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Bozena Pigtek
Some properties of convex and x-concave

multifunctions

Abstract. We investigate some properties of *-concave and convex multi-
functions on the real line with convex bounded closed values. In partic-
ularly we consider the Hadamard inequality and the Hardy—Littlewood—
Pélya majorization theory in the case of multifunctions.

1. Basic definitions

Let X be a real Banach space. Denote by c¢lb(X) the set of all nonempty
bounded closed convex subsets of X. For given A, B € ¢lb(X) and A > 0 we
define A+ B={a+b: a€ A be B}, \MA={)a: a€ A},

A+ B=cl(A+ B) = cl(clA + clB).

The structure (clb(X), i) is an Abelian semigroup with the neutral element
{0}. Tt is clear that

MATB) =AM T AB, O+ A= T pA, ApA) = ud, 1-A=A4A

for all A\,u > 0 and A, B € ¢lb(X). Thus the triple (clb(X),J*r,~) is also an
abstract convex cone (for definition see e.g. [11]). Since

AfYC=B}+C = A=B

(cf. [11]), the cancellation law is satisfied.

Let d be the Hausdorff metric in ¢lb(X) derived from the norm |[|-|| in
X, ie. d(A,B) = max{e(A, B),e(B,A)}, where e¢(A,B) = sup,c4 p(a,B)
and p(a, B) = infpep||la — b|| for A, B € clb(X). For given A € clb(X) we
define ||A|| = sup{|la|]| : a € A} = d(A,{0}). The metric space (clb(X),d) is
complete (see e.g. [1, Theorem II-3, p. 40]). Moreover d is translation invariant
since
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d(A+C,B+C)=d(A+C,B+C)=dA,B)

and positively homogeneous
d(AA,A\B) = Md(A, B)

for all A, B,C € clb(X) (cf. [2, Lemma 2.2]).
A multifunction F: [a,b] — clb(X) is said to be *-concave (x-convezx) if

*

F(Ax+(1—-XNy) CAF(z) + (1 —=MNF(y),
(AF(z) + (1= NF(y) € F Oz + (1—\)y) )
for all 2,y € [a,b] and X € (0,1).

REMARK 1
The concavity of multifunctions, defined as follows,

Fx+ (1 —=MNy) CAF(z)+ (1 —-NF(y), z,y € [a,b], A€ (0,1)

implies the *x-concavity, but not conversely. To see this we consider two sets
A, B € clb(X) such that A+ B # cl(A+ B) (an example could be found in [10,
pp. 712-713]) and the multifunction F:[0,1] — ¢lb(X) given by the formula
F(t) =tA + (1 —¢)B. Tt is easy to check that F(At + (1 — A)s) C AF(t) +
(1—-X)F(s) for all t,s € [0,1] and A € (0,1) but

F(%-O—i—%-l) :F(%) = AT B) ¢ 5 (A4 B) = SF )+ F(1)]

REMARK 2
A multifunction F': [a,b] — clb(X) is *-convex if and only if it is convex i.e.,

AF(z)+ (1=MNF(y) CF(Axz+(1-MNy), z,y € [a,b], A€ (0,1).

We note that every convex multifunction with non-empty values has convex
values. Indeed, AF'(x) + (1 — A\)F(xz) C F (z) for all A > 0 and z € [a, ]].

A multifunction F:[a,b] — clb(X) is said to be increasing if F(z) C F(y)
whenever z,y € [a,b] and = < y.

Aset A ={yo,y1,..-,yn}, wherea = yo < y1 < ... < yn = b, is said to be a
partition of [a,b]. For given partition A we set §(A) = max{y; —yi—1: i =1,
...,n}. For the partition A and for a system 7 = (71,...,7,) of intermediate
points 7; € [yi—1,y;] we create the Riemann sum

* *

S(A77—> = (yl - yO)F(Tl) + -+ (yn - y'rn—l)F(T'rL)-
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If for every sequence (AY) of partitions A” = {y’o’, yr, o y;’LD} of [a, b] such
that lim,_,., 6(A”) = 0, and for every sequence (77) of systems of intermediate
points, the sequence of the Riemann sums (S(A”, 7)) tends to the same limit
I € clb(X), then F is said to be Riemann integrable over [a, b] and f: F(y)dy :==
1.

The Riemann integral for multifunction with compact convex values was
investigated by A. Dinghas [3] and M. Hukuhara [4]. Some properties of Rie-
mann integral of multifunctions with convex closed bounded values may be
found in paper [8].

2. Hadamard inequality in case of multifunctions

We believe that the following theorem is known. Nevertheless we prove it
for convenience of the reader.

THEOREM 1
Every *-concave multifunction F:[a,b] — clb(X) is continuous on (a,b) with
respect to the Hausdorff metric.

Proof. Since all values of F' are bounded we may find a constant M > 0
such that ||\F(a) ¥ (I =XN)F(@®)|| < M for A € [0,1]. Thus by *-concavity of
F we have ||F(z)|| < M, x € [a, b].

Let us fix xg € (a,b) and let  be a point belonging to the interval (zg, b).
There exist A\, p € (0, 1) such that z = Azg + (1 — A\)b and 29 = pz + (1 — p)a.
Hence A = zzoib and py = Z=% &

5 2% — 17 as * — 5. Then by the x*-
concavity we obtain

e(F(x), F(xo)) <
o) + (1 = A\ F(b), AF () + (1 — A)F (o))

and

whence d(F(z), F(z¢)) — 0 as * — x7. We have shown that F is right-hand
side continuous at xy. The similar argument can be used to get the left-hand
side continuity of F' at xg.
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REMARK 3
A x-concave multifunction on [a,b] need not be continuous. To see this it is
enough to take F': [0, 1] — clb(R) defined by

{0}, x>0,
Fla) = { 0,1, z=0.

The continuity of convex multifunctions can be obtained from Theorem 3.7
in [7]. We give here an independent, straightforward proof similar to that of
Theorem 1.

THEOREM 1’
Every convex multifunction F:[a,b] — clb(X) is continuous on (a,b) with
respect to the Hausdorff metric and bounded on [a, b].

Proof. At first we will prove that F' is bounded on [a, b]. We observe that
for every x € [a, %2] there exists A € [3,1] such that Az + (1 — A\)b = L. Let
us fix u € F(b). The convexity of F' yields

)\F(x)—&—(l—/\)uCF(a;b),

ke (:59)-(1-1)-

Thus F is bounded on [a, %F2]. In similar manner we show that F' is bounded
on [“E2 b]. Consequently there is a constant M such that ||F(z)|| < M for
x € [a,b].

Let us fix 2o belonging to (a,b) and let g < < b. We can find A, u € (0, 1)
such that & = Axg+(1—A)b, zg = px+(1—p)a. Clearly AF(xo)+(1—A)F(b) C
F(z) and pF(x) + (1 — p)F(a) C F(x). We note that A\, — 17 as z — x§ .
By the convexity of F' and properties of e we obtain two inequalities

Ae(F(x0), F(x))

whence

e(AF (z0), AF (2))

(AF(z0) + (1 = M F(0), \F(x) + (1 = M) F(b))
(F(z), AF(2) + (1 = M) F(b))
(F(w), Fa) + (1= AF(®))
L= A)d(F(x), F(b))
M( -

I
)

)

A
A

IN A
Qo

IN
N

e(F(x), F(zo)) = sup p(v, F(x0))
veF (x)

< sup p(v, pF(z) + (1 - p)F(a))
veF (x)
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AN
Q o

(F(2), pF(z) + (1 = p) F(a))
(F(x), pF(z) + (1 = p) F(a))
L= p)d(F(zx), F(a))

M(1— p).

IN
N

Consequently
lim d(F(z), F(xo)) =0.

CL‘A’CES’

The left continuity of F' at x¢p may be shown analogously.

A continuous multifunction F:[a,b] — ¢lb(X) is Riemann integrable on
[a,b] (cf. [8]). A #-concave multifunction on [a,d] is commonly bounded on this
interval. Therefore it is not difficult to see that a s-concave multifunction has
to be Riemann integrable on each [c,d] C [a, ] (cf. [8]).

In the case of convex functions on [a, b] the following Hadamard inequality

(5 < ks [ < 201310

is well known (cf. [5, pp. 196-197]). We are going to deal with suitable inclusion
for convex and *-concave multifunctions.

THEOREM 2
If F:[a,b] — clb(X) is x-concave multifunction, then

F<“y>c ! /zyF(t)dth (1)

2 y—x

for each x,y such that x <y and [z,y] C [a,b].

Proof. Let us fixn € Nand let 2; = 2 +i=2 and 7; = z + 2L (y — z) for
i € {1,...,n}. These points create the partition A,, = {x,21,...,2n_1,y} of
the interval [z,y] and 7 = (71,...,7,) is a system of intermediate points. We
note that
Tic1+x;  [2n—(2i—D]z+ (20— 1)y
T = = .
2 2n
Using the *x-concavity of F' we obtain

2n — (2i — 1)
2n

for i € {1,...,n}. Summing up over i we get

F(r) C F(z) +

*

F(r) + ... F(m)
. (2n1+2n3+m+i)F(x); (i+%+...+2n1)F(y).

2n 2n 2n
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Since 1 + 3+ -+ + (2n — 1) = n?, we obtain

ylx[F(ﬁ)i...iF(Tn)]y_xcF(m);F(*y). 2)

Now we let n — oco. Then §(A,) — 0 and with respect to the definition of
the integral, by (2) and by the closedness of the set & (F(x) ¥ F(y)) we have

*

L /yF(t)dtcw.

y—x

To obtain the first inclusion of (1) we take an even positive integer n. Let
k =n/2 and let us choose i € {1,...,k}. We note that 3(r; + 7;) = 3(z + y)
for j =n+1—4. Again by the *—concawty of F we 1nfer

P (m ;r y) - %(F(T,») T F(ry)).

Summing up over i € {1,...,k} leads to

kF (w ; y) Ck[F(r) + -+ F(m) + F(risr) + - + F(r)]

or

F(x;y) Cyix[F(Tl)iiF(Tn)]yix

for all even n. The right-hand side of inclusion (3) tends to ;= f Y F(t)dt as

n — 0o. Hence
y—x

The proof of the next theorem runs similarly.

n

THEOREM 2’
If F:la,b] — clb(X) is a conver multifunction, then the following inclusions

hold
F@)+ Fly) - 1 /yF(t)dtCF(m;y> ()

2 Yy—x
for all intervals [x,y] C [a, b].

Inclusions (4) for the Aumann integral may be found in the paper of E. Sad-
owska [9, Theorem 1], where the integral Jensen inequality is applied (see the
paper of J. Matkowski and K. Nikodem [6]). The assumptions of Theorem 2’
differ somewhat from that of Theorem 1 in [9].
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3. Hardy-Litllewood-Pdlya majorization theorem for multifunctions

In this part of the note we are going to transfer the Hardy—Littlewood—
Pélya majorization principle for convex functions (cf. [5, ch. 8, § 5]) to convex
and *-concave multifunctions.

THEOREM 3
Let x1, x2, y1, y2 be real numbers such that ro < x1, y2 < y1, 1 < Y1,
21+ a2 =y1 +y2. If F:R — clb(X) is *-concave, then

F(z1) + F(z2) C F(y1) + F(y2). (5)
Proof. The assumptions of the theorem imply the inequality ys < o <

z1 < 1. At first we assume that g7 # y9. Setting A\ = gi:z’;, 0= Z;i; v
the *-concavity we have

Flws) = F(Ays + (1= Ny1) C AF(y2) + (1 — N F (1),

F(z1) = F(py2 + (1 — p)y1) C pF(y2) + (1 — p)F(y1).

Multiplying the above inclusions by 1 — y2 and summing them up together we
obtain

(g1~ o) (F(21) + F(w)) C (w2 —ya+ 21— y2) F(y1) + (g1 — w2 +11 — 21) F (3).

The equality x1 4+ x2 = y1 + y2 and the above inclusions lead to

F(z1) + F(x2) C F(y1) + F(y2).
If y1 = yo, then y; = 21 = 22 = y and condition (5) holds true.

Theorem 3 for concave multifunctions can be found in [7, Theorem 2.14] in
another formulation. The same concerns the next theorem. Its proof is similar
to the previous one.

THEOREM 3’
Let x1, x2, y1, yo be real numbers such that xo < x1, y2 < y1, 1 < Y1 and,
21+ T2 =y1+y2. If F:R — clb(X) is convez, then

F(y1) + Flys) C Fa1) + F(aa).

COROLLARY 1
Let a, b, ¢ be non-negative numbers and let a +b < c. If F:[0,00) — clb(X)
is a x-concave multifunction, then

Fla+b) + F(c) C F(a) + F(b+c).
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Proof. To obtain the Corollary from Theorem 3 it is enough to set x1 = ¢,
xo=a+b,y1 =b+c, y2 =a (see [5, pp. 194-195 |).

COROLLARY 2

Let 1, x2, Y1, y2 be real numbers satisfying the conditions: xo < x1, Y2 < Y1,
21 <y1 and x1 + 2 < y1 +y2. If F:R — ¢lb(X) is an increasing *-concave
multifunction, then

* *

F(z1) + F(x2) C F(y1) + F(y2)
holds true.

Proof. Taking z1 = y1 and zo = 1 + x3 — y1 we can easily check that the
numbers x1, T2, 21, 22 satisfy the assumption of Theorem 3. Hence

F(z1) & Flx) C F(21) + F(z).

Moreover, F' is increasing and zo < y2 , SO

F(z1) + F(ws) C F(y1) + Flyo).

THEOREM 4
Assume that ©;, y;, i € {1,...,n} are real numbers such that

Tp <Tp_1 < ... <@, Un < Yn-1 < ...<uyp, (6)

k k n n
Se<Sy kefln-1, Yau=Sy ()
i=1 i=1 i=1 i=1

and
Trt+1 < Yk, kef{2,...,n—1}. (8)

If F:R — clb(X) is a *-concave multifunction, then

*

F(w1) + -+ F(wn) C F(y1) + -+ + F(yn). 9)

Proof. The theorem is valid for n = 2 thanks to Theorem 3.
Now we assume (9) true for an n € N, n > 2 and take arbitrary numbers
Xy Yi, © € {1,...,n,n+ 1} satisfying

Tny1 < ap <<y, Ynt1 < Yn < ... <y, (6+1)
n+1 n+1

k k
inSZyi, kEe{l,...,n}, Z:Q:Zyi (Tn+1)
i=1 i=1 i=1 i=1

and

Th+1 Syk” ke {2,,n} (87l+1)
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By (7n+1) we have

n n—1
in = Z Yi + (Yn + Yn+1 — Tnt1)-
i=1 i=1

According to the induction hypothesis

F(ml) + o+ F(xn) C F(yl) + -+ F(y'rl—l) + F(yn + Ynt1 — 37n+1)

since Yn + Ynt1 — Tnt+1 < Yn—1 (see (6,41) and (75,41)). If we show that

* *

F(yn + Yns1 — Tng1) + F(wny1) C F(yn) + F(yni1) (10)

holds, the proof will be complete.

Consider two cases: (a) Znt1 < Yn + Ynt1 — Tnt1 and (b) zpp1 > yn +
Yn+1 — Tnt1. In case (b) (Yn + Yn+1 — Tnt1) + Tnt1 = Yn + Ynt1s Ynt1 < Yn,
Yn + Ynt1 — Tnt1 < Tpy1 and z,41 < gy, according to (8,4+1). By Theorem 3
condition (10) holds. In case (a), Zn41+ (Yn+Ynt1—Tn+1) = Yn+Ynt1, Ynt1 <
Yny Tnt1 < Yn + Ynt1 — Tpt1 a0d Yp + Ynt1 — Tnt1 = Yn + (y7n+1 - mn-{-l) < Yn
because Yn1+1 < Tpt+1. By Theorem 3 condition (10) holds.

THEOREM 4/
Assume that x;, y;, i € {1,...,n} are real numbers such that

xngxn71§~-~§x1> yngyn71§~-~§y17

H'M;r

k n n
Z yi, kE{l,...,’fl*l}, Zl’lizyl
i=1 i=1 i=1

and
Tet+1 < Yk, ke{2,...,n—1}.
If F:R — clb(X) is a convex multifunction, then

* * *

F(yr1) + -+ F(yn) C F(x1) + -+ + F(zy).
Results of the same kind as Theorem 4 and 4’, formulated in some other
language, were obtained by K. Nikodem (cf. [7, Theorem 2.14]).
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