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The aim of this paper is to present a new method of solving the

initial boundary value problem for a mechanical system with local stroke
change of stiffness. The method is based on the theory of distributions.

hjilk m^nbofp/q/r/sfnbt p/m

We consider the small vibrations of an Euler beam of the length l in its
symmetry plane, with stroke change of stiffness of the beam described by the
function β: 〈0, l〉 −→ R̄ defined as follows

β(x) =











EJ, x ∈ 〈0, x1) ∪ (x2, l〉,

0, x ∈ {x1, x2}

+∞, x ∈ (x1, x2).

(1)

The two joints of the beam are located respectively at the points with abscissae
x1 and x2, and their small vibrations are given by (see [3], [4], [5])

[

∂U

∂x
(x+

i , t) −
∂U

∂x
(x−

i , t)

]

δ
′′

xi
; i = 1, 2.

The main idea of this formula comes from the paper [3] and is based on a
sequential approach. The function U(x, t) is the deflection at the point x ∈ 〈0, l〉
at the moment t, δ

′′

xi
denotes the second derivative of the Dirac distribution

δxi
concentrated at the point xi .
The small vibrations of the system under consideration are described by

the equation

∂2

∂x2

[

β(x)
∂2U

∂x2
+ α0J

∂3U

∂x2∂t

]

+ h(x)
∂2U

∂t2
= f(x, t), (2)
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where α0J = const; h(x) denotes the distribution of the beam masses; f(x, t)
is the distribution of the external forces applied to the beam in its symmetry
plane.

Since there are the joints respectively at points x1 and x2 , the function

U(., t) ∈ C0(〈0, l〉) ∩ C4(〈0, l〉 \ {x1, x2})

and it is linear in the interval (x1, x2) with respect to the absolute stiffness of
this element.

We could describe the vibration of our beam by the methods of classical
mathematical analysis but this requires taking into consideration the vibrations
of three elements of a beam 〈0, x1), (x1, x2) and (x1, l〉. It is both arduous and
labour-concerning.

The purpose of this paper is to present a new method of determining the
beam vibrations. The point of the matter is that the real situation is modelled
as follows. The absolutely stiff part of the beam we describe as the only point of
mass located in x1 (i.e., we let x2 = x1 = 1

2
(x1 +x2)) which bears all dynamical

reactions that appear in this stiff part of the beam (this needs a distributional
description). The method gives us the possibility to find the discontinuous at
x1 solutions of the substitute beam. It is achieved by introducing δ′′′x1

into the
initial boundary problem substituting the real problem. Then we return to
the real problem by the connection of the points x1 and x2 fitting the segment
y(x, t) = p(t)x + q(t) in the interval 〈x1, x2〉 to make continuous the solution
of the real problem.

The mass of the stiff element of the beam and its dynamical reaction located
at the point x1 are analytically characterized by ρF (x2 − x1) – the mass of
the absolutely stiff part of the beam (x1, x2) and by 1

12
ρ1F1(x2 − x1)

2 – its
moment of inertia, computed with respect to the middle point 1

2
(x1 + x2)

of this part of the beam. The symbols ρ, ρ1, F , F1 stand for the densities
and for the cross-section areas of the parts 〈0, x1) ∪ (x2, l〉 and (x1, x2) of the
beam, respectively. The equation for the function W (x, t), x ∈ 〈0, l〉 \ (x1, x2)
representing vibrations of the substitute beam is of form (10), cf. Section 3.

The knowledge of W (x, t), the solution of the initial boundary problem of
the substitute beam, and of the fact that it is impossible to bend the absolutely
stiff element (its vibrations are planar) provide the possibility of construction
of the function U(x, t), the solution of the real beam in the interval 〈0, l〉, via
the formula

U(x, t) =

{

W (x, t), x ∈ 〈0, x1) ∪ (x2, l〉

a(t)x + b(t), x ∈ (x1, x2).
(3)

Since W (x−

1 , t) = a(t)x1 + b(t), W (x+
2 , t) = a(t)x2 + b(t) the continuity at x1

and x2 yields
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a(t) =
W (x+

2 , t) − W (x−

1 , t)

x2 − x1

, b(t) =
x1W (x+

2 , t) − x2W (x−

1 , t)

x2 − x1

. (4)
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Let us define the internal damping of the beam

α(x) =











α0 , x ∈ 〈0, x1) ∪ (x2, l〉

0, x ∈ {x1, x2}

α1 , x ∈ (x1, x2)

(5)

and the stiffness of the beam

β(x) =











EJ, x ∈ 〈0, x1) ∪ (x2, l〉

0, x ∈ {x1, x2}

M, x ∈ (x1, x2)

Here E denotes the Young modulus, J is the axial moment of inertia, M is
defined as the stiffness (we assume that M = const).

One edgepoint of the beam is fixed while the other is slidable.
Now let au assume that there are no external forces and therefore, the

small transversal vibrations of the beam under consideration are described by
the formula

∂2

∂x2

(

β(x)
∂2U

∂x2
+ α(x)

∂3U

∂x2∂t

)

+ h(x)
∂2U

∂t2
= 0 (6)

U(., t) ∈ C0(〈0, l〉) ∩ C4(〈0, x1) ∪ (x2, l〉), U(x, t) = ax + b, x ∈ (x1, x2), a, b-
const.; h(x) = ρF + ρ1F1(x2 − x1)δx1

.
The constants a and b are chosen so that U(., t) ∈ C0(〈0, l〉).

The boundary conditions are

U(0, t) = 0, U(l, t) = 0,
∂U

∂x
(0, t) = 0,

∂U

∂x
(l, t) = 0. (7)

The initial conditions are as follows

U(x, 0) = ϕ1(x),
∂U

∂t
(x, 0) = ϕ2(x) for x ∈ 〈0, l〉

ϕ1(0) = ϕ1(l), ϕ2(0) = ϕ2(l).
(8)

Let us assume the physical conditions:

∂2U

∂x2
(x−

i , t) =
∂2U

∂x2
(x+

i , t) = 0, i = 1, 2. (9)
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The initial boundary problem (3), (4), (5), (6) of the vibrations of the
substitute beam is described by the formula

(a) EJ
∂4W

∂x4
+ α0J

∂5W

∂x4∂t
+ (ρF + ρ1F1(x2 − x1)δx1

)
∂2W

∂t2

(b) + γ1

(

∂3W (x+
1 , t)

∂x∂t2
−

∂3W (x−

1 , t)

∂x∂t2

)

δ′′x1

(c) +
ρ1F1(x2 − x1)

2

12

(

∂2W (x+

1 , t)

∂t2
−

∂2W (x−

1 , t)

∂t2

)

δ′x1

(d) + γ2

(

∂5W (x+

1 , t)

∂x3∂t2
−

∂5W (x−

1 , t)

∂x3∂t2

)

δ′′′x1

= 0

(10)

where

(a) the coefficients at δx1
and δ′x1

are used to describe the dynamics of the
part (x1, x2); (see [4])

(b) δ′′x1
refers to the joint of the substitute beam; (see [5])

(d) δ′′′x1
leads to the discontinuous solution;

(c) δ′x1
characterizes the pair of the forces in x1; (see [4]),

and γ1 and γ2 are the parameters that fit to obtain the continuous solution of
the problem and to make the units matching.

We are using the Fourier method to solve the eigenproblem associated to
the substitute problem under consideration.

Let us assume (with the constant p and q)

W (x, t) = X(x)T (t), (11)

a(t) = pT (t), b(t) = qT (t).

Substituting (11) into (6), after some calculations, we obtain

T̈

T + λ0

E
Ṫ

=
−EJXIV

D
= −ω2,

where
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D = (ρF + ρ1F1δx1
(x2 − x1))X

+ γ1(X
′(x+

1 ) − X ′(x−

1 ))δ′′x1

+ γ2(X
′′′(x+

1 ) − X ′′′(x−

1 ))δ′′′x1

+
1

12
ρ1F1(x2 − x1)

2(X(x+
1 ) − X(x−

1 ))δ′x1

and the constant −ω2 is negative to obtain positive eigenvalues.
Hence

T̈ +
α0ω

2

E
Ṫ + ω2T = 0, (12)

( ˙ = d
dt

) and

XIV − λ4X =
ρ1F1(x2 − x1)ω

2

EJ
Xδx1

+
ρ1F1(x2 − x1)

2ω2

12EJ
(X(x+

1 ) − X(x−

1 ))δ′x1

+
γ1ω

2

EJ
(X ′(x+

1 ) − X ′(x−

1 ))δ′′x1

+
γ2ω

2

EJ
(X ′′′(x+

1 ) − X ′′′(x−

1 ))δ′′′x1
,

(13)

where λ4 = ρFω2

EJ
.
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We write, for short,

ξ :=
x1 + x2

2
= x1 = x2 , Θ :=

ω2

2EJ
, η :=

x2 − x1

2
.

The general solution of (13) is given by (we omit the standard calculations)

X(x) = P cosλx + Q sinλx + R chλx + S shλx

+
4ρ1F1ηΘ

λ4
X(ξ)H(x − ξ) [shλ(x − ξ) − sin λ(x − ξ)]

+
ρ1F1η

2Θ

3λ2

(

X ′(x+

1 ) − X ′(x−

1 )
)

H(x − ξ) [chλ(x − ξ) − cosλ(x − ξ)]

+
γ1Θ

λ

(

X(x+

1 ) − X(x−

1 )
)

H(x − ξ) [shλ(x − ξ) + sin λ(x − ξ)]

+ γ2Θ
(

X ′′′(x+
2 ) − X ′′′(x−

2 )
)

H(x − ξ) [chλ(x − ξ) + cosλ(x − ξ)] ,
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where H denotes the Heaviside function of the unit jump, i.e.,

H(x − c) = 1, x > c, H(x − c) = 0, x < c, H(x − c) =
1

2
, x = c.

According to the idea of the method when adapting the solution of the equation
(13) to the intervals 〈0, x1) ∪ (x2, l〉 we get

X(x) = P cosλx + Q sin λx + Rchλx + Sshλx

+
4ρ1F1ηΘ

λ4
X(

x1 + x2

2
)H(x −

x1 + x2

2
)

×

[

shλ(x −
x1 + x2

2
) − sinλ(x −

x1 + x2

2
)

]

+
3ρ1F1η

2Θ

2λ2
{H(x − x2)X(x+

2 ) [chλ(x − x2) − cosλ(x − x2)]

− H(x − x1)X(x−

1 ) [chλ(x − x1) − cosλ(x − x1)]} +

+ γ1Θ{H(x − x1)(p − X ′(x−

1 )) [shλ(x − x1) + sin λ(x − x1)]

+ H(x − x2)(X
′(x+

2 ) − p) [shλ(x − x2) + sin λ(x − x2)]}

+ γ2Θ{−H(x − x1)X
′′′(x−

1 ) [chλ(x − x1) + cosλ(x − x1)]

+ H(x − x2)X
′′′(x+

2 ) [chλ(x − x2) + cosλ(x − x2)]}.

According to the shape of the function

W (x, t) = X(x)T (t)

and the initial-boundary conditions given by the formulas (8), (9) we obtain
the system of thirteen linear equations with thirteen unknown values

P, Q, R, S, X(ξ), X(x−

1 ), X(x+
2 ), X ′(x−

1 ), X ′(x+
2 ), X ′′′(x−

1 ), X ′′′(x+
2 ), p, q.

The equations are:

1. X(0) = 0 ⇐⇒ P + Q = 0,

2. X ′(0) = 0 ⇐⇒ R + S = 0,

3. X(l) = 0 ⇐⇒ P cosλl + Q sinλl + Rchλl + Schλl = 0,

4. X ′(l) = 0 ⇐⇒ −P sin λl + Q cosλl + Rshλl + Schλl = 0,

5. X ′′(x1) = 0 ⇐⇒ −λ2P cosλx1 − λ2Q sinλx1 + λ2Rchλx1

+ λ2Sshλx1 −
1

3
ρ1F1η

2ΘX(x−

1 ) = 0,
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6. X ′′(x2) = 0 ⇐⇒−λ2P cosλx2 − λ2Q sinλx2 + λ2Rchλx2 + λ2Sshλx2

+
4ρ1F1η

2Θ

λ2
X(ξ)[shλη + sin λη]

+ γ1Θ[p − X ′(x−

1 )]λ[sh2λη − sin 2λη]

− γ2ΘX ′′′(x−

1 )λ2[ch2λη − cos 2λη] = 0,

7. X(ξ) = P cosλξ + Q sinλξ + Rchλξ + Sshλξ

+
ρ1F1η

2Θ

3λ2
X(x+

2 )[chλη − cosλη]

+
γ1Θ

λ
[X ′(x+

2 ) − p][shλη + sin λη]

− γ2ΘX ′′′(x+
2 )[chλη + cosλη],

8. X(x−

1 ) = P cosλx1 + Q sinλx1 + Rchλx1 + Sshx1,

9. X(x+

2 ) = P cosλx2 + Q sinλx2 + Rchλx2 + Sshx2

+
4ρ1F1η

2Θ

λ4
X(ξ)[shλη − sin λη]

−
ρ1F1η

2Θ

3λ4
X(x−

1 )[ch2λη + cos 2λη]

+
γ1Θ

λ
[p − X ′(x−

1 )][sh2λη + sin 2λη]

−
γ2Θ

λ
X ′′′(x−

1 )[ch2λη + cos 2λη]

+ 2γ2ΘX ′′′(x+

2 ),

10. X ′(x−

1 ) = −Pλ sin λx1 + Qλ cosλx1 + Rλshλx1 + Sλchλx1,

11. X ′(x+
2 ) = −Pλ sin λx2 + Qλ cosλx2 + Rλshλx2 + Sλchλx2

+
2ρ1F1ηΘ

λ3
X(ξ)[ch2λη − cos 2λη]

+
γ1Θ

λ
[p − X ′(x−

1 )][ch2λη + cos 2λη]

+ γ1Θ[X ′(x+

2 ) − q][ch2λη + cos 2λη]

−
γ2Θ

λ
X ′′′(x−

1 )λ[sh2λη − sin 2λη],

12. X ′′′(x−

1 ) = λ3P sin λx1 − λ3Q cosλx1 + λ3P chλx1 + λ3Sshλx1,

13. X ′′′(x+
2 ) = λ3P sin λx2 − λ3Q cosλx2 + λ3P chλx2 + λ3Sshλx2

+
2ρ1F1ηΘ

λ
X(ξ)[chλη + cosλη]
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−
1

6
λρ1F1ηΘX(x−

1 )[sh2λη − sin 2λη]

+ λ2γ1Θ[p − X ′(x−

1 )][ch2λη − cos 2λη]

− λ3γ2ΘX ′′′(x−

1 )[sh2λη + sin 2λη].

The system of the linear equations given above has infinite number of solu-
tions ([2]) and it represents the eigenproblem under consideration. The details
of the calculations as well as the explicit solution of the initial boundary prob-
lem will be dealt with in a subsequent paper. The problem considered in this
paper is also discussed in [5] but in the approach of L. Schwartz [4].

Assuming that the determinant of the matrix of the system 1.-13. of the
linear equations is equal to zero we obtain the eigenvalues equation. There
is a countable number of such eigenvalues λn so we can create an increasing
sequence of λn . In consequence we put λn , Tn , Xn(x), pn , qn into the formulas
(12) (13) instead of, respectively, λ, T , X , p, q, and form the solution of (10)

W (x, t) =

∞
∑

n=1

X̃n(x)(anT1n(t) + bnT2n(t)),

where T1n(t) and T2n(t) are the linearly independent particular solutions of
(12) while

X̃n(x) =

{

Xn(x), x ∈ 〈0, x1) ∪ (x2, l〉

pnx + qn , x ∈ (x1, x2)
.
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