JANUSZ KRZYSZKOWSKI

On the generalized convex functions
with respect to the three-parameters family
of functions

1. INTRODUCTION

M.C. Peixoto gave iIn his paper B] the definition of
generalized convex function with respect to a three-para-
meters family of functions and proved that a function

~Nec5(@a,b) 1is a generalized convex function with respect

to the family of solutions of the equation
yM = Fy,y’,yBD , if and only if it satisfies the in-
equality y X > G, I/69, (A9) =

In this paper we shall give some equivalent conditions
for a two times differentiable function to be a generalized
convex function with respect to a three-parameters family
of functions of class C2-

Similar results for the generalized convexity with re-

spect to a two-parameters family of functions may be found

inthe papers M, 2. B1, B1» M and P].
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2. SOME EQUIVALENT CONDITIONS OF CONVEXITY

We shall assume the following hypothesis:

H. Let F be a three-parameter family of functions
defined in an open interval 1 = (@,b) and satisfying the
following conditions:

(1) every function ~ &F belongs to C2(l);
(i) for every x0&1 and for every yg.y”~"&R there
IS a unique member N of the family «F such that
ACI)O 0) =7+ i =0,1,2;
@ii) for every three points (x1,y1), (X2,y2)> U j .Wj),
a<s<x*<x2<Xj<b there iIs a unique member of the
fanily F such that
N =yt f=1,223.

DEFINITION. Let hypothesis H be fulfilled. The
function ™ is said to be strictly convex with respect to
the family F iff for all Xx~r~x- such that a<x”<
<x2<Xj<b the inequalities

i4>(x) > "N (x) for xtC”.Xq)

YOX) < vW(X)  for xt O .,X))
hold, where ~fcF 1is determined by the conditions
(€)) "Kxi) = YOi) i=1,2,3.

We say that ™ is convex with respect to F i1ff ii
satisfies weak inequalities (4) instead of the strong
ones. /

Similarly we define a strictly concave (concave)
function with respect to F by reversing the inequalities.
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Remark 1. (see [8D If a function P is strictly
convex with respect to F then for all x©, x2, x* such
that a<x1l<x2<x”<b the Inequalities

) < MX) for xfdCa.x,,)

) >VRX) for x & ¢Mb)
hold, where 7fsF 1is detemmined by the conditions (@)-

THEOREM. Let hypothesis H be fulfilled and let a
function p: | *mB be twice differentiable in 1.
Under these assumptions the following statements are
equivalent:

(A the function is strictly convex with respect to

the family F;
® for every x°, X2, such that a<x,j<x2<b the iIn-

equalities

IKx) < for xt(a,x1”),

YOO > () for xe %) -

hold, where "feF is determined by the conditions
@ VXD = ), VICR) = p2), F(2) = 4Kx2)5
© for every xQe (a,b) the inequalities

pe) < ) for xt(a,x0)

M) > M) for xe (O,b)

hold, where ~6F 1is determined by the conditions

(©) ACD(*0> = VCI>C*0) i =0,1.2,
O for every xM, X2, such that a<x”<x2<b the
inequalities

P < VBX) for xe (@,x2) \ {xwu
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V) > M) for zt (2,D)
hold, where ~™a? Is determined by the conditions
@) = B, "\x1) = YK, IR = FR).
First we shall give some lemmas needed in the proof
of the theorem.
LEMWA 1. (see E], c.f. [7D Let Fc c2(l), where |
IS an open interval, be a three-parameter family of func-
tions and the initial value problem (see H(ii)), as well as
the boundary value problem (see H(iii)) are uniquely sovable
in F. Then
(ML) for every x7M,x2,y0,y1,y2&E, such that a<xl<x2<b
there is a unique member of F such that
~X,) =yl =y0, "(X2) =y2;
(M2) for every X »*2»y0,yl»2 E» sct that a<xl< x2<b
there is a unique member ™ of F such that
ML) m ~(*2) = y2» =yo
(i.e. the mixed problems are also uniquely solvable iIn F).
The uniqueness of the functions determined by the
conditions (2) and (4) follows from the above Lemma.
ttmma 2. (see [8]) Let a<z”™<x2<b and ~ and *2
be two elements of the family F such that ~ 4 ~2 and
ACD) = M2 1 1R
Then ~(x) > ~"™N(x) for ze-(z1,2) ad
-N(X) < N2 for x fo@x,,)u OR2,b) (or the reverse in-
equalities hold).
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LMMA 5. Let functions T, g be defined and two times
differentiable in a neighbourhood of a point xQ and let
fu0) = gOO0). Then

a if f@WV gx)for x 4 x0, thenf\x Q = g" (x0);

b) if fQR) g for x>xQ (or for x<xQ) and
Cx0) = g"CXp), then T7&0)" gh(x0);

o iIf TGO g()>0 for x>xQ (or for x<x0)and
f(x0) = fCx0) =FZjj)) =0,then g°’(xQ) =g"(x0) = 0.

Proof. Part a) is dbvious.

We shall prove b) for x>xQ. Por x<xQ the proof is
similar. Let us consider the function h() = () - gX)-
Prom the assumptions we have h(xQ) =0, hCx» =0 and
h(x) VO for. x>xQ. Hence it follows that there exists a
sequence {Xn} suoh that xn>s>x* h+H(xn)VO. There-
fore hI'(0)>0, thus T’Cx0)V ga(Q).-

Part c). Prom a) we get g*"Cx™ =0, from b)
frU0)>/g’(i0) and g*(*0)*0. Hence and from the equality
'x0) =0 we have grt(x0) =0.

LEMVA 4. Let and let ~ F be such that
S 7. = N2™N and *1%&0) = ~2@o)F Then
VIC) > ~209 for x el {x™ (or the reverse inequality
holds).

PrO0Of. It follows from Lemma 1 that ~(x) 7/ “=fgV
for x 4 xQ. Suppose that the statement does not hold.
Hence either Wy >"2%) for xfe@x0) and
CMX) <M20) for xt CxQ,b) or W, )< "2~ for
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xt(a,xo0) and > N2CX  for xt (xQ,b). Let us con-
sider the First case, the other is similar. Applying Lemma

) for f= "Xp g= "2 and for £* ~N2* 8 =* we
have NN(Xq) NN ON * respectively*
Hence 7 ’(*0) = ~™o”™* From we Set = N2,

a contradiction.

LEMMA 5. Let the assumptions and condition (B) of the
Theorem be fulfilled. Then for every x”, X2 such that
a<x*<x2<b the inequality

y(*) < fU) for xfc @.,,*2)
holds, where “Sfd- is determined by conditions (A).

Proof. Let a<x3kx2<b and let ™ be determined
by conditions (4). Let us assume that the statement is
false. Then two cases are possible

a IyX 4 for all xt-Cx™Xg) and

Y(©) * $(<0 fora -cfc(xltx2);

b) there exists a csC™*") saxcd that ~Cc)>™(C).

Case a). From Lemma 3a) we have ~1c) = (C). Let us
observe that ™ is just the function determined by (2 with
x* and X2 =c. By (b) we get ) > for xt &, ,0,
contrary to a).

Case b). Let us consider the function determined
by (@ with x, c in place of those x", X2, where
X -sup XX, ,0s P = 1Cx)J. By this definition
X tJXj ,© and
G »K5) = ") =7(5), ¥ >} for xt(x,c],
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and from (B) we have
©® M) > M(x) for o (X,b)s{c}.
By (6) we have 7>02) = Y(x2) > 41C»2), but
*(©) <<©) = "™(c), therefore there exists a point
dfc(c,x2) such that ~(d) = ~Cd}. The values of func-
tions VW, N are equal at the points x and d and those
functions are not identically equal because ~(c) = ™) >
>$(0). By Letma 2 we have ~ (X)) > <|(¥) for xfFe(x,d)
and from (6) we get
a Y(X)> 4500 >~C*) for xe(X,C)-
IT xXsx®, then w®X = "(X)» ' ="(x) and from
@ we get N(X) = "NM(X). Thus the mixed problem
~2)= M), M@Y= mC5)T f@ = ~(d)

has two different solutions » wbat s impossible.

Let x>21.Prom (7)) ~(X) gpIX). IT ~(x) =
then we proceed as iIn the case x = xX*. Let "M(X)> M(X)-
Hence and from the equality ~(.2) = CRX) we get that
there i1s an 1 such that ~(xX) <M(x) for xe(l,x).
Prom (B) we have ~~(x) > HK*) for (@,x), iIn parti-
cular 7(x,,) >™MN(™) = "(OXN). Prom the continuity of »
and N there is a pfc(x1fx) such that ~(pd)* ~Cp)»

Therefore =\| as they are members of P passing
through the points (p, “(P)) » (X, a»
Proof of Theorem. (A ®).

Let a<x”<x2<b and let be determined by (2). We
are going to prove the inequality
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® = Ve > ") for xfc-01tx2).

Let us assume that inequality (8) does not hold. Then
two cases are possible

a Y>> I|j for all xe (xX1tx2) and

H© = ™ (© for a cfe(x1fx2);

b) there exists a & (J.,X2) such that *0©)< (©-

Case a). Let us observe that ™ is just the function
determined by conditions (I) with x*, c, x2 1in place of
those x», x2, XYy therefore by (® we have ~(X) < G
for xe (c,xX2), contrary to a).

Case b). Let x = inf [xfe (C2]: /) = (] - Hence
xe(c,x23, X)) = >p) and 4))<NM(x) TFor xfFe[c,Xx).
IT x<x2, then since K is strictly convex with
respect to F, we have 4> %) for xfe(x,j,x) and
IVOO<NM(X) for xt (X,X2), because <) = (),

AX) = 4AdX) and <|CR) = Hence, in particular,
43 > *X) TfTor xe [c,X), a contradiction.
Let x e x2 and let us consider the function de-

termined by (O with the points X7, ¢, X- Prom () we get
the inequality X)) < M(x) Tfor xt (c,x) and just as in
the proof of Lemma 4 (inequality () we have

X)) < M(X) <™MX) Tor xfe (c,X). But HKx) = <) ad
'Ry = therefore "X)= ~(X). In this way we
obtain two different functions <\, ™ &F such that

$C&CP = >|) = 4,,0 and = ACx)* what
by Lemma 1 is impossible. This concludes the proof of in-
equality (8).
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The inequalities
YED < "I for xt @,
YOO > T for xt O2,b)
follows from (8), (A and from Remark 1.
(B) =» (c).
let xgf£ 1 and let ~ be determined by (3). First We
are going to prove that
® YOI < MO for xfc (@,xQ)-
Assume the contrary. Then either
ad d®~ fix) for xc @xQ ad 4© = il©
for a ce (@,xXQ),
or
b) there exists a c& (a,x0) such that ~(c)>"(c)-
To disprove a) let us observe (Lemma 1) that | is just
the function determined by conditions () with x* = c ad
X2 = xQ. By (B we have twX > V(X)) Tor xt (c,xQ),
a contradiction.
Case b). Let 0" be a function determined by (@ with
X =c and x2 = xQ. From (B) we have
0) VCO > ~(x) for e (c,xQ).
It follons from the definition of that vM(x0) = xO)»
NCeQ) and v) = V(°) > "KO)- Hence and from
Lemma 4 we obtain the iInequality
@ >V () for xe(a,x0).
By A0 and (1) we get
D > ~"(x) > fX) for xt Cc,xQ).
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Prom the definition of i and from Lemma Jc) used for the
functions f(X) PR - FX) and gx) = "(x) - F®
we get 1T GO) fM(X ), what contradicts H(ii).

Now we are going to prove that

YOO > ) for xw (xQ,b)-

Assume the contrary. Then two cases are possible

a YX) » FQ) for x&(xo,b) and 1H© = f(c)

fora drCG0*b);

b) there exists a ct(.xQ,b) such that X0 <f(c).

Case a). Let us observe (Lemma 1) that f 1is just the
function determined by (4) with x* = xQ and X2 = c.
Prom Lenma 5 we get X)) <iF(X) for x &(xQ,c), a con-
tradiction.

Case b). Let T2 a function determined by (4 with
X =xQ and x2 = c. By Lemma 5 we have HX < f2()
for xfc (Q,C0)- As in the proof of (9) (Case b) we obtain
VOO< f20)< f(x) for xfc (Q,0) and T20Q) = F'(x0).
In this way we get two different functions i ,>feP such
that FA(xQ) = A (xQ) 1 =0,1,2, what by H(ii) is
impossible.

(C)=KD).
Let a<x*<x2<b and let if be determined by (4).
First we shall show that
) HX < f X for xfr(x1,2").
Let us asstime that inequality (12) does not hold.

Then either
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a) 4 "fw for Xer(x1tx2) and V(c) - *|(©)
fora cfc(xlts2)

or

b) there exists a cfcMjXg) such that ~(c)><"N(C)-

Case a). By Lemma 33) we get () = ~1©) and by
Lemma 3b) S’\(c)’\ ~*(©). Prom (©) we obtain that the case
~N(c) * <f(c) cannot occur, therefore I1jAc) <”~7Tc)- Now
let us consider the function determined by () with
x0=c¢c, ™V because vc) = YO <"Mc). Promn (©

we have

a3) AU) >V for xfe (@,0)
and
a» ~N(X) < for e (c,b).

From (14) we get VFJjX)<™MN(X) fTor xfe (0,x2) and from
the definition of ~ and from Lemma 4 i1t follows that
NG <] for xfels {c}. Hence, in particular,
Vi) < (1), but from (13 we have VIiI()> N(X,,) =
= 1fx.,) , a contradiction.

Case b). Put X = sup {xt [X*,00s W) = T(X)J - Thus
xfc-JVpc) and I JQQ>If(X) for xe (x,c] and =
= <f(X). Hence ) vfci). Let® "fgfd- 1% fletermined N
@) with x0 = x.

If PC)>3*(5>, then and we proceed as iIn
the proof of Lemma 5 (case b) x>x”") and we get the con-
tradiction with the condition H(iii).
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Let /) = M)t then by Lemma Sb) we get
4YB)>"AX) and It folloxs from (©) that In(X) "X,
i.e.

@) V a(5)>3#05).
By © we have "20)< YY) Tor xte(x,b) and iIn par-
ticular

(6) 2C2)< Y (x2) = <fF(2n
Lerma 4 and (16) yield "20)<t](x) for X IN{X}-.Thus
a 2(XKN (%) -

Pron (15) and from the definition of “J2 we have
N20() >N X¥X), what contradicts (17).
Now we shall show that
YOO<™M xt @&!,.),
where iIs determined by @).
Let be determined by (5) with xQ= x*. From
(C) we get  V(x) > Mj(x) for xfe (x>j,b) and form (12)
W™ (x)<| (x) for xfr (x”,x2). Hence and by Lemma 4 we
obtain  v~(x) <~ (x) for xt (a,x”), from (C)
tp(x)< ~j(x) for xfr(a,xl). Thus g(x)< P(x) for
it (axn)e
The 1nequality
X > <X for xfc(2.,b)
follons fron (12), ® ad from lemas 5 ad 4.
D)=*(A)-
Let a<x1l<x2<x”<b and let ™ be determined by (@.
We shall prowe that
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1Q for xe (x1,x2).

Again, let us assume that inequality (.18) does not
hold. W shall consider two cases

a) for xfc(x,,x2) and Y(c)= ~(c)

fora cfc(x1,x2);

h) there exists a et (x1tx2) such that Y(c) <$ (c).

Case a). Bylemma 3a)we have tyYc) =~Cc). Thus »
satisfies (4)with x*=c¢ and x2, sothat,by (D), weget
ty(x) <i|(.x) for xfc (c,x2), contrary to the inequality

in a).

Case b). Let x =sup| x&[x*,c): y(x) = (X)J. By
this definition xe[x1ltc), ~(x) = M (x) and V(X)< (X)
for xfe (x,c), whence >V'(x)4 If we had Ijj'(x) = C™M(X),

then ~ would satisfy (4) with x* =x, x2 =x~ and the
first inequality of (D) would contradict (1). Therefore
(@1)) N(XKTFEX) .
Now let us consider the function determined by (4) with
N =x and x2. Since ~(x) =2'(5) and ~(x) =" (x),
we see from (19) and from the continuity of Wy and ~ that
N(x)<0J(x) for x from a right neighbourhood of x.
From (d) we have the inequalities
(20) vp(x) <™ (x) for xfr(x,x2)
and I)(x) > ~j(x) for xfr (x2,b). Tre 1&ter yields
iy(Xj)> v~Cxj). Hence and from the equality ty(x]) =»|(x])
we have
(21) <IC3) > "UJ)«
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Applying Lenma 2 for and N with x1 replaced by x, we
get wvy(x)< C for xfc(x,x2) and ~ (x)>"C* for
Xfe- (a,x) 0 (x2,b), in particular vfy(xj)>«!If(xj), what con-
tradicts (21)e

The inequality

Ip(x)< v|(x) for xfe Ox2,Xj)
follows from ft8) and from (D).

Remark 2. By asuitable change of inequalities
that appear in the Theorem we get the conditions equivalent
to the fact that ip is convex, or conoave or strictly con-
cave with respect to F.
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