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We consider aggregations of fuzzy relations using aggregation

functions of n variables. After recalling fundamental properties of fuzzy
relations we examine aggregation functions which preserve reflexivity,
symmetry, connectedness and transitivity of fuzzy relations.

egfih j[k_lcm/n/o/pck_q m/j

Aggregations of relations are important in the group choice theory (cf. [8])
and multiple-criteria decision making (cf. [14]). Formally, instead of crisp re-
lations we aggregate their characteristic functions. However, the aggregation
results appear to be fuzzy relations. Therefore, the most fruitful approach to
such aggregations begins with fuzzy relations (cf. [12], [9] or [13]).

Since fuzzy relations have values in [0, 1], for their transformations we use
real functions F : [0, 1]n −→ [0, 1]. This leads to new functional equations and
functional inequalities connected with the particular properties of fuzzy rela-
tions. Usually, the properties are checked each time for concrete assumptions
on the form of aggregation functions (cf. e.g. [15]). We shall consider obtained
equations without additional assumptions about expected aggregation func-
tions.

We consider the fundamental properties of fuzzy relations during aggre-
gations of finite families of these relations. Firstly, we describe the problem
of aggregation of fuzzy relations (Section 2). Next, we describe solutions of
functional equations and inequalities connected with: reflexivity (Section 3),
symmetry (Section 4), connectedness (Section 5) and transitivity (Section 6) of
fuzzy relations. All sections are preceded by suitable definitions of commonly
used properties of fuzzy relations.

r fis/o/t/t/u�lcv/w xyk_q m/j/z

The notion of fuzzy relations is a generalization of that of the characteristic
function of crisp relations.

AMS (2000) Subject Classification: 03E72, 39B52, 39B62.
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Definition 1 (Zadeh [17])
Let X 6= ∅. A fuzzy relation in X is an arbitrary function R: X ×X −→ [0, 1].
The family of all fuzzy relations in X is denoted by FR(X).

Fuzzy relations form a lattice (FR(X),∨,∧) with the induced partial order

R 6 S ⇐⇒ ∀x, y ∈ X R(x, y) 6 S(x, y)

and with the lattice operations (cf. [17])

(R ∨ S)(x, y) = max(R(x, y), S(x, y)),

(R ∧ S)(x, y) = min(R(x, y), S(x, y)), x, y ∈ X.

For R, S ∈ FR(X) we also use the sup-? composition of fuzzy relations (cf. [10])

(R ◦ S)(x, z) = sup
y∈X

[R(x, y) ? S(y, z)], x, z ∈ X,

where ? : [0, 1]2 −→ [0, 1] is a binary operation. Case ? = min is referred to as
the standard fuzzy relation composition.

Definition 2 (Fodor [9])
Let n > 2, F : [0, 1]n −→ [0, 1], R1, . . . , Rn ∈ FR(X). We define the aggregated
fuzzy relation RF by the formula

RF (x, y) = F (R1(x, y), . . . , Rn(x, y)), x, y ∈ X. (1)

We shall examine properties of the relation (1) under suitable assumptions
on fuzzy relations R1, . . . , Rn . We look for such aggregation functions F which
preserve some properties of aggregated fuzzy relations R1, . . . , Rn . Examples
of such properties and appropriate aggregation functions can be found in the
papers: [5]- [7] and [14]- [16]. In particular, any projection function

Pk(t1, . . . , tn) = tk , t1, . . . , tn ∈ [0, 1], k = 1, . . . , n (2)

preserves arbitrary properties of fuzzy relations, because R = Rk in (1).

�/fi� v[�_w v/�/q �Kq k_u

At first, we examine the reflexivity properties of the relation (1). Presented
definitions of fuzzy relation classes are based on [4], Chapter 5.

Definition 3
A fuzzy relation R is called

reflexive, if ∀x ∈ X R(x, x) = 1, (3)

irreflexive, if ∀x ∈ X R(x, x) = 0, (4)

weakly reflexive, if ∀x ∈ X R(x, x) > 0, (5)

weakly irreflexive, if ∀x ∈ X R(x, x) < 1. (6)
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Theorem 1 (cf. [6], Theorem 1)
Let R1, . . . , Rn ∈ FR(X) be reflexive (resp. irreflexive). The relation RF is

reflexive (resp. irreflexive), if and only if the function F satisfies the condition

(7) (resp. (8)), where

F (1, . . . , 1) = 1, (7)

F (0, . . . , 0) = 0. (8)

Proof. Let x ∈ X . If F (1, . . . , 1) = 1, then we get (3) for RF whenever
R1, . . . , Rn are reflexive. Conversely, if F (1, . . . , 1) < 1, then RF does not fulfil
(3). In the case of irreflexive fuzzy relations the proof is similar.

Example 1
Any idempotent function F ,

F (t, . . . , t) = t for t ∈ [0, 1] (9)

fulfils the conditions (7) and (8).

Theorem 2
The fuzzy relation (1) is weakly reflexive (resp. weakly irreflexive) for every

weakly reflexive (resp. weakly irreflexive) R1, . . . , Rn ∈ FR(X), if and only if

the function F satisfies the condition (10) (resp. (11)), where

t1 > 0, . . . , tn > 0 =⇒ F (t1, . . . , tn) > 0, t1, . . . , tn ∈ [0, 1], (10)

t1 < 1, . . . , tn < 1 =⇒ F (t1, . . . , tn) < 1, t1, . . . , tn ∈ [0, 1]. (11)

Proof. Let x ∈ X . If F fulfils (10), then we get (5) for RF whenever
R1, . . . , Rn are weakly reflexive. Conversely, if t1 > 0, . . . , tn > 0 in [0, 1],
then fuzzy relations Rk ≡ tk, k = 1, . . . , n are weakly reflexive and from the
condition (5) for RF we obtain (10). In the case of weakly irreflexive fuzzy
relations the proof is similar.

Example 2
Any increasing, idempotent function F fulfils the conditions (10) and (11)
(cf. [9], Proposition 5.1).

Directly from the definition of increasing bijections we get

Lemma 1
If ϕ: [0, 1] −→ [0, 1] is an increasing bijection, then for every s ∈ [0, 1] we have

ϕ(s) = 0 ⇐⇒ s = 0, ϕ(s) = 1 ⇐⇒ s = 1, (12)

ϕ(s) > 0 ⇐⇒ s > 0, ϕ(s) < 1 ⇐⇒ s < 1. (13)
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Using the above lemma for operations Fϕ isomorphic with a given one,

Fϕ(t1, . . . , tn) = ϕ−1F (ϕ(t1), . . . , ϕ(tn)), t1, . . . , tn ∈ [0, 1], (14)

we can generate new transformations fulfilling conditions from Theorems 1
and 2.

Theorem 3
The conditions (7), (8), (10) and (11) are invariant with respect to all increasing

bijections, i.e., with any function F fulfilling one of these conditions, also the

functions (14) fulfil the respective condition.

Now, we examine the symmetry properties of the relation (1).

Definition 4
A fuzzy relation R is called

symmetric, if ∀x, y ∈ X R(y, x) = R(x, y), (15)

semi-symmetric, if ∀x, y ∈ X R(x, y) = 0 ⇐⇒ R(y, x) = 0, (16)

asymmetric, if ∀x, y ∈ X min(R(x, y), R(y, x)) = 0, (17)

antisymmetric, if ∀x, y ∈ X, x 6= y min(R(x, y), R(y, x)) = 0, (18)

weakly symmetric, if ∀x, y ∈ X R(x, y) = 1 ⇐⇒ R(y, x) = 1, (19)

weakly asymmetric, if ∀x, y ∈ X min(R(x, y), R(y, x)) < 1, (20)

weakly antisymmetric, if ∀x, y ∈ X, x 6= y min(R(x, y), R(y, x)) < 1. (21)

Symmetry appears to be the most stable property of fuzzy relations, because
immediately we get

Theorem 4 (cf. [6], Theorem 2)
Let R1, . . . , Rn ∈ FR(X) be symmetric. For every function F the fuzzy relation

RF is also symmetric.

Definition 5
Let p ∈ [0, 1], s = (s1, . . . , sn) ∈ [0, 1]n, t = (t1, . . . , tn) ∈ [0, 1]n, F (t) =
F (t1, . . . , tn). We say that s, t ∈ [0, 1]n are p-equivalent (s ∼p t), if

∀ 1 6 k 6 n sk = p ⇐⇒ tk = p.

Theorem 5
Let card X > 2. The relation RF is semi-symmetric (resp. weakly symmetric)

for every semi-symmetric (resp. weakly symmetric) R1, . . . , Rn ∈ FR(X), if

and only if the function F satisfies the condition (22) (resp. (23)), where

s ∼0 t =⇒ (F (s) = 0 ⇔ F (t) = 0) for s, t ∈ [0, 1]n, (22)

s ∼1 t =⇒ (F (s) = 1 ⇔ F (t) = 1) for s, t ∈ [0, 1]n. (23)
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Proof. Let F fulfil (22), x, y ∈ X . If R1, . . . , Rn ∈ FR(X) are semi-
symmetric, then putting

sk = Rk(x, y), tk = Rk(y, x), k = 1, 2, . . . , n (24)

we see that s ∼0 t. Thus,

F (R1(x, y), . . . , Rn(x, y)) = 0 ⇔ F (s) = 0

⇔ F (t) = 0

⇔ F (R1(y, x), . . . , Rn(y, x)) = 0,

which proves (16) for RF .
Conversely, let x, y ∈ X , s, t ∈ [0, 1]n, s ∼0 t. Since card X > 2, then there

exist a, b ∈ X , a 6= b. The fuzzy relations

Rk(x, y) =











sk , if (x, y) = (a, b)

tk , if (x, y) = (b, a)

1, otherwise

, k = 1, . . . , n,

are semi-symmetric. Thus, the relation RF is also semi-symmetric and we get

F (s) = 0 ⇔ F (R1(a, b), . . . , Rn(a, b)) = 0

⇔ F (R1(b, a), . . . , Rn(b, a)) = 0

⇔ F (t) = 0,

which proves (22). In the case of weakly symmetric fuzzy relations the proof is
similar.

Example 3
There are many operations fulfilling the conditions (22) and (23). For example
n-ary F = min, F = max or the weighted mean:

F (t1, . . . , tn) =

n
∑

k=1

wktk , t, w ∈ [0, 1]n,
∑n

k=1
wk = 1. (25)

In virtue of Lemma 1, also quasilinear means (cf. [1], p. 287):

F (t1, . . . , tn) = ϕ−1

(

n
∑

k=1

wkϕ(tk)

)

, (26)

fulfil (22), where ϕ: [0, 1] −→ [0, 1] is an increasing bijection.
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Theorem 6
Let card X > 2. The relation RF is asymmetric (resp. antisymmetric) for

every asymmetric (resp. antisymmetric) R1, . . . , Rn ∈ FR(X), if and only if

the function F satisfies the condition (27), where

∀ s, t ∈ [0, 1]n (∀ 1 6 k 6 n min(sk, tk) = 0) =⇒ min(F (s), F (t)) = 0. (27)

Proof. Let F fulfil (27), x, y ∈ X . If R1, . . . , Rn ∈ FR(X) are asymmetric,
then using (24) we see that

∀ 1 6 k 6 n min(sk, tk) = 0 (28)

and the relation RF is asymmetric by (27).
Conversely, let s, t ∈ [0, 1]n fulfil (28). Since card X > 2, then there exist

a, b ∈ X , a 6= b. The fuzzy relations

Rk(x, y) =











sk , if (x, y) = (a, b)

tk , if (x, y) = (b, a)

0, otherwise

, k = 1, . . . , n (29)

are asymmetric. Thus, the relation RF is also asymmetric and we get

min(F (s), F (t)) = min(F (R1(a, b), . . . , Rn(a, b)), F (R1(b, a), . . . , Rn(b, a)))

= 0,

which proves (27). In the case of antisymmetric fuzzy relations the proof is
similar.

Example 4
As the first example of functions fulfilling (27) we can consider F = min. A
simple condition sufficient for (27) is connected with zero element z = 0 of
operation F with respect to a certain coordinate:

∃ 1 6 k 6 n ∀ i 6= k ∀ ti ∈ [0, 1] F (t1, . . . , tk−1, 0, tk+1, . . . , tn) = 0.

In particular, the weighted geometric mean:

F (t1, . . . , tn) =

n
∏

k=1

twk

k , t, w ∈ [0, 1]n,
∑n

k=1
wk = 1,

fulfils (27). As another example we consider the median (cf. [3], p. 21):

med(t1, . . . , tn) =







sk + sk+1

2
, if n = 2k

sk+1 , if n = 2k + 1
, (30)

where (s1, . . . , sn) is an increasing permutation of (t1, . . . , tn), (s1 6 . . . 6 sn).
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If a function F fulfils the condition

∀ t ∈ [0, 1]n card{k : tk = 0} >
n

2
=⇒ F (t) = 0, (31)

then we also get (27) (e.g. the median (30) fulfils (31)). However, the above
condition is not necessary for (27), because it does not cover the projections
(2).

Similarly as Theorem 6 we get

Theorem 7
Let card X > 2. The fuzzy relation RF is weakly asymmetric (resp. weakly anti-

symmetric) for every weakly asymmetric (resp. weakly antisymmetric) R1, . . . ,

Rn ∈ FR(X), if and only if the function F satisfies the condition (32), where

∀ s, t ∈ [0, 1]n (∀ 1 6 k 6 n min(sk, tk) < 1) =⇒ min(F (s), F (t)) < 1. (32)

Proof. Let F fulfil (32), x, y ∈ X . If R1, . . . , Rn ∈ FR(X) are weakly
asymmetric, then using (24) we see that

∀ 1 6 k 6 n min(sk, tk) < 1 (33)

and the relation RF is weakly asymmetric by (32).
Conversely, let s, t ∈ [0, 1]n fulfil (33). Since card X > 2, then there exist

a, b ∈ X , a 6= b. Fuzzy relations (29) are weakly asymmetric. Thus, the relation
RF is also weakly asymmetric and we get

min(F (s), F (t)) = min(F (R1(a, b), . . . , Rn(a, b)), F (R1(b, a), . . . , Rn(b, a)))

< 1,

which proves (32). In the case of weakly antisymmetric fuzzy relations the
proof is similar.

Example 5
As examples of n-ary operations fulfilling (32) we have F = min and the
weighted mean (25).

In virtue of Lemma 1 we get

Theorem 8
The conditions (22), (23), (27) and (32) are invariant with respect to increasing

bijections.

In particular, every quasilinear mean (26) fulfils (32).
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Next we examine connectedness properties of the relation (1).

Definition 6
A fuzzy relation R is called

connected, if ∀x, y ∈ X, x 6= y max(R(x, y), R(y, x)) = 1, (34)

totally connected, if ∀x, y ∈ X max(R(x, y), R(y, x)) = 1, (35)

weakly connected, if ∀x, y ∈ X, x 6= y max(R(x, y), R(y, x)) > 0, (36)

weakly totally connected, if ∀x, y ∈ X max(R(x, y), R(y, x)) > 0. (37)

The above definitions are very similar to those considered in Definition 4.
This similarity can be described by the use of the complement R′ of fuzzy
relation R:

R′(x, y) = 1 − R(x, y), x, y ∈ [0, 1].

Lemma 2
A fuzzy relation R is asymmetric (resp. antisymmetric, weakly asymmetric,

weakly antisymmetric), if and only if its complement is totally connected (resp.

connected, weakly totally connected, weakly connected).

In virtue of this lemma conditions for aggregated connected fuzzy relations
can be obtained by negation of conditions considered above for aggregated
asymmetric and antisymmetric fuzzy relations.

Similarly as Theorem 6 we get

Theorem 9
Let cardX > 2. The relation RF is connected (resp. totally connected) for

every connected (resp. totally connected) R1, . . . , Rn ∈ FR(X), if and only if

the function F satisfies the condition (38), where

∀ s, t ∈ [0, 1]n (∀ 1 6 k 6 n max(sk, tk) = 1) =⇒ max(F (s), F (t)) = 1. (38)

Example 6
As examples of functions fulfilling (38) we can consider F = max, F = med or
operations F with neutral element z = 1 with respect to a certain coordinate:

∃ 1 6 k 6 n ∀ i 6= k ∀ ti ∈ [0, 1] F (t1, . . . , tk−1, 1, tk+1, . . . , tn) = 1.

Now a dual property for (31) have the form:

∀ t ∈ [0, 1]n card{k : tk = 1} >
n

2
=⇒ F (t) = 1. (39)

Similarly as Theorem 7 we get
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Theorem 10
Let card X > 2. The fuzzy relation RF is weakly connected (resp. weakly

totally connected) for every weakly connected (resp. weakly totally connected)

R1, . . . , Rn ∈ FR(X), if and only if the function F satisfies the condition (40),
where

∀ s, t ∈ [0, 1]n (∀ 1 6 k 6 n max(sk, tk) > 0) =⇒ max(F (s), F (t)) > 0. (40)

Example 7
As examples of operations fulfilling (40) we have F = max and the weighted
mean (25).

In virtue of Lemma 1 we get

Theorem 11
The conditions (38), (40) are invariant with respect to increasing bijections.

In particular, every quasilinear mean (26) fulfils (40).

«/fi¬"lcxFj/z/q k_q �Kq k_u

Finally, we examine transitivity properties of the relation (1).

Definition 7 (cf. [2])
Let ? : [0, 1]2 −→ [0, 1] be a binary operation. A fuzzy relation R is called

?-transitive, if ∀x, y, z ∈ X R(x, y) ? R(y, z) 6 R(x, z), (41)

transitive, if ∀x, y, z ∈ X min(R(x, y), R(y, z)) 6 R(x, z). (42)

Definition 8 (cf. [11])
Binary operation ? in [0, 1] is said to be a triangular norm, if it is increasing,
associative, commutative and with the neutral element e = 1.

In particular, the  Lukasiewicz multivalued conjunction

TL(u, v) = max(u + v − 1, 0), u, v ∈ [0, 1]

is a triangular norm. The case of transitivity was discussed in details in [16].

Theorem 12 (Saminger et al. [16], Theorem 3.1)
Let card X > 3, ? be a triangular norm and function F : [0, 1]n −→ [0, 1] be

increasing with respect to the induced order in [0, 1]n, i.e.,

sk 6 tk, k = 1, . . . , n =⇒ F (s1, . . . , sn) 6 F (t1, . . . , tn).

The relation RF is ?-transitive for every ?-transitive R1, . . . , Rn ∈ FR(X), if

and only if the function F dominates the operation ?, i.e.,

∀ s, t ∈ [0, 1]n F (s1 ? t1, . . . , sn ? tn) > F (s1, . . . , sn) ? F (t1, . . . , tn). (43)
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Example 8
The main example of domination for ? = min is F = min (cf. [16], Proposition
5.1). Thus F = min preserves min-transitivity of fuzzy relations.

Example 9
Saminger et al. [16] presented some examples of aggregating functions pre-
serving TL-transitivity. In particular any weighted mean (25) preserves TL-
transitivity of fuzzy relations.

Let us observe that condition (43) is not invariant with respect to increasing
bijections.

Example 10
Let n = 2, card X = 3, ϕ(x) = x2, x ∈ [0, 1]. From the above example we know
that the arithmetic mean F (u, v) = u+v

2
, u, v ∈ [0, 1] dominates TL. However,

the operation Fϕ(u, v) =
√

u2+v2

2
, u, v ∈ [0, 1] does not dominate TL. For

u = 0.9, v = 0.1, w = 0.8, z = 0.2 it can be verified that

√

max(u + v − 1, 0)2 + max(w + z − 1, 0)2

2

< max

(
√

u2 + w2

2
+

√

v2 + z2

2
− 1, 0

)

,

contrary to (43).
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