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On the generalized convex functions 
with respect to the three-parameters family

of functions

1. INTRODUCTION

M.C. Peixoto gave in his paper [8] the definition of 

generalized convex function with respect to a three-para­

meters family of functions and proved that a function

^ec5(a,b) is a generalized convex function with respect 

to the family of solutions of the equation 

y)M = f (x,y,y’,ylł) , if and only if it satisfies the in­

equality y,!,(x) > f(x,t̂ (x) , i/(x), (A*)) •
In this paper we shall give some equivalent conditions 

for a two times differentiable function to be a generalized

convex function with respect to a three-parameters family
2

of functions of class C .

Similar results for the generalized convexity with re­

spect to a two-parameters family of functions may be found 

in the papers [lj , [2] , [3>] , [5] » M  and [9].
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2. SOME EQUIVALENT CONDITIONS OF CONVEXITY

We shall assume the following hypothesis:

H. Let F be a three-parameter family of functions 

defined in an open interval I = (a,b) and satisfying the 

following conditions:

(i) every function ^ &F belongs to C2(l);

(ii) for every x0&I and for every yg.y^^&R there 

is a unique member ^ of the family • F such that 

^ Ci)O 0) = 7±, i = 0,1,2;

(iii) for every three points (x1,y1), (x2,y2)> U j.Wj), 

a <. x̂  < x2 < Xj < b there is a unique member of the 

family F such that

^ = yit f = 1 ,2,3.

DEFINITION. Let hypothesis H be fulfilled. The 

function ^ is said to be strictly convex with respect to 

the family F iff for all x^r^x- such that a<x^< 

<x2<Xj<b the inequalities

i4>(x) > ^ (x )  fo r  x t C ^ . X g )

Y(x) < v̂ (x) for xt Cx2,Xj)

hold, where ^fcF is determined by the conditions 

(1) 'Kxi) = YOi) i = 1,2,3.

We say that ^ is convex with respect to F iff ii 

satisfies weak inequalities (4) instead of the strong 

ones. /

Similarly we define a strictly concave (concave) 

function with respect to F by reversing the inequalities. 

48



R e m a r k  1. (see [8]) If a function ip is strictly 

convex with respect to F then for all x^, x2, x̂  such 

that a<x1<x2 <x^<b the Inequalities 

4>(x) < (̂x) for xfcCa.x,,)

*Kx) > vf(x) for x & (x̂ ,b)

hold, where f̂sF is determined by the conditions (1).

THEOREM. Let hypothesis H be fulfilled and let a 

function ip : I *“*■ B be twice differentiable in I.

Under these assumptions the following statements are 

equivalent:

(A) the function is strictly convex with respect to 

the family F;

(B) for every x^, x2, such that a<x,j<x2<b the in­

equalities

iKx) < for xt(a,x1'),

Y(X) > v$(x) for xe (x̂  »*>) ' 

hold, where f̂eF is determined by the conditions 

(2} v?(x1) = lp(x1), vf(x2) = ip(x2), <f‘(x2) = 4/>(x2)5

(C) for every xQ e (a,b) the inequalities

ip(x) < ^(x) for xt(a,x0)

4»(x) > f̂(x) for xe (x0,b)

hold, where ^6F is determined by the conditions

(3) ^Ci)(*0> = V C1>C*0) i = 0,1.2,

(D) for every x^, x2, such that a<x^<x2<b the 

inequalities

*p(x) < v$(x) for xe (a,x2) \ {x1U
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*V(x) > ^(x) for zt (x2,l)) 

hold, where f̂a ? Is determined by the conditions

(*) = 'ł>Cx1) , ^\x1) = '̂(x1) , if(x2) = <j>(x2).

First we shall give some lemmas needed in the proof 

of the theorem.

LEMMA 1. (see [4], c.f. [?]) Let Fc C2(l), where I 

is an open interval, be a three-parameter family of func­

tions and the initial value problem (see H(ii)), as well as 

the boundary value problem (see H(iii)) are uniquely sovable 

in F. Then

(M1) for every x^,x2,y0,y1 ,y2&E, such that a<x1<x2<b 

there is a unique member of F such that

^(x,) = y1t = y0, ^(x2) = y2;

(M2) for every x̂  »*2»yo,y1 »y2 E» suctl that a<x1< x2<b 

there is a unique member ^ of F such that

^(*1) ■ ^(*2) = y2» = yo

(i.e. the mixed problems are also uniquely solvable in F).

The uniqueness of the functions determined by the

conditions (2) and (4) follows from the above Lemma.

t.tmma 2. (see [8]) Let a<z^<x2 <b and ^  and *̂2

be two elements of the family F such that ^  4 ^2 and

^(*l) = ^2 x̂î  1 * 1*2‘

Then ^(x) > ^(x) for ze-(z1,z2) and

- ̂ (x) < ^2(x) for x fc(a,x,,) u (x2,b) (or the reverse in­

equalities hold).
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LMMA 5. Let functions f, g be defined and two times 

differentiable in a neighbourhood of a point xQ and let 

f U 0) = gO 0) .  Then

a) if f(aO V g(x) for x 4 x0, then f \ x Q) = g' (x0);

b) if f(2) V g (x) for x>xQ (or for x<xQ) and

f* Cx0) = g'CXp), then f”(x0) ̂  gł,(x0);

c) if f(x) >/ g(x) > 0  for x>xQ (or for x<x0) and

f(x0) = f ’ Cx0) = f̂ CZjj) = 0 , then g’ (xQ) = g"(x0) = 0.

P r o o f .  Part a) is obvious.

We shall prove b) for x>xQ. Por x < xQ the proof is 

similar. Let us consider the function h(x) = f(x) - g(x). 

Prom the assumptions we have h(xQ) = 0 , h’Cx^ = 0 and 

h(x) V O  for. x>xQ. Hence it follows that there exists a 

sequence {xn} suoh that xn>-»> x* hł(xn)VO. There­

fore h1'(xo)>0 , thus f”Cx0) V ga (xQ).

Part c). Prom a) we get g'Cx^ = 0, from b) 

f"U0)>/g"(i0) and g*(*o)*0. Hence and from the equality 

f"(x0) = 0 we have grt(x0) = 0.

LEMMA 4. Let and let ^ F  be such that

^1 * i*2* = ^ 2 ^  and *1 tx0) = ^2(3co)ł Then

v̂1Cx) > ^20t) for x fel ̂  {x^ (or the reverse inequality 

holds).

P r 0 0 f. It follows from Lemma 1 that ^(x) / '•fgW 

for x 4 xQ. Suppose that the statement does not hold.
Hence either vfy (x) > ̂ 2 x̂) for xfe(atx0) and

C^tx) <^2Cx) for xt CxQ,b) or vf, (x) < ^2^  for
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xt(a,xo) and > ̂ 2CX for xt (xQ,b). Let us con­

sider the first case, the other is similar. Applying Lemma 

3b) for f = 'Xp g = ^2 and for f * ^2* 8 * we

have ^ ̂ ( X q) ^2 ^ 0^  * respectively*

Hence ^ ’(*0) = ^^o^* From we Set = ^2,

a contradiction.

LEMMA 5. Let the assumptions and condition (B) of the 

Theorem be fulfilled. Then for every x^, x2 such that 

a < x̂  < x2< b the inequality

y(*) < fU) for xfc (aL,,*2) 

holds, where >̂fcF is determined by conditions (A).

P r o o f .  Let a<x>]<x2<b and let  ̂ be determined 

by conditions (4-). Let us assume that the statement is 

false. Then two cases are possible

a) iy(x) 4 f°r all xt-Cx^Xg) and

Y(c) * $(<0 fora cfc(x1tx2);

b) there exists a csC^*^) suctl tbat ^Cc)>^(c).

Case a). From Lemma 3a) we have ^’(c) = (c). Let us

observe that ^ is just the function determined by (2") with 

x̂  and x2 = c. By (b) we get (x) > <̂ (x) for xt (x,, ,c), 

contrary to a).

Case b). Let us consider the function determined 

by (2) with x, c in place of those x^, x2, where 

.x - sup xfe [x, ,c) s l|> (x) = î Cx)J. By this definition 

x tJXj ,c) and

(5) »K5) = ^(x) = ̂ (5), ¥(*) > -}(x) for xt(x,c],
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and from (B) we have

(6) (̂x) > ^(x) for xt, (x,b)s{c}.

By (6) we have ^>02) = Y(x2) > 4*1 C»2), but 

*(o) < <̂ (c) = ^(c), therefore there exists a point 

dfc(c,x2) such that ^(d) = ^Cd}. The values of func­

tions vf, ^  are equal at the points x and d and those 

functions are not identically equal because ^(c) = (̂c) > 

>$(o). By Lemma 2 we have ^  (x) > <|(x) for xfe(x,d) 

and from (6) we get

(7) Y(x)> 4*i00 >^C*) for xe(x,c).

If x s x^, then vy(x) = ^(x)» i|/'(x) = ^(x) and from

(7) we get ^(x) = '̂(x). Thus the mixed problem

^(2) = ^(x), '̂(2 ) = mC5)f t|(d) = ^(d)

has two different solutions » wbat is impossible.

Let x> 21. Prom (7) ^(x) ̂<jj>ł(x). If ^(x) =

then we proceed as in the case x = x̂ . Let ^^(x)> '̂(x). 

Hence and from the equality ^(.2) = Cf(x) we get that 

there is an 1 such that ^(x) <^(x) for xe(l,x).

Prom (B) we have ^(x) > HK*) for (a,x), in parti­

cular ^(x,,) >^(^) = ^(x^). Prom the continuity of ^  

and ^ there is a pfc(x1fx) such that ^(p-) * ^Cp)» 

Therefore = v| as they are members of P passing

through the points (p, ̂ (P)) » (x, (d»

P r o o f  of T h e o r e m .  (A) (B).

Let a<x^<x2<b and let be determined by (2). We 

are going to prove the inequality
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(8) ■ iy'(x) > ^(x) for xfc-01tx2).

Let us assume that inequality (8) does not hold. Then 

two cases are possible

a) iy(x) > i|(x) for all xe (x1tx2) and 

H>(c) = ^ (c) for a cfe(x1fx2);

b) there exists a ce- (x,j ,x2) such that *Y(c) < (c).

Case a). Let us observe that ^ is just the function

determined by conditions (l) with x̂ , c, x2 in place of 

those x̂ , x2, Xy therefore by (A) we have (̂x) < Cj(x) 

for xe (c,x2), contrary to a).

Case b). Let x = inf [xfe (c ,x2] : 4/(x) = (x) j . Hence
xe(c,x2J, ^(x) = >jp(x) and 4)(x)<^(x) for xfe[c,x).

If x<x2, then since ij; is strictly convex with 

respect to F, we have 4>(x) > ^(x) for xfe(x,j,x) and 

lV(x)<^(x) for xt (x,x2), because <̂ (x1) = î (x1),

<̂ (x) = 4J(x) and <|(x2) = Hence, in particular,

4J(x) > *̂ (x) for xfe [c,x), a contradiction.

Let x e x2 and let us consider the function de­

termined by (1) with the points x^, c, x. Prom (A) we get 

the inequality iy(x) < ̂ (x) for xt (c,x) and just as in 

the proof of Lemma 4 (inequality (7)) we have 

ty(x) < ^(x) < ̂ f(x) for xfe (c,x). But HKx) = <̂ (x) and 

tfi'(x) = therefore '|>Cx)= ^(x). In this way we

obtain two different functions <̂ , ^  & F such that 

$_CaC|) = >|(x) = 4>,,(x) and = ^Cx)* what

by Lemma 1 is impossible. This concludes the proof of in­

equality (8).
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The inequalities

Y(3t) < 'l(x) for xt (a,x̂ )

Y(x) > 'T(x) for xt (x2,b)

follows from (8), (A) and from Remark 1.

(B) = »  ( c ) .

Let xq£ I and let ^ be determined by (3). First we 

are going to prove that

• (9) Y(x) < (̂x) for xfc (a,xQ).

Assume the contrary. Then either

a) qj(x) ̂  fix) for xfc (a,xQ) and 4>(c) = i|(c)

for a ce (a,xQ),

or

b) there exists a c& (a,x0) such that ^(c)>^(c). 

To disprove a) let us observe (Lemma 1) that v| is just

the function determined by conditions (2) with x̂  = c and 

x2 = xQ. By (B) we have ty(x) > v̂ (x) for xt (c,xQ), 

a contradiction.

Case b). Let 0̂  be a function determined by (2) with 

x̂  = c and x2 = xQ. From (B) we have

(10) VCO > ^(x) for xfe (c,xQ).

It follows from the definition of that v^(x0) = Cx0)»

^ (xQ) and v^(c) = V(°) > 'ł(c). Hence and from 

Lemma 4 we obtain the inequality

(11) ^(x)>v|(x) for xe(a,x0).

By (10) and (11) we get

il)(x) > ^(x) > f(x) for xt Cc,xQ).
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Prom the definition of if and from Lemma Jc) used for the 

functions f(x) = ij)(x) - f(x) and g(x) = ^(x) - f (x) 

we get if̂'(x0) = fM(x ), what contradicts H(ii).

Now we are going to prove that

Y(x) > <f (x) for xw (xQ,b).

Assume the contrary. Then two cases are possible

a) Y(x) » f (x) for x&(xo,b) and if(c) = f(c) 

fora ctr C3r0*t>);

b) there exists a ct(.xQ,b) such that IJJ(c) <f(c). 

Case a). Let us observe (Lemma 1) that f is just the

function determined by (4) with x̂  = xQ and x2 = c.

Prom Lemma 5 we get iy(x) < if (x) for x &(xQ,c), a con­

tradiction.

Case b). Let f2 a function determined by (4) with 

x̂  = xQ and x2 = c. By Lemma 5 we have lf(x) < f2(x) 

for xfc (xQ,c). As in the proof of (9) (Case b) we obtain 

V(x)< f2(x)< f(x) for xfc (xQ,c) and f2(xQ) = f"(x0). 

In this way we get two different functions if2, >f eP such 

that f ^ ( x Q) = if ̂ ( x Q) i = 0,1,2, what by H(ii) is 

impossible.

(C)=KD).

Let a < x̂  < x2 < b and let if be determined by (4). 

First we shall show that

'(12) lf(x) < f (x) for xfr(x1,x2').

Let us asstime that inequality (12) does not hold.

Then either
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a) 4 'fW for X6r(x1tx2) and V(c) - *|(c) 

fora cfc(x1ts2)

or

b) there exists a cfc^jXg) such that ^(c)><^(c). 

Case a). By Lemma 3a) we get (̂c) = ^’(c) and by

Lemma 3b) ^(c)^ ̂ '(c). Prom (c) we obtain that the case
s

^(c) * <f(c) cannot occur, therefore IjAc) < ̂ ’’(c). Now 

let us consider the function determined by (3) with 

x0 = c, ^  V  because v^(c) = l|/’(c) < ̂ M(c). Prom (C) 

we have

(13) ^ U )  >lV(x) for xfe (a,c)

and

(14) ^(x) < for xe- (c,b).

From (14) we get vf,j(x)< ̂ (x) for xfe (o,x2) and from 

the definition of ^  and from Lemma 4 it follows that 

<̂ j(x}< <|(x) for xfels {c}. Hence, in particular, 

v̂1(x1) < (x1), but from (13) we have v̂1(x1)> (̂x,,) =

= if (x.,) , a contradiction.

Case b). Put x = sup { xt [ x̂  ,c) s 14/ (x) = f(x)j . Thus 

xfc-JVpc) and l|J(x)>if(x) for xfe (x,c] and =

= <f(x). Hence (x) Vf'ci). Let̂  'fgfcF 156 fletermined ̂

(3) with x0 = x.

If l|»’(*)>3*(5>, then and we proceed as in

the proof of Lemma 5 (case b) x>x^) and we get the con­

tradiction with the condition H(iii).
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Let ty/(x) = '̂(x)t then by Lemma 5b) we get 

4j')(5)>-̂ ,>(x) and It follows from (c) that lpn(x) ^^ł)(x), 

i.e.

(15) V a(5)>3#(5).

By (C) we have ^2(x)< lj/(x) for xfe(x,b) and in par­

ticular

(16) 4>2Cz2)< Y(x2) = <f(*2^

Lemma 4 and (16) yield ^2(x)<t|(x) for xfc Î {x}-.Thus

(17) 2(xK^(x).

Prom (15) and from the definition of ĵ>2 we have 

^2(x) >^)>(x), what contradicts (17).

Now we shall show that

Y(x) < ^ (x) xt (a,!,,), 

where is determined by (4-).

Let be determined by (5) with xQ = x^. From

(C) we get V(x) > ^j(x) for xfe (x>j,b) and form (12) 

l4l̂ (x )< ‘|  (x) for xfr (x^,x2) .  Hence and by Lemma 4 we 

obtain v^(x) < ^ (x ) for x t (a ,x^ ), from (C) 

tp(x)< ^ j(x ) for x fr(a ,x1) .  Thus q* (x)< (p (x) for 

i t  (a,x^) •

The inequality

ty(x) > <̂ (x) for xfc-(x2,b) 

follows from (12) , (A) and from lemmas 5 and 4.

(D)=*(A).

Let a<x1<x2<x^<b and let ^ be determined by (1). 

We shall prove that
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(1Q) for xe (x1 ,x2) .

Again, le t  us assume that inequality (.18) does not 

hold. We shall consider two cases

a) for x fc (x ,,x 2) and Y(c) = ^  (c)

f o r a  cfc(x1 ,x2);

h) there ex ists  a e t  (x1tx2) such that Y(c) < $  (c). 

Case a ). By Lemma 3a) we have tyYc) = ̂ C c). Thus ^

sa t is f ie s  (4) with x̂  = c and x2 , so that, by (D ), we get

ty(x) < i|(.x) for xfc (c ,x 2) ,  contrary to the inequality 

in a ).

Case b). Let x = sup |  x & [x  ̂,c ) : y (x) = (x)J . By 

th is  defin ition x e [ x 1tc ) , ^(x) = ^ (x) and \^(x)< (x)

for xfe (x ,c ) , whence >v'(x) 4 I f  we had ljj'(x) = Ĉ '(x),

then ^  would sa tisfy  (4) with x̂  = x, x2 = x  ̂ and the 

f ir s t  inequality of (D) would contradict (1). Therefore

(19) ^(xKftx).

Now le t  us consider the function determined by (4) with 

x̂  = x and x2. Since ^ ( x )  = ^ '(5) and ^ ( x )  = ^ (x ) , 

we see from (19) and from the continuity of vfy and ^ that 

^ (x )< 0 J (x )  for x from a right neighbourhood of x.

From ( d) we have the inequalities

(20) vp(x) < ^ ( x )  for xfr(x,x2)

and l|) (x) > ^j(x) for xfr (x2 ,b ). Tl*e 1&tter  yields  

iy(Xj)> v^Cxj). Hence and from the equality ty(xj) = »|(xj) 

we have

(21) <TC*3) > ̂ Uj)«
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Applying Lemma 2 for and ^ with x1 replaced by x, we 

get vfy (.x) < Cx) for x fc(x ,x2) and ^  (x) > ^  C*) for 

xfe- (a ,x ) o (x2 ,b) , in particular vfy(xj)>«!f(xj), what con­

trad icts (21 )•

The inequality

lp(x)< v |(x) for xfe Cx2 ,Xj) 

follows from ft8) and from (D).

R e m a r k  2. By a su itable change of inequ alities  

that appear in the Theorem we get the conditions equivalent 

to the fact that ip is  convex, or conoave or s tr ic t ly  con­

cave with respect to F.
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