **for x** \in **I**. Suppose that there exists an $x_0 \in I$ such that **L(xq) = 1. Because L is a semi-continuous function there exists a t** \in **I**_c such that $L(x_0) = \lim G_n(t)$. Without any **n-*«»** loss of generality we may assume that $t \in (f(x_0),x_0)$. Let us fix an $\eta > 0$. We may take $\varphi_0 \in B(x_0)$ fulfilling (7) and (8) and condition $\varphi_o(t) \notin [a,b]$. Then we have:

$$
\lim_{n \to \infty} \varphi(f^n(t), x_0, \varphi_0) = \varphi_0(t) \notin [a, b].
$$

This condition contradicts the a.s. of P(a,b).

THEOREM 11. Let hypotheses (H_1) **,** (H_3) **be fulfilled and** ∞ \leq b , \leq 0 \leq $a \leq \infty$. Each of sets $P(-\infty, b)$, $P(a, \infty)$ is a.s. **if and only if**

 $g(x) > 1$, $l(x) > 1$ for $x \in I$.

Proof. Suppose that (23) holds. According to Theorem 4, P - fb and P a, are stable. We will prove that $P(-\infty, b)$ and $P(a, \infty)$ are attractors. At first we consider the case where $1 \lt 1(x) \lt \infty$ for $x \in I$. Let $x_0 \in I$

 $a(1(x_0) - 1)$ and let us put $\eta(x_n)$ = $\frac{1}{\sqrt{x}}$ for $P(a_n \infty)$ and

 $b(1 - 1(x))$. $a(x) = b(1 - 1)(x)$ $\eta(x_0) := -\frac{1(x_0 - x_0)}{x_0}$ for $P(-\infty, b)$. We have $\eta(x_0) > 0$ from (23) . Then for a $\psi_0 \in B(x_0)$ such that (8) or (7) holds **respectively, we have the inequalities**

$$
\varphi_0(x) > a - \frac{a(1(x_0) - 1)}{1(x_0)} = \frac{a}{1(x_0)}
$$
 for $x \in I_0$

27

or

$$
\varphi_0(x) < b + \frac{b(1 - l(x_0))}{l(x_0)} = \frac{b}{l(x_0)} \quad \text{for } x \in I_0,
$$
\n
$$
(24) \lim_{n \to \infty} \varphi(f^n(x), x_0, \varphi_0) = \lim_{n \to \infty} G_n(x) \varphi_0(x) \ge l(x_0) \varphi_0(x) > a,
$$
\n
$$
(25) \lim_{n \to \infty} \varphi(f^n(x), x_0, \varphi_0) = \lim_{n \to \infty} G_n(x) \varphi_0(x) \le l(x_0) \varphi_0(x) < b.
$$
\n
$$
\text{Conditions } (24) \text{ and } (25) \text{ imply that}
$$
\n
$$
\lim_{n \to \infty} \text{dist}(\varphi(f^n(x), x_0, \varphi_0), P(-\infty, b)) = 0.
$$
\n
$$
= \lim_{n \to \infty} \text{dist}(\varphi(f^n(x), x_0, \varphi_0), P(a, \infty)).
$$

In case where there exists an $x_0 \in I$ such that $l(x_0) = \infty$, **it is sufficient to take an fulfilling inequalities** e ither $o < \eta < a$ or $o < \eta < -b$, respectively.

Now let us suppose that $P(-\infty, b)$ and $P(a, \infty)$ are **a.s. From Theorem 4 we have (16) which implies inequalities** $1 \leqslant 1(x)$ < ∞ . Suppose that there exists an $x_0 \in I$ such that $l(x_a) = 1$. Because 1 is a semi-continuous function there exists a $t \in I$ such that $l(x) = \lim_{h \to 0} G_h(t)$. With-**0 n** α **n** α out loss of generality we may assume that $t \in (f(x_0),x_0)$. Let us fix η >**o** and we may take $\varphi_n \in B(x_0)$ fulfilling conditions either $\varphi_o(x) > a - \eta$, $\varphi_o(t) < a$ or $\varphi_{0}(x)$ \langle b + η , $\varphi_{0}(t)$ $>$ b respectively. Then we have

$$
\lim_{n \to \infty} \varphi(f^n(t), x_0, \varphi_0) = \lim_{n \to \infty} G_n(t) \varphi_0(t) =
$$
\n
$$
= l(x_0) \varphi_0(t) = \varphi_0(t) \langle a,
$$
\n
$$
\lim_{n \to \infty} \varphi(f^n(t), x_0, \varphi_0) = \lim_{n \to \infty} G_n(t) \varphi_0(t) =
$$
\n
$$
= l(x_0) \varphi_0(t) = \varphi_0(t) > b,
$$

28

which implies that $P(-\infty, b)$ **and** $P(a, \infty)$ **are not attractors.**

An immediate conclusion from Lemma 1 and Theorem 2, 3 is the following:

THEOREM 12. Let hypotheses (H^) , (H^) he fulfilled and $\text{either } \circ \langle a \rangle \leq b \langle \infty \rangle \text{ or } -\infty \langle a \rangle \leq b \langle o, P(a,b) \rangle \text{ is a.s.}$ if and only if (10) and (11) hold.

In the end of this section we give a necessary and sufficient conditions for asymptotical stability (o], P(o,co) and P(-oo,o). The following lemma will be useful in the sequel:

LEMMA 2. Let $\{y_{n,k}\}\)$ be a double sequence of reals. If

 $\limsup_{k \to \infty} y_{n-k} = y_k$ and $\lim y_{k} = y_0$, **n-*oo n*K K k-^oo K 0** then there exist sequences $\{n_i\}$, $\{k_i\}$ of positive inte**gers such that**

$$
\lim_{i\to\infty} \mathbf{y}_{n_i,k_i} = \mathbf{y}_0.
$$

This lemma is a simple generalization of lemma 4 from [6]. Now we may prove the following:

LEMMA 3. Let hypotheses (H_1) , (H_3) be fulfilled and $x_0 \in I$. Then there exist sequences $\{ n_i \}$, $\{ k_i \}$ and $t_k \in [f(x_0), x_0]$ such that (26) $\mathbb{E}(x_n) = \lim G_n(t_k)$.

P r o o f. By the definition of function L , there **exists a** $\{\mathtt{t}, \}$ such that $\mathbf{L}(\mathtt{x}_0) = \mathtt{lim} \{ \mathtt{lim} \ \mathtt{sup} \ G_n(\mathtt{t}_k) \}$ **1 0 k-»ooln-»= n**

 0 $i*\infty$ ⁿ_i K_i

It is sufficient to put $y_{n_k k} := G_n(t_k)$ and from Lemma 2 **we have (26).**

THEOREM 13. Let hypotheses (H_1) , (H_2) be fulfilled. Each of sets $\{o\}$, $P(-\infty, o)$, $P(o, \infty)$ is a.s. if and only if $L(z)$ $M(x) < \infty$, $\overline{L}(x) = 0$ for $x \in I$. **Proof. Suppose that (27) holds. Prom Theorem 6,** $\{o^b\}$ P (o, ∞) and P $(-\infty, o)$ are stable. Let $x_o \in I$ and $\eta > 0$. Then we take $\varphi_0 \in B(x_0)$ such that $\varphi_0(x) < \eta$ for $P(-\infty, 0)$, $\varphi_0(x) > -\eta$ for $P(0, \infty)$ and $-\eta < \varphi_0(x) < \eta$ **for [o]. From C**27**) we have** $\limsup \ \phi(f^{\mu}(x), x_{0} \neq 0) = \limsup \ G_{n}(x) \phi_{0}(x) = 0$ for $x \in I_{n}$ n-∞ n-∞ n-∞ **which implies that the intervals are a.s.**

Now let us suppose that $\{o\}$, $P(o, \infty)$ and $P(-\infty, o)$ **are asymptotically stable. From Theorem 6 we have (18).** Suppose that there exists an $x_0 \in I$ such that $E(x_0) > 0$. From Lemma 3 there exist sequences ${n_i}$, ${k_i}$ and $t_{k_i} \in [f(x_o), x_o]$ such that $t_{k_i} \rightarrow t_o$ (1 $\rightarrow \infty$) and $E(x_0) = \lim_{n \to \infty} G_{n_i}(t_{k_i})$. We take $\Psi_0 \in B(x_0)$ fulfilling condi- \mathcal{L} **tions** $\varphi_{0}(t_{0}) \neq 0$ for $\{0\}$, $\varphi_{0}(t_{0}) < 0$ for P(0,00) and $\varphi_{0}(t_{n}) > o$ for $P(-\infty, o)$. Then we have $\lim_{i \to \infty} \psi\left(\mathbf{f}^{n_1}(t_{k_1}), x_0, \phi_0\right) = \lim_{i \to \infty} G_{n_i}(t_{k_1}) \phi_0(t_{k_1}) =$

$$
= \mathbb{E}(x_0) \varphi_0(t_0).
$$

This condition contradicts the assumption that $\{o\}$, $P(-\infty, o)$ **and P(o,oo) are attractors.**

3.2. The case $g(x)$ \leq **o for** $x \in I$ **. Now we will assume that f fulfils hypothesis (h^) and g fulfils hypothesis** (H_n) . At first we consider intervals $P(a,b)$, $P(-\infty,b)$ and $P(a,\infty)$ where $0 \le a \le b \le \infty$ or $-\infty < a \le b \le c$. If we put $o < \delta < a$, $o < \eta < a$ for $P(a,b)$, $P(a,\infty)$, where $o < a \le b < \infty$ and $o < \delta < -b$, $o < \eta < -b$ for P(a,b) P($-\infty$,b) where $-\infty$ $\langle a \rangle$ b $\langle o, \rangle$ then no ψ \in $B(x_0)$ fulfils inequalities (3) , (4) and (7) , (8) . Thus these intervals are a.s.

Prom Theorem 7 we also have that intervals P(o,b), $P(a,0)$ where $-\infty < a < 0 < b$, and $P(-\infty,b)$, $P(a,\infty)$ where $-\infty < a < b < b < \infty$ are not a.s.

Now we define the following functions

 $R(x) := \sup_{x \in \mathbb{R}^n} | \lim_{n \to \infty} G_{p_n}(t) |,$ $t \in [f(x), x]$ n-so ≤ 1 J $r(x) := \inf_{x \to 0} \{ \lim_{x \to 0} G_{2n+1}(t) \},$ $t \in [f(x),x]$ $n \rightarrow \infty$ \leftarrow $\overline{R}(x) := \sup \{ \limsup \ G_{2n}(t) \},$ $t \in [f(x), x]$ $n \rightarrow \infty$ $2n \rightarrow$ $\mathbf{r}(\mathbf{x}) := \inf_{\mathbf{r} \in \mathbb{R}^n} \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r}$ $t \in [f(x), x]$ ln $\rightarrow \infty$ ²ⁿ⁺¹

Notice that (21) implies that $\lim G_{2n}(x)$ and $\lim G_{2n+1}(x)$ n → »^a ao amin'ny ao amin'ny soratra desimaly. **exist for xel. We have a result similar to Lemma 3:**

LEMMA 4. Let hypotheses (H_1) **,** (H_4) **be fulfilled and** $\mathbf{x}_{0} \in I$. Then there exist sequences $\{n_{1}\}, \{k_{1}\}, \{m_{1}\}, \{1_{1}\}$ and $t_k \in I_0$, $t_1 \in I_0$ such that **Ki 0 ii °** (28) $R(x_0) := \lim_{i \to \infty} G_{2n_i} (t_{k_i}),$ $r(x) := \lim_{n \to \infty} G_{n+1}(t_1).$ $\frac{1}{2}$ = co $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ **(29)**

We have the following

THEOREM 14. Let hypotheses (H^), (H^) be fulfilled. The set {oj is a.s. if and only if

 (30) $-\infty$ $\langle p(x), p(x) \rangle$ $(0, 0)$ $(0, 0)$ $(0, 0)$ $(0, 0)$ $(0, 0)$ $(0, 0)$ $(0, 0)$ $(0, 0)$

Proof. Suppose that (JO) holds. Prom Theorem 8 we have that $\{0\}$ is stable. Let $x_0 \in I$ and $\eta > 0$. Take a $\varphi_0 \in B(x_0)$ such that $-\eta \leq \varphi_0(x) \leq \eta$. From (30) we have $\lim \varphi(f^{\mu}(x), x_{0}, \varphi_{0}) = 0$ which implies that $\{o\}$ is a.s. **n***

Now let us suppose that there exists an $x_0 \in I$ such that $r(x_0) < 0$ or $R(x_0) > 0$. Let $\eta > 0$ and $\varphi_0 \in B(x_0)$ fulfil the condition $-\eta < \varphi_o(x) < \eta$. From Lemma 4 there exist sequences $\{n_i\}, \{k_i\}, \{n_i\}, \{1_i\}$ and $\{t_k\}, \{t_1\} \subset I_o$ such that (28) and (29) hold. Without loss of generality we may assume that $t_{\frac{1}{4}} \longrightarrow t_0$ or $t_{1} \longrightarrow t_0$ and $\varphi(t_0) > o$ where $t_0 \in I_0$. Then we have **2n** $f(t_k)$, x_0 , φ_0) = lin G_{2n} (t_k) , $\varphi_0(t_k)$ = $= R(x_0) \varphi_0(t_0) > 0$

$$
\lim_{i \to \infty} \varphi\left(f^{c^{m_1+1}}(t_1), x_0, \varphi_0\right) = \lim_{i \to \infty} G_{2m_1+1}(t_1) \varphi_0(t_1) =
$$

= $r(x_0) \varphi_0(t_0) < 0$.

This conditions imply that {0} is non an attractor what ends the proof of the theorem.

Finally we consider the case P(a,b) where -∞<a < o < b <∞. We have two following theorems.

THEOREM 15. Let hypotheses (H^), (H^) be fulfilled and $-\infty < a < b < b < \infty$ a $\neq -b$. P(a,b) is a.s. if and only if (21) holds.

P r 0 of. Prom Theorem 9 condition (21) is necessary for asymptotical stalibity P(a,b). We will prove that (21) is also sufficient. From Theorem 9, P(a,b) is stable. Let $k := max \left\{ \frac{a}{b} \right\}$. We have from (21) that $-1 < k < 0$. We may **prove by simple induction that**

 (31) $(k)^{2n+1} \leq G_{2n+1}(x) < o < G_{2n}(x) \leq (k)^{2n}$ $n \in \mathbb{N}$, $x \in \mathbb{I}$. **Inequalities (31) imply that lim** $G_{2n+1}(x) = 0 = \lim_{n \to \infty} G_{2n}(x)$ **.** n-00 cn+1 n-00 Then for $x_0 \in I$, $\eta > 0$ and φ_0 B(x_0) such that (7), (8) **hold we have**

(32) $\lim_{n\to\infty} \frac{\psi(f^{2n} x, x_0, \phi_0)}{n} = \lim_{n\to\infty} G_{2n}(x)\phi_0(x) = 0$ for $x \in I_0$ (33) lim $\sqrt{f^{2n+1}(x)},x_{0},\sqrt{0}) = \lim_{n \to \infty} G_{2n+1}(x)\sqrt{0}(x) = 0$ for $x \in I_{0}$. **n+∞** n+∞ **Conditions (32), (33) imply that P(a,b) is a.s.**

THEOREM 16. Let hypotheses (H^), (H^) be fulfilled and $-\infty$ $\langle a \rangle$ $\langle b \rangle$ \sim ∞ $a = -b$. $P(a, b)$ is a.s. if and only if (34) $-1 \leq g(x) < 0$, $-1 \leq \overline{r}(x) \leq 0$, $0 \leq \overline{R}(x) < 1$ for $x \in I$.

Proof. Suppose that (34) holds. Prom Theorem 9, P(a,b) is stable. We will prove that P(a,b) is an attractor. At first we consider the case where $0 \leq \overline{R}(x) \leq 1$ and $-1 \leq r(x) \leq 0$ for $x \in I$. Let $x \in I$ and we put

$$
\eta(x_0) := \min \left\{ \frac{\mathbf{a}(\overline{\mathbf{R}}(\mathbf{x}_0) - 1)}{\overline{\mathbf{R}}(\mathbf{x}_0)} \cdot \frac{\mathbf{a}(\overline{\mathbf{r}}(\mathbf{x}_0) - 1)}{\overline{\mathbf{r}}(\mathbf{x}_0)} \right\}.
$$

From (34) $\eta > 0$. Then for $\psi_0^{\epsilon} B(x_0)$ such that (7) , (8)

hold we have

$$
0 \leq \lim_{n \to \infty} \varphi(f^{2n}(x), x_0, \varphi_0) \leq \overline{R}(x_0) \varphi_0(x) <
$$

$$
\leq \overline{R}(x_0) \left[b + \frac{a(\overline{R}(x_0) - 1)}{\overline{R}(x_0)} \right] < -a = b
$$

for $x \in I_0$, $\varphi_0(x) \ge 0$,

$$
a < \overline{r}(x_0) \left[b + \frac{a(\overline{r}(x_0) - 1)}{\overline{r}(x_0)} \right] < \overline{r}(x_0) \varphi_0(x) \leq
$$

$$
\leq \lim_{n\to\infty} \varphi\left(\mathbf{r}^{2n+1}(\mathbf{x}), \mathbf{x}_0, \varphi_0\right) \leqslant 0
$$

for $x \in I_0$, $\varphi_0(x) \geq 0$,

$$
a < F(x) \left[a - \frac{a(F(x_0) - 1)}{F(x_0)} \right] < F(x_0) \varphi_0(x) \le
$$

$$
\lim_{n\to\infty}\psi\left(f^{2n}(x),x_{0},\varphi_{0}\right)\leqslant 0
$$

for $x \in I_0$, $\varphi_0(x) < 0$,

$$
0 \leqslant \lim_{n \to \infty} \psi\bigl(x^{2n+1}(x), x_0, \varphi_0\bigr) = \overline{r}(x_0)\varphi_0(x)
$$

$$
\langle \overline{r}(x_0) \left[a - \frac{a(\overline{r}(x_0) - 1)}{\overline{r}(x_0)} \right] \langle -a = b \rangle
$$

for $x \in I_0$, $\varphi_0(x) < 0$.

These inequalities imply that P(a,b) is a.s. If there exists an $x_0 \in I$ such that $\overline{R}(x_0) = 0$ or $\overline{r}(x_0) = 0$, then ${\tt either\ }$ lim $\mathcal{P}(f^{2n}(x),x_{0},\varphi_{0}) = 0$ or lim $\mathcal{P}(f^{2n+1}(x),x_{0},\varphi_{0})$ **n»oo n-»eo** what also implies that $P(a,b)$ is a.s.

Now we shall prove that (3h) is also a necessary condition. Notice that inequality (21) from Theorem 9 implies

34

that $o \leq \overline{R}(x) \leq 1$ and $-1 \leq \overline{r}(x) \leq o$ for $x \in I$. Suppose that there exists an $x_0 \in I$ such that either $\overline{r}(x_0) = -1$ or $\overline{R}(x_0) = 1$. Since \overline{r} and \overline{R} are semicontinuous there exists **a** $t \in I_0$ such that $\overline{R}(x_0) = \lim_{n \to \infty} G_{2n}(t)$ or $\overline{r}(x_0) =$ **= lim G_{2n+1}(t). Without loss of generality we may assume** that $t \in (f(x_0),x_0)$. Then for $\varphi_0 \in B(x_0)$ fulfilling conditions (7) , (8) and $\psi_{0}(t) < a$ when $\overline{R}(x_{0}) = 1$, or $\varphi_0(t)$ > b when $\bar{r}(x_0) = 1$, we have $\lim \sqrt{ (f^{err}(t) , x_{0}, \varphi_{0})} = \overline{r}(x_{0}) \varphi_{0}(t) = -\varphi_{0}(t) < -b = a_{0}$ **n»oo**

$$
\lim_{n \to \infty} \Psi(f^{2n}(t), x_0, \varphi_0) = \overline{R}(x_0) \varphi_0(t) = \varphi_0(t) < a.
$$

Thus P(a,b) is not an attractor , the theorem is proved.

References

- **[1] Czerni M., Interval stability for a linear homogeneous functional equation (to appear).**
- **[2] Czerni M., Asymptotical set stability for a functional equation of first order, Rocznik Naukowo-Dydaktyczny WSP. Z.82, Kraków 1982, 15-26.**
- **[5] Kuczma M., Functional equations in a single variable, Polish Scientific Publishers! Warszawa 1968.**
- **[4] Shanholt G.A., Set stability for difference equation,** Int.J.Control 19, 2, 1974, 309-314.
- **[5] Turdza E., Set stability for a functional equation of iterative type, Demonstratic Mathematics, 15 (1982), 445-448.**

[6] Turdza E., Comparison theorem for a functional inequality, General Inequalities 1, edited by E.F.Beckenbach, Birkh&user Verlag Bassel (1978), 199-211.

 \sim

the party than the state of the con-