JANUSZ KRZYSZKOWSKI

On the generalized convex functions with respect to the three-parameters family of functions

1. INTRODUCTION

M.C. Peixoto gave in his paper [8] the definition of generalized convex function with respect to a three-parameters family of functions and proved that a function

 $\Psi \in C^{3}(a,b)$ is a generalized convex function with respect to the family of solutions of the equation $y^{iii} = f(x,y,y',y'')$, if and only if it satisfies the inequality $\Psi^{iii}(x) \gg f(x,\Psi(x),\Psi^{ii}(x),\Psi^{iii}(x))$.

In this paper we shall give some equivalent conditions for a two times differentiable function to be a generalized convex function with respect to a three-parameters family of functions of class C^2 .

Similar results for the generalized convexity with respect to a two-parameters family of functions may be found in the papers [1], [2], [3], [5], [6] and [9].

47

2. SOME EQUIVALENT CONDITIONS OF CONVEXITY

We shall assume the following hypothesis:

H. Let F be a three-parameter family of functions defined in an open interval I = (a,b) and satisfying the following conditions:

(i) every function $\mathcal{A} \in F$ belongs to $C^{2}(I)$;

(ii) for every $x_0 \in I$ and for every $y_0, y_1, y_2 \in R$ there is a unique member φ of the family $\cdot F$ such that

 $\varphi^{(i)}(x_0) = y_i, i = 0, 1, 2;$

(iii) for every three points (x_1,y_1) , (x_2,y_2) , (x_3,y_3) , a < $x_1 < x_2 < x_3 < b$ there is a unique member ϕ of the family F such that

 $\varphi(\mathbf{x}_{i}) = \mathbf{y}_{i}, i = 1, 2, 3.$

DEFINITION. Let hypothesis H be fulfilled. The function ψ is said to be strictly convex with respect to the family F iff for all x_1, y_2, x_3 such that $a < x_1 < < x_2 < x_3 < b$ the inequalities

$$\begin{split} \psi(\mathbf{x}) > \Psi(\mathbf{x}) \quad \text{for } \mathbf{x} \in (\mathbf{x}_1, \mathbf{x}_2) \\ \psi(\mathbf{x}) < \Psi(\mathbf{x}) \quad \text{for } \mathbf{x} \in (\mathbf{x}_2, \mathbf{x}_3) \\ \text{hold, where } \Psi \in \mathbf{F} \text{ is determined by the conditions} \end{split}$$

(1) $\Psi(x_i) = \Psi(x_i)$ i = 1, 2, 3.

We say that Ψ is convex with respect to F iff it satisfies weak inequalities (\leq) instead of the strong ones.

Similarly we define a strictly concave (concave) function with respect to F by reversing the inequalities.

48

Remark 1. (see [8]) If a function ψ is strictly convex with respect to F then for all x_1, x_2, x_3 such that $a < x_1 < x_2 < x_3 < b$ the inequalities

 $\psi(\mathbf{x}) < \varphi(\mathbf{x})$ for $\mathbf{x} \in (\mathbf{a}, \mathbf{x}_1)$

 $\Psi(x) > \Psi(x)$ for $x \in (x_3, b)$

hold, where **GeF** is determined by the conditions (1).

THEOREM. Let hypothesis H be fulfilled and let a function Ψ : I \rightarrow R be twice differentiable in I. Under these assumptions the following statements are equivalent:

- (A) the function ψ is strictly convex with respect to the family F;
- (B) for every x_1 , x_2 , such that $a < x_1 < x_2 < b$ the inequalities

 $\psi(\mathbf{x}) < \varphi(\mathbf{x})$ for $\mathbf{x} \in (\mathbf{a}, \mathbf{x}_1)$,

 $\psi(\mathbf{x}) > \phi(\mathbf{x})$ for $\mathbf{x} \in (\mathbf{x}_1, \mathbf{b}) \setminus [\mathbf{x}_2]$

hold, where GeF is determined by the conditions

(2)
$$\psi(\mathbf{x}_1) = \psi(\mathbf{x}_1), \quad \psi(\mathbf{x}_2) = \psi(\mathbf{x}_2), \quad \psi'(\mathbf{x}_2) = \psi'(\mathbf{x}_2);$$

 $\psi(\mathbf{x}) < \psi(\mathbf{x})$ for $\mathbf{x} \in (a, \mathbf{x}_2) \setminus \{\mathbf{x}_1\}$.

 $\psi(x) > \varphi(x)$ for $x \in (x_2, b)$

hold, where $\varphi \in F$ is determined by the conditions (4) $\psi(\mathbf{x}_1) = \psi(\mathbf{x}_1)$, $\psi'(\mathbf{x}_1) = \psi'(\mathbf{x}_1)$, $\psi(\mathbf{x}_2) = \psi(\mathbf{x}_2)$.

First we shall give some lemmas needed in the proof of the theorem.

LEMMA 1. (see [4], c.f. [7]) Let $F
ightarrow C^2(I)$, where I is an open interval, be a three-parameter family of functions and the initial value problem (see H(ii)), as well as the boundary value problem (see H(iii)) are uniquely sovable in F. Then

(M1) for every $x_1, x_2, y_0, y_1, y_2 \in \mathbb{R}$, such that $a < x_1 < x_2 < b$ there is a unique member ψ of F such that

 $\mathfrak{P}(\mathbf{x}_1) = \mathbf{y}_1, \quad \mathfrak{P}(\mathbf{x}_1) = \mathbf{y}_0, \quad \mathfrak{P}(\mathbf{x}_2) = \mathbf{y}_2;$ (M2) for every $\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}_0, \mathbf{y}_1, \mathbf{y}_2 \in \mathbb{R}$, such that $\mathbf{a} < \mathbf{x}_1 < \mathbf{x}_2 < \mathbf{b}$ there is a unique member \mathfrak{P} of \mathbf{F} such that

LEMMA 2. (see [8]) Let $a < x_1 < x_2 < b$ and ψ_1 and ψ_2 be two elements of the family F such that $\psi_1 \neq \psi_2$ and $\psi_1(x_1) = \psi_2(x_1)$ i = 1, 2.

Then $\Psi_1(\mathbf{x}) > \Psi_2(\mathbf{x})$ for $\mathbf{x} \in (\mathbf{x}_1, \mathbf{x}_2)$ and $\Psi_1(\mathbf{x}) < \Psi_2(\mathbf{x})$ for $\mathbf{x} \in (\mathbf{a}, \mathbf{x}_1) \cup (\mathbf{x}_2, \mathbf{b})$ (or the reverse inequalities hold). LEMMA 3. Let functions f, g be defined and two times differentiable in a neighbourhood of a point x_0 and let $f(x_0) = g(x_0)$. Then

a) if $f(x) \ge g(x)$ for $x \ne x_0$, then $f'(x_0) = g'(x_0)$; b) if $f(x) \ge g(x)$ for $x \ge x_0$ (or for $x < x_0$) and $f'(x_0) = g'(x_0)$, then $f''(x_0) \ge g''(x_0)$;

c) if $f(x) \gg g(x) \gg 0$ for $x > x_0$ (or for $x < x_0$) and $f(x_0) = f'(x_0) = f''(x_0) = 0$, then $g'(x_0) = g''(x_0) = 0$. Proof. Part a) is obvious.

We shall prove b) for $x > x_0$. For $x < x_0$ the proof is similar. Let us consider the function h(x) = f(x) - g(x). From the assumptions we have $h(x_0) = 0$, $h'(x_0) = 0$ and $h(x) \ge 0$ for $x > x_0$. Hence it follows that there exists a sequence $\{x_n\}$ such that $x_n \mapsto x_0^+$ and $h'(x_n) \ge 0$. Therefore $h''(x_0) \ge 0$, thus $f''(x_0) \ge g''(x_0)$.

Part c). From a) we get $g'(x_0) = 0$, from b) $f''(x_0) \ge g''(x_0)$ and $g''(x_0) \ge 0$. Hence and from the equality $f''(x_0) = 0$ we have $g''(x_0) = 0$.

LEMMA 4. Let $\mathbf{x}_0 \in \mathbf{I}$ and let $\Psi_1, \Psi_2 \in \mathbf{F}$ be such that $\Psi_1 \neq \Psi_2, \Psi_1(\mathbf{x}_0) = \Psi_2(\mathbf{x}_0)$ and $\Psi_1(\mathbf{x}_0) = \Psi_2(\mathbf{x}_0)$. Then $\Psi_1(\mathbf{x}) > \Psi_2(\mathbf{x})$ for $\mathbf{x} \in \mathbf{I} \setminus \{\mathbf{x}_0\}$ (or the reverse inequality holds).

Proof. It follows from Lemma 1 that $\psi_1(x) \neq \psi_2(x)$ for $x \neq x_0$. Suppose that the statement does not hold. Hence either $\psi_1(x) > \psi_2(x)$ for $x \in (a, x_0)$ and $\psi_1(x) < \psi_2(x)$ for $x \in (x_0, b)$ or $\psi_1(x) < \psi_2(x)$ for

51

 $\mathbf{x} \in (\mathbf{a}, \mathbf{x}_0)$ and $\boldsymbol{\psi}_1(\mathbf{x}) > \boldsymbol{\psi}_2(\mathbf{x})$ for $\mathbf{x} \in (\mathbf{x}_0, \mathbf{b})$. Let us consider the first case, the other is similar. Applying Lemma 3b) for $\mathbf{f} = \boldsymbol{\psi}_1$, $\mathbf{g} = \boldsymbol{\psi}_2$ and for $\mathbf{f} = \boldsymbol{\psi}_2$, $\mathbf{g} = \boldsymbol{\psi}_1$ we have $\boldsymbol{\psi}_1^n(\mathbf{x}_0) > \boldsymbol{\psi}_2^n(\mathbf{x}_0)$ and $\boldsymbol{\psi}_2^n(\mathbf{x}_0) > \boldsymbol{\psi}_1^n(\mathbf{x}_0)$, respectively. Hence $\boldsymbol{\psi}_1^n(\mathbf{x}_0) = \boldsymbol{\psi}_2^n(\mathbf{x}_0)$. From H(ii) we get $\boldsymbol{\psi}_1 = \boldsymbol{\psi}_2$, a contradiction.

LEMMA 5. Let the assumptions and condition (B) of the Theorem be fulfilled. Then for every x_1, x_2 such that $a < x_1 < x_2 < b$ the inequality

 $\psi(\mathbf{x}) < \overline{\varphi}(\mathbf{x})$ for $\mathbf{x} \in (x_1, x_2)$ holds, where $\overline{\varphi} \in \mathbf{F}$ is determined by conditions (4).

Proof. Let $a < x_1 < x_2 < b$ and let $\overline{\varphi}$ be determined by conditions (4). Let us assume that the statement is false. Then two cases are possible

a) $\psi(\mathbf{x}) \leq \overline{\psi}(\mathbf{x})$ for all $\mathbf{x} \in (\mathbf{x}_1, \mathbf{x}_2)$ and $\psi(\mathbf{c}) = \overline{\psi}(\mathbf{c})$ for a $\mathbf{c} \in (\mathbf{x}_1, \mathbf{x}_2)$;

b) there exists a $c \in (x_1, x_2)$ such that $\Psi(c) > \overline{\Psi}(c)$. Case a). From Lemma 3a) we have $\Psi'(c) = \overline{\Psi}(c)$. Let us observe that $\overline{\Psi}$ is just the function determined by (2) with x_1 and $x_2 = c$. By (B) we get $\Psi(x) > \overline{\Psi}(x)$ for $x \in (x_1, c)$, contrary to a).

Case b). Let us consider the function ψ_1 determined by (2) with \overline{x} , c in place of those x_1 , x_2 , where $\overline{x} = \sup \{ x \in [x_1,c): \psi(x) = \overline{\psi}(x) \}$. By this definition $\overline{x} \in [x_1,c)$ and (5) $\psi(\overline{x}) = \overline{\psi}(\overline{x}) = \psi_1(\overline{x}), \quad \psi(x) > \overline{\psi}(x)$ for $x \in (\overline{x},c]$, and from (B) we have

(6) $\psi(\mathbf{x}) > \varphi_1(\mathbf{x})$ for $\mathbf{x} \in (\overline{\mathbf{x}}, \mathbf{b}) \setminus \{c\}$. By (6) we have $\overline{\psi}(\mathbf{x}_2) = \psi(\mathbf{x}_2) > \varphi_1(\mathbf{x}_2)$, but $\overline{\psi}(\mathbf{c}) < \psi(\mathbf{c}) = \varphi_1(\mathbf{c})$, therefore there exists a point $d \in (\mathbf{c}, \mathbf{x}_2)$ such that $\overline{\psi}(d) = \varphi_1(d)$. The values of functions $\overline{\psi}$, φ_1 are equal at the points $\overline{\mathbf{x}}$ and d and those functions are not identically equal because $\varphi_1(\mathbf{c}) = \psi(\mathbf{c}) >$ $> \overline{\psi}(\mathbf{c})$. By Lemma 2 we have $\varphi_1(\mathbf{x}) > \overline{\psi}(\mathbf{x})$ for $\mathbf{x} \in (\overline{\mathbf{x}}, d)$ and from (6) we get

(7) $\psi(\mathbf{x}) > \phi_1(\mathbf{x}) > \overline{\phi}(\mathbf{x})$ for $\mathbf{x} \in (\overline{\mathbf{x}}, c)$. If $\overline{\mathbf{x}} = \mathbf{x}_1$, then $\psi(\overline{\mathbf{x}}) = \overline{\phi}(\overline{\mathbf{x}})$, $\psi'(\overline{\mathbf{x}}) = \overline{\phi}'(\overline{\mathbf{x}})$ and from (7) we get $\phi_1'(\overline{\mathbf{x}}) = \overline{\phi}'(\overline{\mathbf{x}})$. Thus the mixed problem $\phi(\overline{\mathbf{x}}) = \psi(\overline{\mathbf{x}})$, $\phi'(\overline{\mathbf{x}}) = \psi(\overline{\mathbf{x}})$, $\phi(d) = \overline{\phi}(d)$

has two different solutions $\overline{\Psi}$, Ψ_1 , what is impossible.

Let $\bar{\mathbf{x}} > \mathbf{x}_1$. From (7) $\psi_1^{\prime}(\bar{\mathbf{x}}) > \bar{\psi}^{\prime}(\bar{\mathbf{x}})$. If $\psi_1^{\prime}(\bar{\mathbf{x}}) = \bar{\psi}^{\prime}(\bar{\mathbf{x}})$ then we proceed as in the case $\bar{\mathbf{x}} = \mathbf{x}_1$. Let $\psi_1^{\prime}(\bar{\mathbf{x}}) > \bar{\psi}^{\prime}(\bar{\mathbf{x}})$. Hence and from the equality $\psi_1(\bar{\mathbf{x}}) = \bar{\psi}(\bar{\mathbf{x}})$ we get that there is an l such that $\psi_1(\mathbf{x}) < \bar{\psi}(\mathbf{x})$ for $\mathbf{x} \in (1, \bar{\mathbf{x}})$. From (B) we have $\psi_1(\mathbf{x}) > \psi(\mathbf{x})$ for $\mathbf{x} \in (a, \bar{\mathbf{x}})$, in particular $\psi_1(\mathbf{x}_1) > \psi(\mathbf{x}_1) = \bar{\psi}(\mathbf{x}_1)$. From the continuity of ψ_1 and $\bar{\psi}$ there is a $p \in (\mathbf{x}_1, \bar{\mathbf{x}})$ such that $\psi_1(p) = \bar{\psi}(p)$. Therefore $\psi_1 = \bar{\psi}$ as they are members of F passing through the points $(p, \psi_1(p)), (\bar{\mathbf{x}}, \psi_1(\bar{\mathbf{x}})), (d, \psi_1(d))$.

Proof of Theorem. (A) \implies (B).

Let $a < x_1 < x_2 < b$ and let $\overline{\Psi}$ be determined by (2). We are going to prove the inequality (8) $\psi(\mathbf{x}) > \overline{\psi}(\mathbf{x})$ for $\mathbf{x} \in (\mathbf{x}_1, \mathbf{x}_2)$.

Let us assume that inequality (8) does not hold. Then two cases are possible

a) $\Psi(\mathbf{x}) \gg \overline{\Psi}(\mathbf{x})$ for all $\mathbf{x} \in (\mathbf{x}_1, \mathbf{x}_2)$ and $\Psi(\mathbf{c}) = \overline{\Psi}(\mathbf{c})$ for a $\mathbf{c} \in (\mathbf{x}_1, \mathbf{x}_2)$;

b) there exists a $c \in (x_1, x_2)$ such that $\psi(c) < \bar{\psi}(c)$. Case a). Let us observe that $\bar{\psi}$ is just the function determined by conditions (1) with x_1 , c, x_2 in place of those x_1 , x_2 , x_3 , therefore by (A) we have $\psi(x) < \bar{\psi}(x)$ for $x \in (c, x_2)$, contrary to a).

Case b). Let $\overline{\mathbf{x}} = \inf \left\{ \mathbf{x} \in (\mathbf{c}, \mathbf{x}_2] : \psi(\mathbf{x}) = \overline{\psi}(\mathbf{x}) \right\}$. Hence $\overline{\mathbf{x}} \in (\mathbf{c}, \mathbf{x}_2], \quad \psi(\overline{\mathbf{x}}) = \overline{\psi}(\overline{\mathbf{x}}) \text{ and } \psi(\mathbf{x}) < \overline{\psi}(\mathbf{x}) \text{ for } \mathbf{x} \in [\mathbf{c}, \overline{\mathbf{x}}),$

If $\bar{\mathbf{x}} < \mathbf{x}_2$, then since ψ is strictly convex with respect to F, we have $\psi(\mathbf{x}) > \bar{\psi}(\mathbf{x})$ for $\mathbf{x} \in (\mathbf{x}_1, \bar{\mathbf{x}})$ and $\psi(\mathbf{x}) < \bar{\psi}(\mathbf{x})$ for $\mathbf{x} \in (\bar{\mathbf{x}}, \mathbf{x}_2)$, because $\bar{\psi}(\mathbf{x}_1) = \psi(\mathbf{x}_1)$, $\bar{\psi}(\bar{\mathbf{x}}) = \psi(\bar{\mathbf{x}})$ and $\bar{\psi}(\mathbf{x}_2) = \psi(\mathbf{x}_2)$. Hence, in particular, $\psi(\mathbf{x}) > \bar{\psi}(\mathbf{x})$ for $\mathbf{x} \in [c, \bar{\mathbf{x}})$, a contradiction.

Let $\bar{\mathbf{x}} = \mathbf{x}_2$ and let us consider the function Ψ_1 determined by (1) with the points \mathbf{x}_1 , c, $\bar{\mathbf{x}}$. From (A) we get the inequality $\Psi(\mathbf{x}) < \Psi_1(\mathbf{x})$ for $\mathbf{x} \in (\mathbf{c}, \bar{\mathbf{x}})$ and just as in the proof of Lemma 4 (inequality (7)) we have $\Psi(\mathbf{x}) < \Psi_1(\mathbf{x}) < \bar{\Psi}(\mathbf{x})$ for $\mathbf{x} \in (\mathbf{c}, \bar{\mathbf{x}})$. But $\Psi(\bar{\mathbf{x}}) = \bar{\Psi}(\bar{\mathbf{x}})$ and $\psi'(\bar{\mathbf{x}}) = \bar{\Psi}'(\bar{\mathbf{x}})$, therefore $\bar{\Psi}'(\bar{\mathbf{x}}) = \Psi_1(\bar{\mathbf{x}})$. In this way we obtain two different functions $\bar{\Psi}, \Psi_1 \in F$ such that $\bar{\Psi}(\mathbf{x}_1) = \Psi_1(\mathbf{x}_1), \quad \bar{\Psi}(\bar{\mathbf{x}}) = \Psi_1(\bar{\mathbf{x}})$ and $\bar{\Psi}'(\bar{\mathbf{x}}) = \Psi_1'(\bar{\mathbf{x}})$, what by Lemma 1 is impossible. This concludes the proof of inequality (8).

The inequalities

 $\psi(\mathbf{x}) < \overline{\psi}(\mathbf{x}) \quad \text{for } \mathbf{x} \in (\mathbf{a}, \mathbf{x}_1)$ $\psi(\mathbf{x}) > \overline{\psi}(\mathbf{x}) \quad \text{for } \mathbf{x} \in (\mathbf{x}_2, \mathbf{b})$

follows from (8), (A) and from Remark 1.

$$(B) \Longrightarrow (C).$$

Let $x_0 \in I$ and let $\overline{\phi}$ be determined by (3). First we are going to prove that

(9)
$$\psi(x) < \bar{\varphi}(x)$$
 for $x \in (a, x_0)$.

Assume the contrary. Then either

a)
$$\psi(\mathbf{x}) \leqslant \overline{\psi}(\mathbf{x})$$
 for $\mathbf{x} \in (\mathbf{a}, \mathbf{x}_0)$ and $\psi(\mathbf{c}) = \overline{\psi}(\mathbf{c})$
for a $\mathbf{c} \in (\mathbf{a}, \mathbf{x}_0)$,

or

b) there exists a $c \in (a, x_{o})$ such that $\Psi(c) > \overline{\Psi}(c)$.

To disprove a) let us observe (Lemma 1) that $\overline{\varphi}$ is just the function determined by conditions (2) with $x_1 = c$ and $x_2 = x_0$. By (B) we have $\overline{\psi}(x) > \overline{\varphi}(x)$ for $x \in (c, x_0)$, a contradiction.

Case b). Let Ψ_1 be a function determined by (2) with $\mathbf{x}_1 = \mathbf{c}$ and $\mathbf{x}_2 = \mathbf{x}_0$. From (B) we have (10) $\Psi(\mathbf{x}) > \Psi_1(\mathbf{x})$ for $\mathbf{x} \in (\mathbf{c}, \mathbf{x}_0)$. It follows from the definition of Ψ_1 that $\Psi_1(\mathbf{x}_0) = \overline{\Psi}(\mathbf{x}_0)$, $\Psi_1(\mathbf{x}_0) = \overline{\Psi}(\mathbf{x}_0)$ and $\Psi_1(\mathbf{c}) = \Psi(\mathbf{c}) > \overline{\Psi}(\mathbf{c})$. Hence and from Lemma 4 we obtain the inequality (11) $\Psi_1(\mathbf{x}) > \overline{\Psi}(\mathbf{x})$ for $\mathbf{x} \in (\mathbf{a}, \mathbf{x}_0)$. By (10) and (11) we get $\Psi(\mathbf{x}) > \Psi_1(\mathbf{x}) > \overline{\Psi}(\mathbf{x})$ for $\mathbf{x} \in (\mathbf{c}, \mathbf{x}_0)$.

55.

From the definition of $\overline{\Psi}$ and from Lemma 3c) used for the functions $f(x) = \Psi(x) - \overline{\Psi}(x)$ and $g(x) = \Psi_1(x) - \overline{\Psi}(x)$ we get $\Psi_1^{"}(x_0) = \overline{\Psi}^{"}(x_0)$, what contradicts H(ii). Now we are going to prove that

 $\psi(x) > \overline{\psi}(x)$ for $x \in (x_0, b)$.

Assume the contrary. Then two cases are possible

a) $\Psi(\mathbf{x}) \geqslant \overline{\Psi}(\mathbf{x})$ for $\mathbf{x} \in (\mathbf{x}_0, \mathbf{b})$ and $\Psi(\mathbf{c}) = \overline{\Psi}(\mathbf{c})$ for a $\mathbf{c} \in (\mathbf{x}_0, \mathbf{b})$;

b) there exists a $c \in (x_0, b)$ such that $\Psi(c) < \overline{\Psi}(c)$. Case a). Let us observe (Lemma 1) that $\overline{\Psi}$ is just the function determined by (4) with $x_1 = x_0$ and $x_2 = c$. From Lemma 5 we get $\Psi(x) < \overline{\Psi}(x)$ for $x \in (x_0, c)$, a contradiction.

Case b). Let Ψ_2 be a function determined by (4) with $\mathbf{x}_1 = \mathbf{x}_0$ and $\mathbf{x}_2 = c$. By Lemma 5 we have $\Psi(\mathbf{x}) < \Psi_2(\mathbf{x})$ for $\mathbf{x} \in (\mathbf{x}_0, c)$. As in the proof of (9) (Case b) we obtain $\Psi(\mathbf{x}) < \Psi_2(\mathbf{x}) < \overline{\Psi}(\mathbf{x})$ for $\mathbf{x} \in (\mathbf{x}_0, c)$ and $\Psi_2^{(i)}(\mathbf{x}_0) = \overline{\Psi}^{(i)}(\mathbf{x}_0)$. In this way we get two different functions $\Psi_2, \overline{\Psi} \in \mathbf{F}$ such that $\Psi_2^{(i)}(\mathbf{x}_0) = \overline{\Psi}^{(i)}(\mathbf{x}_0)$ i = 0,1,2, what by H(ii) is impossible.

 $(C) \Rightarrow (D).$

Let $a < x_1 < x_2 < b$ and let \overline{q} be determined by (4). First we shall show that

(12) $\Psi(\mathbf{x}) < \Psi(\mathbf{x})$ for $\mathbf{x} \in (\mathbf{x}_1, \mathbf{x}_2)$.

Let us assume that inequality (12) does not hold. Then either a) $\psi(\mathbf{x}) \leq \bar{\psi}(\mathbf{x})$ for $\mathbf{x} \in (\mathbf{x}_1, \mathbf{x}_2)$ and $\psi(\mathbf{c}) = \bar{\psi}(\mathbf{c})$ for a $\mathbf{c} \in (\mathbf{x}_1, \mathbf{x}_2)$

OT

b) there exists a $c \in (x_1, x_2)$ such that $\psi(c) > \overline{\psi}(c)$. Case a). By Lemma 3a) we get $\psi'(c) = \overline{\psi}'(c)$ and by Lemma 3b) $\psi''(c) \leqslant \overline{\psi}''(c)$. From (C) we obtain that the case $\psi''(c) = \overline{\psi}''(c)$ cannot occur, therefore $\psi''(c) < \overline{\psi}''(c)$. Now let us consider the function ψ_1 determined by (3) with $x_0 = c$, $\psi_1 \neq \overline{\psi}$ because $\psi_1''(c) = \psi''(c) < \overline{\psi}''(c)$. From (C) we have

(13) $\psi_1(x) > \psi(x)$ for $x \in (a,c)$ and

(14) $\psi_1(\mathbf{x}) < \psi(\mathbf{x})$ for $\mathbf{x} \in (c,b)$. From (14) we get $\psi_1(\mathbf{x}) < \overline{\psi}(\mathbf{x})$ for $\mathbf{x} \in (c,\mathbf{x}_2)$ and from the definition of ψ_1 and from Lemma 4 it follows that $\psi_1(\mathbf{x}) < \overline{\psi}(\mathbf{x})$ for $\mathbf{x} \in \mathbb{I} \setminus \{c\}$. Hence, in particular, $\psi_1(\mathbf{x}_1) < \overline{\psi}(\mathbf{x}_1)$, but from (13) we have $\psi_1(\mathbf{x}_1) > \psi(\mathbf{x}_1) =$ $= \overline{\psi}(\mathbf{x}_1)$, a contradiction.

Case b). Put $\bar{\mathbf{x}} = \sup \left\{ \mathbf{x} \in [\mathbf{x}_1, \mathbf{c}) : \Psi(\mathbf{x}) = \bar{\Psi}(\mathbf{x}) \right\}$. Thus $\bar{\mathbf{x}} \in [\mathbf{x}_1, \mathbf{c})$ and $\Psi(\mathbf{x}) > \bar{\Psi}(\mathbf{x})$ for $\mathbf{x} \in (\bar{\mathbf{x}}, \mathbf{c}]$ and $\Psi(\bar{\mathbf{x}}) =$ $= \bar{\Psi}(\bar{\mathbf{x}})$. Hence $\Psi'(\bar{\mathbf{x}}) \gg \bar{\Psi}'(\bar{\mathbf{x}})$. Let $\Psi_2 \in F$ be determined by (3) with $\mathbf{x}_0 = \bar{\mathbf{x}}$.

If $\psi'(\bar{x}) > \bar{\psi}'(\bar{x})$, then $\bar{x} > x_1$ and we proceed as in the proof of Lemma 5 (case b) $\bar{x} > x_1$) and we get the contradiction with the condition H(iii).

Let $\psi'(\bar{x}) = \bar{\varphi}'(\bar{x})$, then by Lemma 3b) we get $\psi''(\bar{x}) \ge \bar{\phi}''(\bar{x})$ and it follows from (C) that $\psi''(\bar{x}) \neq \bar{\phi}''(\bar{x})$, i.e. $\Psi^{"}(\overline{x}) > \overline{\Psi}^{"}(\overline{x}).$ (15) By (C) we have $\Psi_2(x) < \Psi(x)$ for $x \in (\bar{x}, b)$ and in particular $\varphi_2(\mathbf{x}_2) < \Psi(\mathbf{x}_2) = \overline{\Psi}(\mathbf{x}_2).$ (16) Lemma 4 and (16) yield $\psi_2(x) < \overline{\psi}(x)$ for $x \in I \setminus \{\overline{x}\}$. Thus $\varphi_{2}^{"}(\bar{x}) \leqslant \bar{\varphi}^{"}(\bar{x}).$ (17)From (15) and from the definition of Ψ_2 we have $\varphi_{2}^{*}(\bar{\mathbf{x}}) > \bar{\varphi}^{*}(\bar{\mathbf{x}})$, what contradicts (17). Now we shall show that $\psi(\mathbf{x}) < \overline{\psi}(\mathbf{x}) \quad \mathbf{x} \in (a, \mathbf{x}_{1}),$ where $\overline{4}$ is determined by (4). Let $q_3 \in \mathbb{P}$ be determined by (3) with $x_0 = x_1$. From (C) we get $\Psi(x) > \Psi_3(x)$ for $x \in (x_1, b)$ and form (12) $\Psi_{\mathbf{x}}(\mathbf{x}) < \overline{\Psi}(\mathbf{x})$ for $\mathbf{x} \in (\mathbf{x}_1, \mathbf{x}_2)$. Hence and by Lemma 4 we obtain $\Psi_3(x) < \overline{\Psi}(x)$ for $x \in (a, x_1)$, from (C) $\psi(x) < \psi_3(x)$ for $x \in (a, x_1)$. Thus $\psi(x) < \overline{\psi}(x)$ for IE (a, I,). The inequality $\psi(x) > \overline{\psi}(x)$ for $x \in (x_2, b)$ follows from (12), (A) and from lemmas 3 and 4. $(D) \Longrightarrow (A).$

Let $a < x_1 < x_2 < x_3 < b$ and let φ be determined by (1). We shall prove that (18) $\psi(x) > \overline{\psi}(x)$ for $x \in (x_1, x_2)$.

Again, let us assume that inequality (18) does not hold. We shall consider two cases

- a) $\psi(\mathbf{x}) \geqslant \overline{\psi}(\mathbf{x})$ for $\mathbf{x} \in (\mathbf{x}_1, \mathbf{x}_2)$ and $\psi(\mathbf{c}) = \overline{\psi}(\mathbf{c})$ for a $\mathbf{c} \in (\mathbf{x}_1, \mathbf{x}_2)$;
- b) there exists a $c \in (x_1, x_2)$ such that $\Psi(c) < \overline{\Psi}(c)$.

Case a). By Lemma 3a) we have $\Psi^{\flat}(c) = \bar{\Psi}^{\flat}(c)$. Thus $\bar{\Psi}$ satisfies (4) with $x_1 = c$ and x_2 , so that, by (D), we get $\Psi(\mathbf{x}) < \bar{\Psi}(\mathbf{x})$ for $\mathbf{x} \in (c, x_2)$, contrary to the inequality in a).

Case b). Let $\bar{\mathbf{x}} = \sup \left\{ \mathbf{x} \in [\mathbf{x}_1, \mathbf{c}) : \psi(\mathbf{x}) = \bar{\psi}(\mathbf{x}) \right\}$. By this definition $\bar{\mathbf{x}} \in [\mathbf{x}_1, \mathbf{c}), \ \psi(\bar{\mathbf{x}}) = \bar{\psi}(\bar{\mathbf{x}})$ and $\psi(\mathbf{x}) < \bar{\psi}(\mathbf{x})$ for $\mathbf{x} \in (\bar{\mathbf{x}}, \mathbf{c})$, whence $\psi'(\bar{\mathbf{x}}) \leq \bar{\psi}'(\bar{\mathbf{x}})$. If we had $\psi'(\bar{\mathbf{x}}) = \bar{\psi}'(\bar{\mathbf{x}})$, then φ would satisfy (4) with $\mathbf{x}_1 = \bar{\mathbf{x}}, \ \mathbf{x}_2 = \mathbf{x}_3$ and the first inequality of (D) would contradict (1). Therefore (19) $\psi'(\bar{\mathbf{x}}) < \bar{\psi}'(\bar{\mathbf{x}})$.

Now let us consider the function φ_1 determined by (4) with $\mathbf{x}_1 = \bar{\mathbf{x}}$ and \mathbf{x}_2 . Since $\varphi_1^{\,\prime}(\bar{\mathbf{x}}) = \psi^{\,\prime}(\bar{\mathbf{x}})$ and $\varphi_1(\bar{\mathbf{x}}) = \bar{\varphi}(\bar{\mathbf{x}})$, we see from (19) and from the continuity of φ_1 and $\bar{\varphi}$ that $\varphi_1(\mathbf{x}) < \bar{\varphi}(\mathbf{x})$ for \mathbf{x} from a right neighbourhood of $\bar{\mathbf{x}}$. From (D) we have the inequalities

(20) $\psi(\mathbf{x}) < \psi_1(\mathbf{x})$ for $\mathbf{x} \in (\bar{\mathbf{x}}, \bar{\mathbf{x}}_2)$

and $\Psi(\mathbf{x}) > \Psi_1(\mathbf{x})$ for $\mathbf{x} \in (\mathbf{x}_2, \mathbf{b})$. The latter yields $\Psi(\mathbf{x}_3) > \Psi_1(\mathbf{x}_3)$. Hence and from the equality $\Psi(\mathbf{x}_3) = \overline{\Psi}(\mathbf{x}_3)$ we have

(21) $\overline{\varphi}(x_3) > \varphi_1(x_3).$

Applying Lemma 2 for φ_1 and $\bar{\varphi}$ with x_1 replaced by \bar{x} , we get $\varphi_1(x) < \bar{\varphi}(x)$ for $x \in (\bar{x}, x_2)$ and $\varphi_1(x) > \bar{\varphi}(x)$ for $x \in (a, \bar{x}) \cup (x_2, b)$, in particular $\varphi_1(x_3) > \bar{\varphi}(x_3)$, what contradicts (21).

The inequality

 $\psi(x) < \overline{\psi}(x)$ for $x \in (x_2, x_3)$ follows from (18) and from (D).

Remark 2. By a suitable change of inequalities that appear in the Theorem we get the conditions equivalent to the fact that Ψ is convex, or concave or strictly concave with respect to **F**.

References

- Beckenbach E.F., Generalized convex functions, Bull. Amer. Math. Soc. 43(1937), 363-371.
- [2] Bonsall F.F., The characterization of generalized convex functions, Quart. J. Math. 1 (1950), 100-111.
- [3] Brydak D., Application of generalized convex functions to second order differential inequalities, General Inequalities 4 (4th International Conference on General Inequalities, Oberwolfach, (1983)), edited by W. Walter, Birkhäuser, 1984, 297-305.
- [4] Hartman P., Unrestricted n-parameter families, Rend. Circ. Mat. Palermo 2 (1959), 123-142.
- [5] Jackson L., On second order differential inequalities, Proc. Amer. Math. Soc. 17 (1966), 1023-1027.
 - [6] Krzyszkowski J., On ordinary differential inequalities,

Rocznik Naukowo-Dydaktyczny WSP w Krakowie, Prace Matematyczne XI, Z. 97 (1985), 95-107.

- [7] Matsen R.M., λ(n)-parameter families, Canad. Math. Bull. 12/2(1969), 185-191.
- [8] Peixoto M.C., On the inequalities y"">G(x,y,y',y"), An. Acad. Brasil. Ci. 21(1949), 205-218.
- [9] Peixoto M.M., Generalized convex functions and second--order differential inequalities, Bull. Amer. Math. Soc. 55 (1949), 563-572.