MAREK CZERNI

Asymptotical interval stability for a linear homogeneous functional equation

1. INTRODUCTION

This paper is a continuation of [1] and it is devoted to investigation of asymptotical interval stability for a linear homogeneous functional equation

(1) $\Psi[f(\mathbf{x})] = g(\mathbf{x}) \Psi(\mathbf{x}),$

where f and g are given functions and ψ is an unknown function. We shall be interested in real, continuous solutions of equation (1).

G.A.Shanholt has proved in [4] stability theorems for a difference equation. Similar results for a nonlinear functional equation of first order are presented in [2], [5]. In this paper we will use the definition of asymptotical stability given in [4] and we shall give some necessary and sufficient conditions for asymptotical interval stability for equation (1).

2. PRELIMINARIES

The given functions f and g will be subjected to certain conditions.

<u>Hypothesis</u> (H_1) . The function f is defined, strictly increasing and continuous in an interval I = (o,d), d > oand it fulfils the condition

o < f(x) < x for . x eI.

<u>Hypothesis</u> (H_2) . The function g is defined and continuous in the interval I and $g(x) \neq o$ for $x \in I$.

The following theorem from [3] will be useful in the sequel:

THEOREM 1. If hypothesis (H_1) , (H_2) are fulfilled then equation (1) has in I a continuous solution φ depending on an arbitrary function. More precisely, for any $x_0 \in I$ and an arbitrary continuous function $\varphi_0: I_0 \rightarrow R$, where $I_0 := [f(x_0), x_0]$, fulfilling the condition (2) $\psi_0[f(x_0)] = g(x_0) \psi_0(x_0)$, there exists exactly one continuous solution φ of equation

(1) in I such that $\varphi(x) = \varphi_0(x)$ for $x \in I_0$.

We will denote this solution by $\Psi(\cdot, \mathbf{x}_0, \Psi_0)$ and the class of continuous functions Ψ_0 fulfilling the condition (2) by $B(\mathbf{x}_0)$. Moreover, we adopt the following notation: P(a,b) is either an open interval (a,b) or a semiclosed interval [a,b) or (a,b] or a closed interval [a,b] where $-\infty < a < b < \infty$. Similarly we will denote the infinite intervals by $P(a,\infty)$, $P(-\infty,b)$. If a = b, then the interval [a,b] we denote by $\{a\}$. Moreover by G_n we will denote the functional sequence

$$G_n(x) := \int_{i=0}^{n-1} g[f^i(x)]$$
 for $x \in I$, $n \in \mathbb{N}$.

Now we will accept the following definition of interval stability for equation (1) (see [1]).

DEFINITION 1. Let $-\infty < a \le b < \infty$. P(a,b) is stable if for every $\varepsilon > o$ and $x_o \in I$ there exists a $\varepsilon =$ $= \delta(x_o, \varepsilon) > o$ such that for an arbitrary function $\varphi_o \in B(x_o)$ fulfilling the inequalities -(3) $\varphi_o(x) < b + \delta$ for $x \in I_o$, (4) $\varphi_o(x) > a - \delta$ for $x \in I_o$,

the solution $\varphi(\cdot, x_0, \varphi_0)$ of equation (1) fulfils the inequalities

(5) $\varphi(\mathbf{x},\mathbf{x}_0,\varphi_0) < b + \varepsilon$ for $\mathbf{x} \in (o,\mathbf{x}_0]$, (6) $\varphi(\mathbf{x},\mathbf{x}_0,\varphi_0) > \mathbf{a} - \varepsilon$ for $\mathbf{x} \in (o,\mathbf{x}_0]$.

DEFINITION 2. Let $b \in \mathbb{R}$. $P(-\infty, b)$ is stable if for every $\mathcal{E} > o$ and $\mathbf{x}_0 \in \mathbb{I}$ there exists a $\mathcal{S} = \mathcal{S}(\mathbf{x}_0, \mathcal{E}) > o$ such that for an arbitrary function $\varphi_0 \in \mathbb{B}(\mathbf{x}_0)$ fulfilling (3) the solution $\varphi(\cdot, \mathbf{x}_0, \varphi_0)$ of equation (1) fulfils (5).

DEFINITION 3. Let $a \in \mathbb{R}$. $P(a,\infty)$ is stable if for every $\mathcal{E} > o$ and $x_0 \in \mathbb{I}$ there exists a $\delta = \delta(x_0, \mathcal{E}) > o$ such that for an arbitrary function $\varphi_0 \in B(x_0)$ fulfilling (4) the solution $\varphi(\cdot, x_0, \varphi_0)$ of equation (1) fulfils (6).

We will adopt the following definition of attractor and of asymptotic interval stability (see [2], [4]). DEFINITION 4. Let $-\infty < a \le b < \infty$. P(a,b) is an attractor if for every $x_0 \in I$ there exists an $\eta = \eta(x_0) > o$ such that for an arbitrary function $\varphi_0 \in B(x_0)$ fulfilling the inequalities

- (7) $\varphi_0(\mathbf{x}) < \mathbf{b} + \eta$ for $\mathbf{x} \in \mathbf{I}_0$,
- (8)

 $\varphi_0(x) > a - \eta$ for $x \in I_0$,

the solution $\varphi(\cdot, \mathbf{x}_0, \varphi_0)$ of equation (1) fulfils the condition

lim dist $(\psi(f^n(x), x_0, \varphi_0), P(a, b)) = 0$ for $x \in I_0$. $n \neq \infty$ DEFINITION 5. Let $b \in \mathbb{R}$. $P(-\infty, b)$ is an attractor if for every $x_0 \in I$ there exists an $\eta = \eta(x_0) > 0$ such that for an arbitrary function $\psi_0 \in B(x_0)$ fulfilling (7) the solution $\psi(\cdot, x_0, \psi_0)$ of equation (1) fulfils the condition

lim dist $(\psi(t^n(x), x_0, \psi_0), P(-\infty, b)) = 0$ for $x \in I_0$.

DEFINITION 6. Let $a \in \mathbb{R}$. $P(a, \infty)$ is an attractor if for every $x_0 \in I$ there exists an $\eta = \eta(x_0) > 0$ such that for an arbitrary function $\psi_0 \in B(x_0)$ fulfilling (8) the solution $\psi(\cdot, x_0, \psi_0)$ of equation (1) fulfils the condition

lim dist (ψ(fⁿ(x),x,φ₀),P(a,∞)) = 0 for x∈I₀. n = ∞ DEFINITION 7. Let -∞ <a ≤ b <∞. P(a,b), P(-∞,b), P(a,∞) are asymptotically stable a.s. if P(a,b), P(-∞,b), P(a,∞) are stable and they are attractors respectively. In the end of this section we present theorems from [1] on interval stability which will be useful in the sequel. At first we will assume that f fulfils hypothesis (H₁) and g fulfils the following:

<u>Hypothesis</u> (H₃). The function g is defined and continuous in the interval I and g(x) > o for $x \in I$.

LEMMA 1. Let hypothesis (H_3) be fulfilled and o < a $\leq b < \infty$ or $-\infty < a \leq b < c$. Then the inequality

$$\operatorname{in}\left\{\frac{a}{b}, \frac{b}{a}\right\} \leq g(\mathbf{x}) \leq \max\left\{\frac{a}{b}, \frac{b}{a}\right\} \quad \text{for } \mathbf{x} \in \mathbf{I}$$

is a necessary and sufficient condition that for every $x_0 \in I$ and $\delta > 0$ there exists a $y_0 \in (a - \delta, b + \delta)$ such that $g(x_0)y_0 \in (a - \delta, b + \delta)$.

THEOREM 2. Let hypotheses (H_1) , (H_3) be fulfilled and either $o < a < b < \infty$ or $-\infty < a < b < 0$. P(a,b) is stable if and only if one of the following conditions is fulfilled:

(9)	g(x) = 1	for x EI,
(10)	$g(x) < \max\left\{\frac{a}{b}, \frac{b}{a}\right\}$	for x EI,

(11)
$$g(x) > \min\left\{\frac{a}{b}, \frac{b}{a}\right\}$$
 for $x \in I$.

THEOREM 3. Let hypotheses (H_1) , (H_3) be fulfilled and a \neq o. $\{a\}$ is stable if and only if one of the following conditions is fulfilled:

(12) There exists an x₀∈I such that g(x) = 1 for x ∈ (0,x₀] and g(x) ≠ 1 for x ∈ (x₀,d),
(13) g(x) = 1 for x ∈ I,
(14) g(x) < 1 for x ∈ I,
(15) g(x) > 1 for x ∈ I.

THEOREM 4. Let hypotheses (H_1) , (H_3) be fulfilled and $-\infty < b < o < a < \infty$. $P(-\infty,b)$ or $P(a,\infty)$ is stable if and only if

(16) $g(x) \ge 1$ for x \in I.

THEOREM 5. Let hypotheses (H_1) , (H_3) be fulfilled and either $-\infty \le a \le o \le b \le \infty$ or $-\infty \le a \le o \le b \le \infty$. P(a,b) is stable if and only if

(17) $g(x) \leq 1$ for $x \in I$.

Now we define the following function:

$$M(\mathbf{x}) := \sup_{\mathbf{n} \in \mathbf{N}} \left\{ \begin{array}{l} \max_{\mathbf{t} \in [\mathbf{f}(\mathbf{x}), \mathbf{x}]} & \text{for } \mathbf{x} \in \mathbf{I}. \end{array} \right.$$

THEOREM 6. Let hypotheses (H_1) , (H_3) be fulfilled. The inequality

(18) $M(x) < \infty$ for x $\in I$

is a necessary and sufficient condition for $\{o\}$, $P(o,\infty)$ and $P(-\infty,o)$ to be stable.

Lastly we will assume that f fulfils hypothesis (H_1) and g fulfils the following:

<u>Hypothesis</u> (H_4) . The function g is defined and continuous in the interval I and g(x) < 0 for $x \in I$.

THEOREM 7. Let hypotheses (H_1) , (H_4) be fulfilled. Then the intervals P(o,b) and P(a,o) where $-\infty \le a < o < b < \infty$ and $P(-\infty,b)$ and $P(a,\infty)$ where $-\infty \le a < o < b < \infty$ are unstable.

We define two functions:

$$p(x) := \inf_{\substack{n \in \mathbb{N} \\ t \in [f(x), x]}} \operatorname{din} G_{2n+1}(t)$$

$$P(x) := \sup_{n \in \mathbb{N}} \left[\max_{t \in [f(x), x]}^{\max} G_{2n}(t) \right]$$

for x e I.

THEOREM 8. Let hypotheses (H_1) , (H_{μ}) be fulfilled.

{o} is stable if and only if the following conditions are fulfilled:

- (19) $p(x) > -\infty$ for $x \in I$,
- (20) $P(x) < \infty$ for $x \in I$.

THEOREM 9. Let hypotheses (H_1) , (H_4) be fulfilled and - $\infty < a < o < b < \infty$. P(a,b) is stable if and only if (21) $\max\left\{\frac{a}{b}, \frac{b}{a}\right\} \leq g(x)$ for $x \in I$.

3. NECESSARY AND SUFFICIENT CONDITIONS

FOR ASYMPTOTICAL INTERVAL STABILITY

<u>3.1. The case g(x) > o for $x \in I$.</u> In this section we will assume that f fulfils hypothesis (H₁) and g fulfils hypothesis (H₃).

We define the following functions:

$$\begin{split} l(\mathbf{x}) &:= \inf \left\{ \lim_{n \to \infty} G_n(t) \right\}, \\ & t \in [f(\mathbf{x}), \mathbf{x}]^{n \to \infty} \\ L(\mathbf{x}) &:= \sup \left\{ \lim_{n \to \infty} G_n(t) \right\}, \\ & t \in [f(\mathbf{x}), \mathbf{x}]^{n \to \infty} \\ \overline{L}(\mathbf{x}) &:= \sup \left\{ \limsup_{t \in [f(\mathbf{x}), \mathbf{x}]^{n \to \infty}} G_n(t) \right\}. \end{split}$$

Notice that (15) or (17) implies that $\lim_{n \to \infty} G_n(x)$ exists for $x \in I$.

At first we consider P(a,b) where either $-\infty \le a \le 0 \le b \le \infty$ or $-\infty \le a \le 0 \le b \le \infty$.

THEOREM 10. Let hypotheses (H_1) , (H_3) be fulfilled and either $-\infty \le a \le 0 \le b \le \infty$ or $-\infty \le a \le 0 \le b \le \infty$. P(a,b) is a.s. if and only if the following condition is fulfilled (22) $g(x) \le 1$, $L(x) \le 1$ for $x \in I$.

Proof. Suppose that (22) holds. According to Theorem 5, P(a,b) is stable. Thus it is sufficient to prove that P(a,b) is an attractor. At first we consider the case where o < L(x) < 1 for $x \in I$. Let $x_0 \in I$ and we put $\eta(x_0) := \min \left\{ \frac{a(L(x_0) - 1)}{L(x_0)}, \frac{b(1 - L(x_0))}{L(x_0)} \right\}$. From (22) we have $\eta(x_0) > 0$. Then for $\varphi_0 \in B(x_0)$ such that (7) and (8) hold we have the inequalities:

$$\begin{array}{l} \circ \leqslant \lim_{n \to \infty} \psi(f^{n}(x), x_{0}, \psi_{0}) = \lim_{n \to \infty} G_{n}(x)\psi_{0}(x) < \\ < L(x_{0}) \left[b + \frac{b\left(1 - L(x_{0})\right)}{L(x_{0})} \right] < b, \text{ when } \psi_{0}(x) \geqslant o, \\ a < L(x_{0}) \left[a - \frac{a\left(L(x_{0}) - 1\right)}{L(x_{0})} \right] < \lim_{n \to \infty} G_{n}(x)\psi_{0}(x) = \\ = \lim_{n \to \infty} \psi(f^{n}(x), x_{0}, \psi_{0}) < o, \text{ whereas for } \psi_{0}(x) < o. \end{array}$$
Thus P(a,b) is an attractor and, consequently, it is a.s.

The case where there exists an $x_0 \in I$ such that $L(x_0) = 0$ is very simple. Then for every $\eta > 0$ and $\psi_0 \in B(x_0)$ such that (7) and (8) hold we have $\lim \psi(f^n(x), x_0, \psi_0) = 0$ for $x \in I_0$ and, consequently, $n \to \infty$ P(a,b) is a.s. Now let us suppose that P(a,b) is a.s. From Theorem 5 we have (17) which implies inequalities $o \leq L(x) \leq 1$ for $x \in I$. Suppose that there exists an $x_0 \in I$ such that $L(x_0) = 1$. Because L is a semi-continuous function there exists a $t \in I_0$ such that $L(x_0) = \lim_{n \to \infty} G_n(t)$. Without any loss of generality we may assume that $t \in (f(x_0), x_0)$. Let us fix an $\eta > 0$. We may take $\varphi_0 \in B(x_0)$ fulfilling (7) and (8) and condition $\varphi_0(t) \notin [a,b]$. Then we have:

$$\lim_{n\to\infty} \varphi(f^{n}(t), x_{0}, \varphi_{0}) = \varphi_{0}(t) \notin [a, b].$$

This condition contradicts the a.s. of P(a,b).

THEOREM 11. Let hypotheses (H_1) , (H_3) be fulfilled and $-\infty < b < o < a < \infty$. Each of sets $P(-\infty,b)$, $P(a,\infty)$ is a.s. if and only if

(23) g(x) > 1, l(x) > 1 for $x \in I$.

Proof. Suppose that (23) holds. According to Theorem 4, P - ,b and Pa, are stable. We will prove that $P(-\infty,b)$ and $P(a,\infty)$ are attractors. At first we consider the case where $1 \le l(x) \le \infty$ for $x \in I$. Let $x_0 \in I$

and let us put $\eta(x_0) := \frac{a(l(x_0) - 1)}{l(x_0)}$ for $P(a, \infty)$ and

 $\eta(\mathbf{x}_{0}) := \frac{b(1-l(\mathbf{x}_{0}))}{l(\mathbf{x}_{0})} \text{ for } P(-\infty,b). \text{ We have } \eta(\mathbf{x}_{0}) > o$ from (23). Then for a $\varphi_{0} \in B(\mathbf{x}_{0})$ such that (8) or (7) holds respectively, we have the inequalities

$$\varphi_0(x) > a - \frac{a(1(x_0) - 1)}{1(x_0)} = \frac{a}{1(x_0)} \quad \text{for } x \in I_0$$

or

$$\begin{split} \varphi_{0}(\mathbf{x}) < \mathbf{b} + \frac{\mathbf{b}(1 - \mathbf{l}(\mathbf{x}_{0}))}{\mathbf{l}(\mathbf{x}_{0})} &= \frac{\mathbf{b}}{\mathbf{l}(\mathbf{x}_{0})} \quad \text{for } \mathbf{x} \in \mathbf{I}_{0}, \\ (24) \quad \lim_{n \to \infty} \varphi(\mathbf{f}^{n}(\mathbf{x}), \mathbf{x}_{0}, \varphi_{0}) &= \lim_{n \to \infty} G_{n}(\mathbf{x})\varphi_{0}(\mathbf{x}) \geq \mathbf{l}(\mathbf{x}_{0})\varphi_{0}(\mathbf{x}) > \mathbf{a}, \\ (25) \quad \lim_{n \to \infty} \varphi(\mathbf{f}^{n}(\mathbf{x}), \mathbf{x}_{0}, \varphi_{0}) &= \lim_{n \to \infty} G_{n}(\mathbf{x})\varphi_{0}(\mathbf{x}) \leq \mathbf{l}(\mathbf{x}_{0})\varphi_{0}(\mathbf{x}) < \mathbf{b}. \\ \text{Conditions (24) and (25) imply that} \\ \lim_{n \to \infty} \operatorname{dist}(\varphi(\mathbf{f}^{n}(\mathbf{x}), \mathbf{x}_{0}, \varphi_{0}), \mathbb{P}(-\infty, \mathbf{b})) &= \mathbf{o} = \\ &= \lim_{n \to \infty} \operatorname{dist}(\varphi(\mathbf{f}^{n}(\mathbf{x}), \mathbf{x}_{0}, \varphi_{0}), \mathbb{P}(\mathbf{a}, \infty)). \end{split}$$

In case where there exists an $x_0 \in I$ such that $l(x_0) = \infty$, it is sufficient to take an η fulfilling inequalities either $0 < \eta < a$ or $0 < \eta < -b$, respectively.

Now let us suppose that $P(-\infty,b)$ and $P(a,\infty)$ are a.s. From Theorem 4 we have (16) which implies inequalities $1 \leq l(x) < \infty$. Suppose that there exists an $x_0 \in I$ such that $l(x_0) = 1$. Because 1 is a semi-continuous function there exists a $t \in I_0$ such that $l(x_0) = \lim_{n \to \infty} G_n(t)$. Without loss of generality we may assume that $t \in (f(x_0), x_0)$. Let us fix $\eta > 0$ and we may take $\varphi_0 \in B(x_0)$ fulfilling conditions either $\varphi_0(x) > a - \eta$, $\varphi_0(t) < a$ or $\varphi_0(x) < b + \eta$, $\varphi_0(t) > b$ respectively. Then we have

$$\lim_{n \to \infty} \Psi(f^{n}(t), \mathbf{x}_{0}, \boldsymbol{\psi}_{0}) = \lim_{n \to \infty} G_{n}(t) \Psi_{0}(t) =$$
$$= 1(\mathbf{x}_{0}) \Psi_{0}(t) = \Psi_{0}(t) < \mathbf{a},$$
$$\lim_{n \to \infty} \Psi(f^{n}(t), \mathbf{x}_{0}, \boldsymbol{\psi}_{0}) = \lim_{n \to \infty} G_{n}(t) \Psi_{0}(t) =$$
$$= 1(\mathbf{x}_{0}) \Psi_{0}(t) = \Psi_{0}(t) > \mathbf{b},$$

which implies that $P(-\infty,b)$ and $P(a,\infty)$ are not attractors.

An immediate conclusion from Lemma 1 and Theorem 2, 3 is the following:

THEOREM 12. Let hypotheses (H_1) , (H_3) be fulfilled and either $0 < a \le b < \infty$ or $-\infty < a \le b < 0$. P(a,b) is a.s. if and only if (10) and (11) hold.

In the end of this section we give a necessary and sufficient conditions for asymptotical stability $\{o\}$, $P(o,\infty)$ and $P(-\infty,o)$. The following lemma will be useful in the sequel:

LEMMA 2. Let $\{y_{n,k}\}$ be a double sequence of reals. If

 $\lim_{n\to\infty} \sup y_{n,k} = y_k \quad \text{and} \quad \lim_{k\to\infty} y_0,$ then there exist sequences $\{n_i\}, \{k_i\}$ of positive integers such that

$$\lim_{i \to \infty} y_{n_i, k_i} = y_0$$

This lemma is a simple generalization of lemma 4 from [6]. Now we may prove the following:

LEMMA 3. Let hypotheses (H_1) , (H_3) be fulfilled and $x_0 \in I$. Then there exist sequences $\{n_1\}$, $\{k_1\}$ and $t_{k_1} \in [f(x_0), x_0]$ such that (26) $\overline{L}(x_0) = \lim_{i \to \infty} G_{n_i}(t_{k_i})$.

Proof. By the definition of function \overline{L} , there exists a {t_k} such that $\overline{L}(x_0) = \lim_{k \to \infty} \{\lim_{n \to \infty} G_n(t_k)\}$. It is sufficient to put $y_{n,k} := G_n(t_k)$ and from Lemma 2 we have (26).

THEOREM 13. Let hypotheses (H_1) , (H_3) be fulfilled. Each of sets $\{o\}$, $P(-\infty, o)$, $P(o, \infty)$ is a.s. if and only if (27) $M(x) < \infty$, L(x) = o for $x \in I$. Proof. Suppose that (27) holds. From Theorem 6, $\{o\}$, $P(o, \infty)$ and $P(-\infty, o)$ are stable. Let $x_0 \in I$ and $\eta > o$. Then we take $\varphi_0 \in B(x_0)$ such that $\varphi_0(x) < \eta$ for $P(-\infty, o)$, $\varphi_0(x) > -\eta$ for $P(o, \infty)$ and $-\eta < \varphi_0(x) < \eta$ for $\{o\}$. From (27) we have lim sup $\varphi(f^n(x), x_0, \varphi_0) = \lim_{n \to \infty} \sup G_n(x) \varphi_0(x) = o$ for $x \in I_0$, which implies that the intervals are a.s.

Now let us suppose that $\{o\}$, $P(o,\infty)$ and $P(-\infty,o)$ are asymptotically stable. From Theorem 6 we have (18). Suppose that there exists an $x_0 \in I$ such that $\overline{L}(x_0) > o$. From Lemma 3 there exist sequences $\{n_i\}, \{k_i\}$ and $t_{k_i} \in [f(x_0), x_0]$ such that $t_{k_i} \rightarrow t_0$ ($i \rightarrow \infty$) and $\overline{L}(x_0) = \lim_{i \rightarrow \infty} G_{n_i}(t_{k_i})$. We take $\Psi_0 \in B(x_0)$ fulfilling conditions $\Psi_0(t_0) \neq o$ for $\{o\}, \Psi_0(t_0) < o$ for $P(o,\infty)$ and $\Psi_0(t_0) > o$ for $P(-\infty, o)$. Then we have $\lim_{i \rightarrow \infty} \Psi(f^{n_i}(t_{k_i}), x_0, \Psi_0) = \lim_{i \rightarrow \infty} G_{n_i}(t_{k_i})\Psi_0(t_{k_i}) =$

$$= \overline{L}(x_o) \varphi_o(t_o),$$

This condition contradicts the assumption that $\{o\}$, $P(-\infty, o)$ and $P(o,\infty)$ are attractors. 3.2. The case g(x) < o for $x \in I$. Now we will assume that f fulfils hypothesis (H_1) and g fulfils hypothesis (H_4) . At first we consider intervals P(a,b), $P(-\infty,b)$ and $P(a,\infty)$ where $o < a \le b < \infty$ or $-\infty < a \le b < o$. If we put $o < \delta < a$, $o < \eta < a$ for P(a,b), $P(a,\infty)$, where $o < a \le b < \infty$ and $o < \delta < -b$, $o < \eta < -b$ for P(a,b) $P(-\infty,b)$ where $-\infty < a \le b < o$, then no $\varphi \in B(x_0)$ fulfils inequalities (3), (4) and (7), (8). Thus these intervals are a.s.

From Theorem 7 we also have that intervals P(o,b), P(a,o) where $-\infty \le a \le o \le b$, and $P(-\infty,b)$, $P(a,\infty)$ where $-\infty \le a \le o \le b \le \infty$ are not a.s.

Now we define the following functions

 $R(x) := \sup_{\substack{t \in [f(x), x]}} \{\lim_{n \to \infty} G_{2n}(t)\},$ $r(x) := \inf_{\substack{t \in [f(x), x]}} \{\lim_{n \to \infty} G_{2n+1}(t)\},$ $\overline{R}(x) := \sup_{\substack{t \in [f(x), x]}} \{\lim_{n \to \infty} \sup G_{2n}(t)\},$ $\overline{r}(x) := \inf_{\substack{t \in [f(x), x]}} \{\lim_{n \to \infty} \inf G_{2n+1}(t)\}.$

Notice that (21) implies that $\lim_{n \to \infty} G_{2n}(x)$ and $\lim_{n \to \infty} G_{2n+1}(x)$ exist for $x \in I$. We have a result similar to Lemma 3:

LEMMA 4. Let hypotheses (H_1) , (H_4) be fulfilled and $x_0 \in I$. Then there exist sequences $\{n_i\}, \{k_i\}, \{m_i\}, \{l_i\}$ and $t_{k_i} \in I_0$, $t_{l_i} \in I_0$ such that (28) $R(x_0) := \lim_{i \to \infty} G_{2n_i}(t_{k_i})$, (29) $r(x_0) := \lim_{i \to \infty} G_{2n_i+1}(t_{l_i})$.

We have the following

THEOREM 14. Let hypotheses (H_1) , (H_4) be fulfilled. The set {o} is a.s. if and only if

(30) $-\infty < p(x)$, $P(x) < \infty$, r(x) = 0 = R(x) for $x \in I$.

Proof. Suppose that (30) holds. From Theorem 8 we have that $\{o\}$ is stable. Let $x_0 \in I$ and $\eta > o$. Take a $\psi_0 \in B(x_0)$ such that $-\eta < \psi_0(x) < \eta$. From (30) we have $\lim_{n \to \infty} \psi(f^n(x), x_0, \psi_0) = o$ which implies that $\{o\}$ is a.s.

Now let us suppose that there exists an $x_0 \in I$ such that $r(x_0) < o$ or $R(x_0) > o$. Let $\eta > o$ and $\varphi_0 \in B(x_0)$ fulfil the condition $-\eta < \varphi_0(x) < \eta$. From Lemma 4 there exist sequences $\{n_i\}, \{k_i\}, \{m_i\}, \{1_i\}$ and $\{t_{k_i}\}, \{t_{1_i}\} \subset I_0$ such that (28) and (29) hold. Without loss of generality we may assume that $t_{k_i} \rightarrow t_0$ or $t_{1_i} \rightarrow t_0$ and $\varphi_0(t_0) > o$ where $t_0 \in I_0$. Then we have $\lim_{i \to \infty} \varphi(f^{2n_i}(t_{k_i}), x_0, \varphi_0) = \lim_{i \to \infty} G_{2n_i}(t_{k_i}) \varphi_0(t_{k_i}) =$ $= R(x_0) \varphi_0(t_0) > o$

$$\lim_{i \to \infty} \varphi(\mathbf{f}^{(\mathbf{t}_{1})}, \mathbf{x}_{0}, \varphi_{0}) = \lim_{i \to \infty} G_{2\mathbf{m}_{1}+1}(\mathbf{t}_{1})\varphi_{0}(\mathbf{t}_{1}) = r(\mathbf{x}_{0})\varphi_{0}(\mathbf{t}_{0}) < 0.$$

This conditions imply that $\{o\}$ is not an attractor what ends the proof of the theorem.

Finally we consider the case P(a,b) where $-\infty < a < o < b < \infty$. We have two following theorems. THEOREM 15. Let hypotheses (H_1) , (H_4) be fulfilled and - $\infty < a < o < b < \infty$ a \neq -b. P(a,b) is a.s. if and only if (21) holds.

Proof. From Theorem 9 condition (21) is necessary for asymptotical stalibity P(a,b). We will prove that (21) is also sufficient. From Theorem 9, P(a,b) is stable. Let $k := \max \left[\frac{a}{b}, \frac{b}{a} \right]$. We have from (21) that -1 < k < o. We may prove by simple induction that

(31) $(k)^{2n+1} \leq G_{2n+1}(x) < o < G_{2n}(x) \leq (k)^{2n}$ neN, xeI. Inequalities (31) imply that $\lim_{n \to \infty} G_{2n+1}(x) = o = \lim_{n \to \infty} G_{2n}(x)$. Then for $x_0 \in I$, $\eta > o$ and $\varphi_0 = B(x_0)$ such that (7), (8) hold we have

(32) $\lim_{n \to \infty} \Psi(f^{2n} \times , x_0, \varphi_0) = \lim_{n \to \infty} G_{2n}(x) \Psi_0(x) = 0 \quad \text{for } x \in I_0,$ (33) $\lim_{n \to \infty} \Psi(f^{2n+1}(x), x_0, \varphi_0) = \lim_{n \to \infty} G_{2n+1}(x) \Psi_0(x) = 0 \text{ for } x \in I_0.$ Conditions (32), (33) imply that P(a,b) is a.s.

THEOREM 16. Let hypotheses (H_1) , (H_4) be fulfilled and - $\infty < a < o < b < \infty$ a = -b. P(a,b) is a.s. if and only if (34) $-1 \le g(x) < o$, $-1 < \overline{r}(x) \le o$, $o \le \overline{R}(x) < 1$ for $x \in I$.

P r o o f. Suppose that (34) holds. From Theorem 9, P(a,b) is stable. We will prove that P(a,b) is an attractor. At first we consider the case where $o < \overline{R}(x) < 1$ and $-1 < \overline{r}(x) < o$ for $x \in I$. Let $x \in I$ and we put

$$\eta(\mathbf{x}_{o}) := \min\left\{\frac{a(\overline{\mathbf{R}}(\mathbf{x}_{o}) - 1)}{\overline{\mathbf{R}}(\mathbf{x}_{o})}, \frac{a(\overline{\mathbf{r}}(\mathbf{x}_{o}) - 1)}{\overline{\mathbf{r}}(\mathbf{x}_{o})}\right\}.$$

From (34) $\eta > 0$. Then for $q_0 \in B(x_0)$ such that (7), (8)

hold we have

$$o \leq \lim_{n \to \infty} \varphi(f^{2n}(x), x_0, \varphi_0) \leq \overline{R}(x_0) \varphi_0(x) < \langle \overline{R}(x_0) | \left[b + \frac{a(\overline{R}(x_0) - 1)}{\overline{R}(x_0)} \right] < -a = b$$

for $x \in I$, $\Psi_0(x) > 0$,

$$a < \overline{r}(x_0) \left[b + \frac{a(\overline{r}(x_0) - 1)}{\overline{r}(x_0)} \right] < \overline{r}(x_0) \psi_0(x) \leq$$

$$\leq \lim_{n \to \infty} \varphi(\mathbf{f}^{2n+1}(\mathbf{x}), \mathbf{x}_0, \varphi_0) \leq 0$$

for $x \in I_0$, $\varphi_0(x) \ge 0$,

$$a \leq \overline{P}(x) \left[a - \frac{a(\overline{R}(x_0) - 1)}{\overline{R}(x_0)} \right] \leq \overline{R}(x_0) \psi_0(x) \leq C$$

$$\lim_{n \to \infty} \Psi(f^{2n}(\mathbf{x}), \mathbf{x}_0, \mathbf{y}_0) \leq 0$$

for $x \in I_0$, $\varphi_0(x) < 0$,

$$o \leq \lim_{n \to \infty} \varphi(\mathbf{f}^{2n+1}(\mathbf{x}), \mathbf{x}_0, \varphi_0) = \overline{\mathbf{r}}(\mathbf{x}_0) \varphi_0(\mathbf{x}) \leq \mathbf{r}^{2n+1}(\mathbf{x}) \mathbf{x}_0 \mathbf{x}_0$$

$$\langle \overline{\mathbf{r}}(\mathbf{x}_0) \left[a - \frac{a(\overline{\mathbf{r}}(\mathbf{x}_0) - 1)}{\overline{\mathbf{r}}(\mathbf{x}_0)} \right] \langle -a = b$$

for $x \in I_0$, $\Psi_0(x) < 0$. These inequalities imply that P(a,b) is a.s. If there exists an $x_0 \in I$ such that $\overline{R}(x_0) = 0$ or $\overline{r}(x_0) = 0$, then either $\lim_{n \to \infty} \Psi(f^{2n}(x), x_0, \Psi_0) = 0$ or $\lim_{n \to \infty} \Psi(f^{2n+1}(x), x_0 \Psi_0) = 0$ what also implies that P(a,b) is a.s.

Now we shall prove that (34) is also a necessary condition. Notice that inequality (21) from Theorem 9 implies

that $o \leq \overline{R}(x) \leq 1$ and $-1 \leq \overline{r}(x) \leq o$ for $x \in I$. Suppose that there exists an $x_0 \in I$ such that either $\overline{r}(x_0) = -1$ or $\overline{R}(x_0) = 1$. Since \overline{r} and \overline{R} are semicontinuous there exists a $t \in I_0$ such that $\overline{R}(x) = \lim_{n \to \infty} G_{2n}(t)$ or $\overline{r}(x_0) =$ $\lim_{n \to \infty} G_{2n+1}(t)$. Without loss of generality we may assume that $t \in (f(x_0), x_0)$. Then for $\Psi_0 \in B(x_0)$ fulfilling conditions (7), (8) and $\Psi_0(t) \leq a$ when $\overline{R}(x_0) = 1$, or $\Psi_0(t) > b$ when $\overline{r}(x_0) = 1$, we have $\lim_{n \to \infty} \Psi(f^{2n+1}(t), x_0, \Psi_0) = \overline{r}(x_0) \Psi_0(t) = -\Psi_0(t) \leq -b = a$,

$$\lim_{t \to \infty} \varphi(t^{2n}(t), x_0, \varphi_0) = \overline{R}(x_0)\varphi_0(t) = \varphi_0(t) < a.$$

Thus P(a,b) is not an attractor, the theorem is proved.

References

- [1] Czerni M., Interval stability for a linear homogeneous functional equation (to appear).
- [2] Czerni M., Asymptotical set stability for a functional equation of first order, Rocznik Naukowo-Dydaktyczny WSP. Z.82, Kraków 1982, 15-26.
- [3] Kuczma M., Functional equations in a single variable, Polish Scientific Publishers. Warszawa 1968.
- [4] Shanholt G.A., Set stability for difference equation, Int.J.Control 19, 2, 1974, 309-314.
- [5] Turdza E., Set stability for a functional equation of iterative type, Demonstratic Mathematica, 15 (1982), 443-448.

[6] Turdza E., Comparison theorem for a functional inequality, General Inequalities 1, edited by E.F.Beckenbach, Birkhäuser Verlag Bassel (1978), 199-211.

Tents I have a faither the