ANNA DĄBROWSKA

Groups as finite unions of proper subgroups

t

It is evident that any group is not a union of its two proper subgroups. Moreover, it was proved in [l] and [2] that a group G is the union of three proper subgroups if and only if the Klein 4-group is a homomorphic image of G.

In this note we derive some criterions for groups as unions of at least three proper subgroups. 7/e consider only the irredundant unions, i.e. such that none of the components is contained in the union of all the others. Let 1 be a natural number, $1 \ge 2$. A group G is called 1-orien**table if there exists its subgroup with index 1.**

THEOREM 1. Let $n \geqslant 3$ and let a group G be an irredundant union of proper subgroups A_1, \ldots, A_n . Assume the **condition:**

 (H_0) there does not exist 1-orientable subgroup, $2 \leq l \leq n-2$. **0 n** Then for the indices of $H = \bigcap A^1$ and A^1 (i = 1,...,n)

37

the following equalities are satisfied

(i) $[G : H] = (n - 1)^2$

(ii) $[A_1 : H] = n - 1, \quad i = 1, \ldots, n,$ (111) $\begin{bmatrix} G & A_1 \end{bmatrix} = n - 1, \quad i = 1 \dots n.$

Proof. I. In the first part of the proof we show s that for any integer s , $2\leq s\leq n$, we have $\bigcap A$, = H. $i=1$ ¹ **Thus any intersection of s mutually different factors are equal to each other and to H. The case s ■ n is trivial.** Let $s = n - 1$. We show that

$$
(1) \qquad \qquad \prod_{\mathbf{i}=1}^{n-1} A_{\mathbf{i}} \subset A_{\mathbf{n}}
$$

Let x be an arbitrary element such that xe A, for **n-1** 1 $i = 1, \ldots, n-1$. We fix y in $A_n - \bigcup A_1$ (such an element $i=1$. \blacksquare exists as G is an irredundant union). Obviously, $y^{-1} \in A_{n}$, **x**.y e A_n. Hence $x \in A_n$ and (1) is satisfied. Thus we have $\bigcap_{i=1}^{n-1} A_i$

(2)
$$
\bigcap_{i=1} A_i = \bigcap_{i=1} A_i = H.
$$

Next we proceed by induction. Let is assume that $1 \le k \le n-3$ **and any Intersection of s mutually different factors, where s = n-1, n-2, ..., n-k, are equal to each other and to H. We shall prove that any intersection of n - (k+1) factors is also equal to H.**

 \mathbf{r} \mathbf{r}

We denote

$$
(3) \t N := \bigcap_{j=1}^{n-(k+1)} A_j
$$

and let x be a fixed element of G such that $x \in A_{n-k}$ - $\bigcup_{i=1}^{n-(k+1)} A_i$ (4) 38

n-(k+1) The coset x.N is disjoint with $\bigcup_{j=1}$ A_j . In fact, if there are $m \in N$ and $i (i = 1, ..., n-(k+1))$ such that $x \cdot a \in A_1$ then $a \in A_1$ and therefore $x \in A_1$ which contra**dicts (4). Hence we have**

(5)
$$
x \cdot N = \bigcup_{j=n-k}^{n} A_j
$$

Next, it can be easily verified that

(6)
$$
N \subset \bigcup_{j=n-k}^{n} (x^{-1} \cdot A_j),
$$

(7)
$$
N \subset \bigcup_{j=n-k}^{n} [(x^{-1} \cdot A_j) \cap N],
$$

(8)
$$
\bigcup_{j=n-k}^{n} [(x^{-1} \cdot A_j) \cap N] =
$$

n $=$ $[(x^{-1} \cdot A_{n-k}) \cap N] \cup$ \bigcup $[(x^{-1} \cdot A_{n}) \cap N]$. **j=n-k+1 J**

A - Carl I.

But, in view of (4) , x^{-1} · $A_{n-k} = A_{n-k}$. From (3) and the **inductive assumption we get** $A_{n-k} \cap N = H$ **. This, with (7) and (8) implies**

(9)
$$
N \subset H \cup \bigcup_{j=n-k+1}^{n} [(x^{-1} \cdot A_j) \cap N].
$$

If $\bigcup_{\mathbf{A}} [\mathbf{x}^{-1} \cdot \mathbf{A}_{\mathbf{A}}] \cap \mathbf{N} = \emptyset$, then $\mathbf{N} \subset \mathbf{H}$ and, in view of **j=n-k+1** 3 **definition of H and N, we have N = H, On the other hand** if $\bigcup_{j=n-k+1} [(x^{-1} \cdot A_j) \cap N] \neq \emptyset$ then there are I_1, \ldots, I_t such that $n-k+1 \leq \mathbf{j}_1 \leqslant n$ for $i = 1, \ldots, t$ (so $1 \leqslant t \leqslant k$

and $1 \leq t \leq n-3$ as $k \leq n-3$) and such that $(x^{-1} \cdot A_{j_1}) \cap N \neq \emptyset$, $i = 1,...,t$ (10) and (11) $N \subset H \cup [(x^{-1} \cdot A_{j}) \cap N] \cup ... \cup [(x^{-1} \cdot A_{j}) \cap N]$. Then there exist $\mathbf{y}_{j_1}, \ldots, \mathbf{y}_{j_t}$ satisfying $y_{j_1} \in x^{-1}$. A_{j_1} , $y_{j_2} \in N$, $i = 1,...,t$. (12) Hence we have x^{-1} $A_{j_4} = y_{j_4}$ A_{j_4} , $1 = 1, ..., t$. (13) Now in view of the fact that N is a subgroup of G, (14) $(\mathcal{I}_{j_1} \cdot \mathbb{A}_{j_2}) \cap N = \mathcal{I}_{j_1} \cdot (\mathbb{A}_{j_1} \cap N), \quad i = 1, ..., t.$ Next, from (10), (13), (14) and the inductive assumption, we get (15) $N \subset H \cup (\mathfrak{y}_{j_1} \cdot H) \cup \ldots \cup (\mathfrak{y}_{j_r} \cdot H)$. We have also $N = H \cup (\mathcal{I}_{j_1} \cdot H) \cup ... \cup (\mathcal{I}_{j_{+}} \cdot H)$ (16) as H is a subgroup of N and $\mathbf{y}_{j_1} \in N$, ..., $\mathbf{y}_{j_2} \in N$. All \mathfrak{v}_{j_4} . H in the right side of (16) are equal to each other and to H. Otherwise the index [N : H] is greater than or equal to 2 (as $1 \leq t \leq n-3$) and less than or equal to n-2, which contradicts the assumption of the theorem. Therefore we get (17) $N = H$ 40

and the first part of the proof is finished. In particular, we have obtained

 $A_i \cap A_j = H$ for $i,j = 1,...,n, i \neq j$ (18) and

 $G = H \cup (A_1 - H) \cup ... \cup (A_n - H),$ (19)

is the union of mutually disjoint components.

II. Let us consider the partition of group A_1 by the left cosets $x \cdot H$. Then the assumption (H_0) implies that this partition consists of at least n-1 different cosets. We are going to prove that it has at most n-1 different cosets.

Let a_1 , a_2 be arbitrary elements of A_1 such that (20) $a_1, a_2 \in A_1 - H$, $a_1^{-1} \cdot a_2 \notin H$. (21) Hence $a_1 \cdot H \neq a_2 \cdot H$. Let x be an arbitrary element

such that

 $x \in A_2 - A_1$. (22)

Since

$$
A_2 - A_1 = A_2 - (A_2 \cap A_1) = A_2 - H_1
$$

we have

 $x \in A_2 - H$. (23) Next, in view of (20) and (22), $x \cdot a_1 \neq a_1$, $1 = 1,2$, $x \cdot a_i \neq a_2$, i = 1,2, which implies $x \cdot a_i \in \bigcup_{i=3}^{n} A_i$, i = 1,2. There are $j_1, j_2 \geq 3$, $j_1 \neq j_2$, such that $xa_1 \in A_{j_1}$, $xa_2 \in A_{j_2}$. Otherwise, there is $j \geqslant 5$ such that xa₁, xa₂ \in A₁ and

 a_1^{-1} • $a_2 \in A_1 \cap A_1 = H$, which contradicts (21). Hence $xa_1H \subset A_{j_1}$, $xa_2H \subset A_{j_2}$, $j_1 \neq j_2$. The above reasoning shows that there are at most n-2 different cosets xH , $x \notin H$, in the group A_1 , and with the **trivial coset H there are exactly n-1 such different cosets (bearing in mind (Hq)). Summing up the index** $[A_1 : H] = n-1$ (and similarly $[A_1 : H] = n-1$, i = 2,...,n) and the index $[G : H] = n(n-2) + 1 = (n - 1)^2$. This implies (i) and (ii). Finally, the equation (iii) is an immediate **consequence of (i) and (ii). Theorem 1 is then proved.**

THEOREM 2. If n>3 and the following condition is satisfied:

 $(H₁)$ for any 1, $2 \leq 1 \leq n-1$, there does not exist an **1-orientable subgroup of G,**

then G is not an irredundant union of n proper subgroups.

F r o o f. Suppose that G is an irredundant union of its proper subgroups A_1 , ..., A_n . The condition (H_1) i **inplies** (K_{0}) in Theorem 1. Hence, $[A_{1} : H] = n - 1$ from **Theorem 1, and A^^ is (n-1)-orientable which contradicts (Ł,).**

Let us compare (H^) with the following condition $(n \lambda_5)$:

 (H_2) for any 1 , $1 \leqslant 1 \leqslant n-1$, there exists a 1-root of an **arbitrary element of G.**

LEMMA 1. (H₄) implies (H₂). The conditions are not **equivalent.**

P r o o f. Let $a \in G$, $a \neq 1$. It is sufficient to show (H_2) for any prime integer 1 , $2 \leqslant 1 \leqslant n-1$. By G_a we de**note the cyclic subgroup generated by an element a. Group** G_g is finite. Otherwise G_g is isomorphic with the additive group of integers and is 1-orientable for 1>2. Let m be the rank of G_n. Trivially, G_n is m-orientable **and, in view of (H^), m>n>l. If the prime 1 divides m, then by Sylow's theorem there exists a subgroup with rank 1 (and 1-orientable) in Ga. Hence 1 and m are coprime** integers, a^2 is a generator of G_a , there is s such that $a = (a^1)^3$ and a^3 is a 1-root of a. Thus (H_1) implies (H_2) . The converse is no longer true. As an example we have ad**ditive' group of rational numbers: clearly 1-roots exist and** the subgroup of integers is 1-orientable for any 1>2.

Suppose that G is finite of rank N and n>3. Let us consider

(Hj) (n-1)! and N are coprime integers.

It was proved in paper $[2]$ that (H_2) and (H_3) are **equivalent.**

typmma 2. If G is a finite group of rank N then (H_1) and (H_2) are equivalent.

Proof. Suppose that $(H₁)$ is satisfied. $(n-1)$! and **N are coprime. In fact, if there is a prime 1, 2^1^ n-1, such that 1 divides N then, due to Sylow's theorem, there is a subgroup of rank 1 (and 1-orientable) in G which contradicts (E,) •**

Next, suppose (H_z) and $2 \leq l \leq n-1$. If there are subgroups X , Y such that $X \leq Y \leq G$, $[Y : X] = 1$ then $m = rank Y$ **divides N and 1 divides m. Hence 1 divides N. But** 2 < 1 < n-1 and 1 divides (n-1) !, which is a contradiction. **This ends the proof.**

The authors of [1] proved the following theorems.

THEOREM 3. Suppose that kth roots can be taken in the group G for every positive integer k less than a certain n. Then G is not the irredundant union of n proper subgroups.

THEOBTM 4. Let G be a finite group of order N, p the smallest prime dividing N, suppose that G is the union of exactly p+1 proper subgroups S₁; then at least one of the S's, say S₁ has index p. If moreover, this S_4 is normal, then all the S_4 have index p and p^2 **divides N.**

Observe that, due to Lemma 1, Theorem 2 is a consequence of Theorem 3» Next, if we put n = p+1 in Theorem 4 then the assumption "p is the smallest prime dividing N" gives immediately that (p-1)l and N are coprime. It follows, in view if Lemma 2, that 1-orientable subgroups in G do not exist, $2 \leq l \leq p-1$, and for $n = p+1$ (H_q) **is satisfied. Then Theorem 1 implies Theorem 4 in the** stronger form as each S_j has index $p = n-1$ even without the assumption that some S_j is normal.

44

References

- [1] Haber S., A. Rosenfeld, Groups as unions of proper sub**groups, Amer.Math. Monthly 66 (1959)» 491-494,**
- **[2] Scorza G., I gruppi che possono pensarsi come somma di** tre loro sottogruppi, Boll. Unione mat. ital. 5 (1926), **216**- **218**.

X.