MARIA ŻUREK-ETGENS

On extension of a solution of the translation equation

The main objective of this paper is to give a necessary and sufficient condition for the extensibility of a solution of the translation equation from a substructure R of an Ehresmann groupoid (E;.) onto the whole groupoid (E:.), without an extension of the fibre Γ . The substructure R satisfies the condition $R \cup R^{-1} = R$.

1. Let E be an arbitrary non-empty set and let be an arbitrary partial mapping from the set ExE into the set E. A pair (E;») will be called a multiplicative e system. The domain of the partial mapping will be denoted by D. . Let us define the following set

 $E^{\circ} = \{e \in E: (e,e) \in D, \wedge e \cdot e = e\}.$ **We start with the following definitions.**

DEFINITION 1. A multiplicative system (E{») is an Ehresmann groupoid if the following conditions are fulfilled:

(1)
$$
E^{O} = \{e \in E: \bigwedge_{x \in E} [(x,e) \in D. \implies x \cdot e = x] \wedge \left[(e,x) \in D. \implies e \cdot x = x \right] \},
$$

(2)
$$
\sum_{\mathbf{x},\mathbf{y},\mathbf{z}\in\mathbf{E}} (x,\mathbf{y}) \in \mathbf{D}.\quad \land \quad (y,\mathbf{z}) \in \mathbf{D}.\implies (x,\mathbf{y}\cdot\mathbf{z}) \in \mathbf{D}.\quad \land
$$

 \wedge $(\overline{x}\cdot\overline{y},z)\in D_{\bullet}$,

$$
(3) \quad \bigwedge_{x,y,z \in E} (x,y) \in D. \quad \wedge (x \cdot y, z) \in D. \implies (y,z) \in D.
$$

(4)
$$
x, y, z \in E \quad (y, z) \in D. \land (x, y, z) \in D. \implies (x, y) \in D.
$$

(5)
$$
x, y, z \in \mathbb{B}
$$

$$
(x, y) \in D. \land (y, z) \in D. \implies x \cdot (y \cdot z) = (x \cdot y) \cdot z,
$$

$$
(6) \quad x \in \mathbb{B}
$$

$$
x \cdot y \cdot z \in \mathbb{B}
$$

$$
(a) \quad x \in \mathbb{B}
$$

(7)
$$
\sqrt{x}
$$
 $x^{-1} \in B$ $(x^{-1}, x) \in D$. $\wedge (x, x^{-1}) \in D$. \wedge
 $\wedge x^{-1} \cdot x = e_x \wedge x \cdot x^{-1} = e$.

In the sequel \rightarrow e will be called a left unit of the element x and e_x will be called a right unit of the element x. The symbol x⁻¹ will denote an inverse element.

DEFINITION 2. A set A C E is a substructure of the groupoid (E}») if and only if A • A *c* **A, where**

$$
A \cdot A := \Big\{ z \in E: \bigvee_{x,y \in A} (x,y) \in D, \quad x = x \cdot y \Big\}.
$$

If A is a substructure of the Ehresmann groupoid (E;*) then $A^{-1} := \{x \in \mathbb{E}: x^{-1} \in A\}$, where x^{-1} is an inverse **element.**

2. Let T be a non-empty set and suppose that (E}») is a multiplicative system. Let F: F x E -++ F be a mapping with the domain $D_F \subset \Gamma \times E$ and the image $Q_p \subset \Gamma$. **Let us put**

 Z_p := $\{ (\alpha, x, y) \in \Gamma \times \mathbb{E}^2 : (\alpha, x) \in D_p \land (F(\alpha, x), y) \in D_p \land$ \wedge $(\mathbf{x}, \mathbf{y}) \in \mathbb{D}$. \wedge $(\alpha, \mathbf{x} \cdot \mathbf{y}) \in \mathbb{D}$ _p.

DEFINITION 3. A mapping F: Γ x **E** $\Theta \rightarrow \Gamma$ is a solution of the translation equation if

$$
(\alpha, x, y) \in \Gamma \times \mathbb{E}^2 (\alpha, x, y) \in Z_{\mathbb{F}} \implies \mathbb{F}(\mathbb{F}(\alpha, x), y) = \mathbb{F}(\alpha, x, y).
$$

DEFINITION 4. Let A be substructure of the groupoid $(E; \cdot)$. A solution of the translation equation $F: \Gamma \times A \rightarrow \Gamma$ **is extendable if there exists a solution** F **of the translation equation which is defined on the whole set r x E** and \overline{F} = \overline{F} . **T xa**

The mapping F **is called an extension of the solution F.**

DEFINITION 5. A mapping F: $\Gamma \times \mathbb{E} \rightarrow \Gamma$ **satisfies the identity condition if**

$$
\bigwedge_{\alpha \in \Gamma} \bigwedge_{e \in E^0} (\alpha, e) \in D_F \implies F(\alpha, e) = \alpha.
$$

We shall prove the following THEOREM 1. Let (E_:.) be an Ehresmann groupoid and let Γ be a non-empty set. The solution $F: \Gamma \times E \rightarrow \Gamma$

of the translation equation satisfies the identity condition if and only if $F(\cdot, x)$ is a bijection from the set Γ onto the set Γ for every $x \in E$.

P r o o f. If the mapping $F(\cdot, x)$ is a bijection from **T** onto **F** for every $x \in E$ then

$$
\bigwedge_{\mathsf{D}\in\Gamma}\bigvee_{\mathsf{D}\in\Gamma}\mathbb{F}(\beta,\mathsf{e})=\alpha
$$

for every fixed $e \in E^0$. Therefore $F(\alpha, e) = F(F(\beta, e), e) =$ $= F(\beta, e) = \infty$ for an arbitrary ∞ $\in \Gamma$ and eeE^0 .

Now, assume that $\alpha, \beta \in \Gamma$ and $F(\alpha, x) = F(\beta, x)$ for **a fixed** $x \in E$ **. Hence** $F(F(x, x), x^{-1}) = F(F(\beta, x), x^{-1})$ **thus** $F(\alpha, x \cdot x^{-1}) = F(\beta, x \cdot x^{-1})$ or $F(\alpha, x e) = F(\beta, x e)$, this means that $\alpha = \beta$. Moreover for an arbitrary $x \in \mathbb{E}$ and $\alpha \in \Gamma$ **there exists** $\beta = F(\alpha, x^{-1})$ **such that** $F(\beta, x) = F(F(\alpha, x^{-1}), x)$ $=$ $\mathbb{F}(\alpha, e)$ = α . Consequently $\mathbb{F}(\cdot, x)$ is a bijection from Γ **onto T for every x GE, which completes the proof.**

The above theorem is not true if the multiplicative system (B;«) has no inverse elements.

Remark 1. If Ft Tx E —» T is a solution of the translation equation and (E;<) is a multiplicative system without inverse elements then the property

$$
\bigwedge_{x \in E} F(\cdot, x) \colon \Gamma_{\overrightarrow{b1j}} \Gamma
$$

is only a sufficient condition for F to fulfil the identity condition.

This fact may be seen from the following

Example. Let P be the set R+ of non-negative real numbers. Take $E = \{(x,y) \in \mathbb{R}^2 : x \le y\}$. In the set E we define the operation "." as follows:

 $((x,y),(z,t))\in D$. iff $y = z$ and then $(x,y)\cdot(z,t) = (x,t)$. Let us put $F(x, x, y) = x + y - x$ for $x \in \mathbb{R}^+$ and $(x, y) \in E$. This function $F: \mathbb{R}^+ \times \mathbb{R} \to \mathbb{R}^+$ is a solution of the trans**lation equation and F satisfies the identity condition,** but for $x \leq y$ we have $F(R^+ | x \{x, y\}) = \langle y-x, \infty \rangle \neq R^+$.

3. A. Grząślewicz has give in [l] the following theorem concerning the extensibility of a solution of the equation

(1)
$$
H_1(x) \circ H_2(y) = H_3(x \cdot y).
$$

Let (E;•) be an Ehresmann groupoid and let R be its substructure. If the triplet of functions $(H_1, H_2, H_3) \in [R \longrightarrow E_1]^{\frac{1}{2}}$ **W**, where $(E_1; \circ)$ is an Ehresmann groupoid and $R \cup R^{-1} = E$, is the solution of the equation **(1), then there exists an extension of this solution on the triplet of sets (E,E,E), and it is assigned in an unique manner:**

 $\mathbb{H}^{1}(x)$:= $\{$ H ^{**d}_{d**} \in R_{**d**} \in R_{**d**} \in R_{**d**}</sup> **,-1** $H_1({}_Xe) \circ [H_1(x^{-1})]$. $\circ H_1(e_X)$ for $x \in R^-$, **where i = 1,2,3.**

Setting $H_1 = H_2 = H_3$ and treating $(E_1; \circ)$ as a set T The symbol $[X - Y]$ denotes a set of all functions **F** for which $D_p \subset X$ and $Q_p \subset Y$.

of bijections of the fixed set Γ endowed with composition **of functions we can consider equation (1) as the transla**tion equation $F(F(\cdot,x),y) = F(\cdot,x,y)$, where $F: \Gamma \times \mathbb{R} \rightarrow \Gamma$ and for every $x \in E$ the function $F(\cdot, x) = H_1(x)$ is a bi**section from the set T onto itself. Considering additionally Remark 1 we get the following**

COROLLARI. If F: Γ x R- \rightarrow Γ , where R is a sub**structure of Ehresmann groupoid (E;.») such that R u R" = E and T is an arbitrary fixed set, is a solu**tion of the translation equation such that $F(\cdot,x): \Gamma_{\text{bif}} \Gamma$ **for every x e R then F can be uniquelly extended to the solution F:** Γ **x E** \rightarrow Γ **where**

 $\overline{F}(\alpha, x) = \begin{cases} F(\alpha, x) \end{cases}$ $F(\alpha, x)$ **for** $\alpha \in \Gamma$ and $x \in \mathbb{R}$ $\mathbf{F}^{-1}(\cdot,\mathbf{x}^{-1})(\infty)$ for $\alpha \in \Gamma$ and $\mathbf{x} \in \mathbb{R}^n$

The assumption that every function of family is a bijection of the set Γ **is very strong.**
x \in R **In this case the problem of extensibility according to Remark 1 is reduced to the solutions fulfilling the identity condition. We shall show that this assumption can be released.**

First we shall prove the following

LMMA., Let R be a substructure of the Ehresmann groupoid $(E; \cdot)$ such that $R \cup R^{-1} = E$, let Γ be an arbi**trary fixed non-empty set and let F be an extendable solution of the translation equation defined on the set PxR,** **Then**

(2) $F(\Gamma_{\bullet x}e) = \overline{F}(\Gamma_{\bullet}x^{-1})$ for every $x \in R$, **where F is an arbitrary extension of the solution F defined on the set Tx E,**

- (3) $F(\cdot, x)$ is a one-to-one mapping from the set $F(\Gamma_{i,x}e)$ **into the set T ,**
- (4) the mapping \overline{F} : Γ x $E \rightarrow \Gamma$ being the extension of **the solution F is uniquely determined.**

Proof. Let F be an extendable solution of the translation equation defined on the set Px S and let F be an arbitrary extension of F onto the set T x E.

If $\alpha \in \mathbb{F}(\Gamma_{1}e)$ then there exists $\beta \in \Gamma$ such that \propto = **F**(β , \rightarrow e), thus \propto = **F**(β ,**x** \cdot **x**⁻¹) = **F**(**F**(β ,**x**),**x**⁻¹) so $\alpha \in \mathbb{F}(\Gamma, x^{-1})$. If $\alpha \in \mathbb{F}(\Gamma, x^{-1})$ then there exists $\beta \in \Gamma$ such that $\alpha = \mathbb{F}(\beta, x^{-1})$. Thus $\alpha = \mathbb{F}(\beta, x^{-1} \cdot_x e) = \mathbb{F}(\mathbb{F}(\beta, x^{-1}) \cdot_x e)$ since $e_{y-1} = x e_0$ whence $\alpha \in \mathbb{F}(\Gamma_{\mathfrak{s}_x} e)$. This proves condi**tion (2).**

Now, assume that α , $\beta \in \mathbb{F}(\Gamma_{\mathfrak{p}_X}e)$ and $\mathbb{F}(\alpha,\mathbf{x}) = \mathbb{F}(\beta,\mathbf{x})$. Then there exists $\int_{0}^{x} \delta f(x) \, dx$ such that $\delta f = \mathbb{F}(f(x,y))$, $\beta = F(\delta_{\mathbf{y} \sim \mathbf{e}})$ and $F(F(\delta_{\mathbf{y} \sim \mathbf{e}}),x) = F(F(\delta_{\mathbf{y} \sim \mathbf{e}}),x)$. Hence $\mathbb{F} (\mathbb{F} (\mathbb{F} (\mathbb{F}_{1} e) , x) , x^{-1}) = \mathbb{F} (\mathbb{F} (\mathbb{F} (\mathbb{S}_{1} e) , x) , x^{-1})$ thus $F(F(\int_{\beta_X}e)_{\beta_X}e) = F(F(\delta_{\beta_X}e)_{\beta_X}e)$ or $F(\delta_{\beta_X}e) = F(\delta_{\beta_X}e)$, this means that $\alpha = \beta$. Consequently $F(\cdot, x)$ is a one-to-one mapping on the set $F(\Gamma_{\bullet x}e)$.

To prove condition (4) we assume that $F_1: \Gamma \times E \to \Gamma$ and F_2 : Γ x $E \rightarrow \Gamma$ are two extensions of the solution F defined on the set Γ x R. Then for every $x \in R$ and $\alpha \in \Gamma$ $w = h$ ave $F(F_1(\alpha, x^{-1}), x) = F(\alpha, e_*) = F(F_2(\alpha, x^{-1}), x)$. It results from condition (2) that $F_1(\alpha, x^{-1}) \in F(\Gamma, xe)$ and $F_2(\alpha, x^{-1}) \in \mathbb{F}(\Gamma_{x,x}e)$, so in virtue of (3) we have $F_1(\alpha, x^{-1}) =$ $=$ $\mathbb{F}_2(\alpha, x^{-1})$. Using $R \cup R^{-1} = E$ we obtain condition (4) , **which completes the proof.**

Now, we shall be concerned with the main theorem of this paper.

THEOREM 2. Let R be a substructure of the Ehresmann groupoid $(E; \cdot)$ such that $E \cup R^{-1} = E$ and let Γ be an **arbitrary set. Then the solution F of the translation equation defined on the set r x R is extendable to the solution F** defined on the set Γ x E if and only if for every x & R (5) $F(\cdot,x)$ is a one-to-one mapping from the set $F(\Gamma,\cdot,x)$

onto the set $F(\Gamma, e_x)$,

and then the mapping

(6)
$$
\overline{F}(\alpha, x) = \begin{cases} F(\alpha, x), & \text{where } \alpha \in \Gamma \text{ and } x \in \mathbb{R}, \\ \left[F(\cdot, x^{-1}) \Big|_{F(\Gamma, e_{\overline{x}})} \right]^{-1} \left(F(\alpha, x^{\Theta}) \right), \end{cases}
$$

where $\alpha \in \Gamma$ and $x \in R^{-1}$

is a unique extension of the solution P.

Proof. Let us notice that for every x e R (7) $F(\Gamma, x) \subset F(\Gamma, e_x)$. **Really, if** $\alpha \in \mathbb{F}(\Gamma, x)$ **and** $\alpha = \mathbb{F}(\beta, x)$ **then** $\alpha = \mathbb{F}(\beta, x \cdot e_x) =$

 $= F(F(\beta,x),e_x)$ so $\alpha \in F(\Gamma,e_x)$.

Now suppose P to be an extendable solution of the translation equation defined on rx R. It follows from156

conditions (3) and (7) that F (• ,x) is a one-to-one mapping from $F(\Gamma_{\mathfrak{p}_x^*}e)$ into $F(\Gamma_{\mathfrak{p}_x^*})$. To prove condition (5) it it is enough to show that for arbitrary $x \in R$ and $\alpha \in \mathbb{F}(\Gamma_{\bullet}e_{x})$ there exists $\gamma \in \mathbb{F}(\Gamma_{\bullet x}e)$ such that $\mathbb{F}(\gamma_{\bullet x}) = \alpha$. Since $\alpha \in F(\Gamma, e_x)$ so there exists $\beta \in \Gamma$ such that $\alpha = \mathbb{F}(\beta_0, e_x)$. Put $\beta = \mathbb{F}(\beta_0, x^{-1})$. According to (2) $\beta = \mathbb{F}(\Gamma_{\beta, x}e)$. Besides $F(\rho, x) = F(\overline{F}(\beta, x^{-1}), x) = F(\beta, e_x) = \infty$, which com**pletes the proof of a necessary condition.**

Let $F: \Gamma x R \rightarrow \Gamma$ be a solution of the translation **equation such that condition (5) is fulfilled. We define a** function \mathbb{F} ; Γ x \mathbb{F} \leftarrow Γ by means of condition (6). For $x \in R \cap R^{-1}$ and $\alpha \in \Gamma$ we have

$$
\left[F(\cdot,x^{-1})\Big|_{F(\Gamma_{\mathfrak{p}}\mathbf{e}_{\mathbf{x}})}\right]^{-1}(F(\alpha_{\mathfrak{p}_{\mathbf{x}}}\mathbf{e})) = F(\alpha_{\mathfrak{p}}\mathbf{x})
$$

since $F(F(x, x), x^{-1}) = F(x, e)$ and $F(x, x) \in F(\Gamma_{x, e})$ according to (7). Considering additionally condition (5) by the fact that $e^e = e$, $e^e = e$ and $R \cup R$ = E we can **x** x x **notice that the function F is unambiguously defined on the whole set Tx E.**

It follows form condition (5) that for an arbitrary $x \in R^{-1}$ we have

$$
F(\cdot,x^{-1})\colon F(\Gamma,\mathrm{e}_x)\longrightarrow_{\mathrm{bij}} F(\Gamma_{\mathrm{e}_x}\mathrm{e}),
$$

thus

$$
\left[F(\cdot,x^{-1}) \right] F(\Gamma,e_x) \qquad : F(\Gamma,e_x) \qquad \text{bij} \qquad F(\Gamma,e_x).
$$

The mapping F defined by (6) has the following property

(8)
$$
\mathbf{F}(\cdot, x) : \mathbf{F}(\Gamma_{\cdot, x} \cdot \rightarrow \mathbf{F}(\Gamma_{\cdot} \cdot \rightarrow \gamma))
$$
 for every $x \in \mathbb{E}$.

It results from the definition of the function F that $\overline{F}|_{-} = F_{\bullet}$ **I nxR**

Thus it must be shown that F is a solution of the translation equation. For this purpose we shall distinguish the following cases.

Moreover, if $(x, y) \in D$, then $e_x = \sqrt{e_x}$.

Case a). Let us determine $F(F(F(x, y), y), y^{-1})$ and $F(\overline{F}(\alpha, x\cdot y), y^{-1})$. We have

$$
F(F(F(\alpha, x), y), y^{-1}) = F(F(F(\alpha, x), y), y^{-1}) =
$$

= $F\left(\left[F(\alpha, y^{-1})\middle|_{F(\Gamma, \alpha, y)}\right]^{-1} (F(F(\alpha, x), y^{-1}))_{y^{-1}}\right) =$
= $F(F(\alpha, x), \alpha_{x}) = F(\alpha, x)$

and

$$
F(F(\alpha, x \cdot y), y^{-1}) = F(F(\alpha, x \cdot y), y^{-1}) = F(\alpha, x \cdot (y \cdot y^{-1})) =
$$

= $F(\alpha, x \cdot y)$ = $F(\alpha, x \cdot e_x) = F(\alpha, x)$.

Since $\mathbb{F}(\mathbb{F}(\alpha,z),y) \in \mathbb{F}(\Gamma, e_y)$ and $\mathbb{F}(\alpha,z,y) \in \mathbb{F}(\Gamma, e_y)$ therefore applying (5) we get $\mathbb{F}(\mathbb{F}(\propto, x), y) = \mathbb{F}(\propto, x \cdot y)$.

Case b). Now we determine $F(F(\overline{F(x, x)}, y), y^{-1})$ and $\overline{F}(\overline{F}(\alpha, x \cdot y), y^{-1})$ for $y^{-1} \in R^{-1}$. Using the equality from **case a)** we **obtain**

$$
\mathbb{F}(\mathbb{F}(\mathbb{F}(\alpha, x), y), y^{-1}) = \mathbb{F}(\mathbb{F}(\alpha, x), y \cdot y^{-1}) = \mathbb{F}(\mathbb{F}(\alpha, x), e_x) =
$$

= $\mathbb{F}(\mathbb{F}(\alpha, x), e_x) = \mathbb{F}(\alpha, x),$

because $\mathbf{F}(\alpha, \mathbf{x}) \in \mathbf{F}(\Gamma, \mathbf{e}_{\mathbf{x}})$, and $\mathbf{F}(\cdot, \mathbf{e}_{\mathbf{x}}) \Big|_{\mathbf{F}(\Gamma, \mathbf{e}_{\mathbf{x}})} = \mathbf{1} \mathbf{f}_{\mathbf{F}(\Gamma, \mathbf{e}_{\mathbf{x}})}$. **However**

$$
\overline{F}(\overline{F}(\alpha, x \cdot y), y^{-1}) = \overline{F}(F(\alpha, x \cdot y), y^{-1}) =
$$
\n
$$
= \left[\overline{F}(\cdot, y) \Big|_{F(\Gamma, \Theta_{\overline{X}})} \right]^{-1} (\overline{F}(\alpha, x \cdot y), y^{-1}) =
$$
\n
$$
= \left[\overline{F}(\cdot, y) \Big|_{F(\Gamma, \Theta_{\overline{X}})} \right]^{-1} \overline{F}(F(\alpha, x \cdot y), \Theta_{y})) =
$$
\n
$$
= \left[\overline{F}(\cdot, y) \Big|_{F(\Gamma, \Theta_{\overline{X}})} \right]^{-1} \overline{F}(\alpha, x \cdot y) =
$$
\n
$$
= \left[\overline{F}(\cdot, y) \Big|_{F(\Gamma, \Theta_{\overline{X}})} \right]^{-1} \overline{F}(\alpha, x \cdot y) =
$$
\n
$$
= \left[\overline{F}(\cdot, y) \Big|_{F(\Gamma, \Theta_{\overline{X}})} \right]^{-1} \overline{F}(\overline{F}(\alpha, x \cdot y), y) =
$$

because $\overline{F}(\alpha, x) \in F(\Gamma, e_x)$. Since $\mathbb{F}(\overline{F}(\alpha, x), y) \in \mathbb{F}(\Gamma, e_y) = \mathbb{F}(\Gamma, -e)$ and 7 **y** $\mathbf{F}(\alpha_1,\mathbf{x}\cdot\mathbf{y})\in \mathbf{F}(\Gamma_{\alpha_1,\ldots,\alpha_d})$ therefore in virtue of (8) we get \mathfrak{z} $F(F(x,x),y) = F(x,x,y)$. **Case c). For** $x \in R^{-1}$ **,** $y \in R^{-1}$ **and** $x \cdot y \in R^{-1}$ **we have** $\mathbb{F}(\mathbb{F}(\alpha,\mathbf{x}),\mathbf{y}) = \left[\mathbb{F}(\cdot,\mathbf{y}^{-1})\Big|_{\mathbb{F}(\Gamma,\Theta_{\mathbf{y}})}\right]^{-1} \left(\mathbb{F}(\mathbb{F}(\alpha,\mathbf{x}),\mathbf{y}^{-1})\right) =$ $= \left[\mathbb{F} \left(\cdot \, , y^{-1} \right) \right|_{\mathbb{F} \left(\Gamma \, , \, \Theta_{\mathbb{Y}} \right)} \right]^{-1} \left(\mathbb{F} \left(\alpha \, , x \right) \right) =$ $= \left\{ \left[\mathbb{F}(\cdot, y^{-1}) \Big|_{\mathbb{F}(\Gamma_{\mathfrak{p}}, \Theta_{\mathfrak{w}})} \right]^{-1} \circ \left[\mathbb{F}(\cdot, x^{-1}) \Big|_{\mathbb{F}(\Gamma_{\mathfrak{p}}, \Theta_{\mathfrak{w}})} \right]^{-1} \right\} (\mathbb{P}(\mathbf{x}, \mathbf{y}^{\Theta}) =$

$$
= \left[F(\cdot, x^{-1}) \Big|_{F(\Gamma, e_{\chi})} \circ F(\cdot, y^{-1}) \Big|_{F(\Gamma, e_{\chi})} \right]^{-1} (F(\alpha, e_{\chi})) =
$$

\n
$$
= \left[F(\cdot, y^{-1} \cdot x^{-1}) \Big|_{F(\Gamma, e_{\chi})} \right]^{-1} (F(\alpha, e_{\chi})) =
$$

\n
$$
= \left[F(\cdot, (x \cdot y))^{-1} \Big|_{F(\Gamma, e_{\chi})} \right]^{-1} (F(\alpha, e_{\chi})) =
$$

 $=$ $\overline{F}(\alpha, x \cdot y)$.

since $\mathbf{F}(\Gamma_{\mathfrak{p}_\mathbf{y}}\mathbf{e}) = \mathbf{F}(\Gamma_{\mathfrak{p}}\mathbf{e}_\mathbf{x}), \quad \mathbf{x} \cdot \mathbf{y} = \mathbf{x}^{\mathfrak{g}} \text{ and } \mathbf{e}_\mathbf{x} \cdot \mathbf{y} = \mathbf{e}_\mathbf{y} \text{ for }$ $(x, y) \in D$. .

In cases d) and e) we argue in a similar way, using a_) and b) respectively. Case f) is obvious.

From the above consideration by (4) we obtain that the solution F of the translation equation defined on the set Γ x R and fulfilling condition (5) is uniquely extendable **to the solution F defined by (6) on the set Px E.**

The above theorem yields a generalization of theorem 1 from [2] . In paper [2] theorem 1 is formulated for a subsemigroup P of a group $(G_i \cdot)$ such that P u $P^{-1} = G$. Notice that if. $e_x = e$ then the function $F(e, x)$ is a bijection on its codomain. However, if the structure R **has the only one unit then condition (3) is equivalent to the fact that [f (»,x)1 is a family of functions being x 6 fi bisections on the common codomain.**

B e f e r e n c e s

- **[1] Grząślewicz A., On the solutions of the generalizing equation of homomorphism, Rocznik Naukowo-Dydaktyczny WSP w Krakowie /Prace Mat./ 61 (1977), p.31-38.**
- **[2] Mach A,, Z.Moszner, Sur les prolongements de la solution de l'equation de translation, Zeszyty Naukowe UJ (to appear).**

Contract Contract Contract Contract