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Second Hukuhara derivative and cosine family

of linear set-valued functions

Abstract. Let K be a closed convex cone with the nonempty interior in
a real Banach space and let cc(K) denote the family of all nonempty
convex compact subsets of K. If {F; : ¢ > 0} is a regular cosine family
of continuous linear set-valued functions Fy: K — cc(K), x € Fy(x) for
t>0,x € K and Fy o Fs = Fs o F} for s,t > 0, then

D?Fy(z) = Fy(H(x))

for + € K and t > 0, where D?F;(x) denotes the second Hukuhara
derivative of F;(z) with respect to ¢ and H(z) is the second Hukuhara
derivative of this multifunction at ¢t = 0.

Let X be a vector space. Through this paper all vector spaces are supposed
to be real. We introduce the notations

A+B:={a+b: a€ A, be B},
M :={)da: ac A}

for A,BC X and A € R.

A subset K of X is called a cone if tK C K for all t € (0,400). A cone is
said to be conwver if it is a convex set.

Let X and Y be two vector spaces and let K C X be a convex cone. A set-
valued function F': K — n(Y'), where n(Y") denotes the family of all nonempty
subsets of Y, is called additive if

Flz+y) = F(z) + F(y)
for all z,y € K. If additionally F' satisfies
F(A\x) = \F(x)

for all z € K and A > 0, then F is called linear.
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A set-valued function F: [0, +00) — n(Y) is said to be concave if
F(At+ (1= X)s) CAF(t)+ (1 = A)F(s)

for all s,t € [0,+00) and A € (0,1).

From now on we assume that X is a normed vector space, ¢(X) denotes the
family of all compact members of n(X) and cc(X) stands for the family of all
convex sets of ¢(X).

Let A, B, C be sets of cc(X). We say that the set C is the Hukuhara
difference of A and B when C' = A—B if B+C = A. By Radstrom Cancellation
Lemma [7] it follows that if this difference exists, then it is unique.

Let A, Aq, A, ... be elements of the space cc(X). We say that the sequence
(An)nen is convergent to A and we write A, — A if d(A, A,)) — 0, where d
denotes the Hausdorff metric induced by the norm in X.

LEMMA 1

Let X be a Banach space, A, A1, As,...,B,B1,Bs,... € cc(X). If A, — A,
B,, — B and there exist the Hukuhara differences A,, — By, in cc(X) for n € N,
then there exists the Hukuhara difference A — B and A, — B, — A — B.

Proof. Let C,, = A, — B, for n € N. By the definition of the Hukuhara
difference A,, = B,, + C,, for n € N. By properties of the Hausdorff metric for
m,n € N we have

d(C'rm Cn) = d(Bn + Bm + Cmy Bm + Bn + Cn)
d(Bn + Amy Bm + An)
< d(Bpn, Bm) + d(Am, Ap).

Sequences (Ap)nen and (By)nen are Cauchy sequences thus by the last in-
equality (Cy,)nen is a Cauchy sequence, too. By the completness of cc(X) (see
Theorem I1.3 in [1]) there exists C' € cc(X) such that C,, — C. Moreover,
Bn + Cn — B+ C since
d(B,+C,,B+C)<d(B,+Cy,,B,+C)+d(B,+C,B+C)
=d(C,,C) + d(Bpn, B).

On the other hand A,, — A and A,, = B, +C,, so A= B+ C, i.e., there exists
the Hukuhara difference A — B = C.

Let F,G: K — cc(K). We can define the multifunctions F +G and F — G
on K as follows
(F 4+ G)(z) := F(x) + G(x) forx e K
and
(F = G)(z) = F(z) - G(x)
if the Hukuhara differences F(x) — G(x) exist for all z € K.
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LEMMA 2
For each set A C K the inclusion

(F+G)(A) C F(A) +G(A) (1)

holds. Moreover, if there exist the Hukuhara difference F(A) — G(A) and the
multifunction F — G, then

F(A) — G(A) C (F — G)(A). 2)

Proof. Inclusion (1) is obvious. To prove (2) we observe that (FF—G)+G =
F'. Hence by (1) we obtain

F(A) C (F - G)(A) + G(A). (3)

Since F(A) = G(A) + (F(A) — G(4)), (3) and Radstrom Cancellation Lemma
yield inclusion (2).

LEMMA 3 (Lemma 3 in [8])

Let X andY be two normed vector spaces and let K be a closed convex cone in
X. Assume that F: K — cc(K) is continuous additive set-valued function and
A, B € cc(K). If there exists the difference A— B, then there exists F(A)—F(B)
and F(A) — F(B) = F(A - B).

LEMMA 4 (Lemma 3 in [5])
If (An)nen is a sequence of elements of the set ¢(X) such that Ap41 C A, for
n € N, then

oo
lim A, = ﬂ A, .
n—oo

n=1

LEMMA 5 (Lemma 3 in [9])
Let K be a closed convex cone such that int K # () in a Banach space X and
let Y be a normed space. If (Fp,)nen is a sequence of continuous additive set-
valued functions Fy,: K — cc(Y') such that Fy1(x) C Fp(z) for all x € K
and n € N, then the formula

Fy(z) = ﬂFn(x)a z €K,

defines a continuous additive set-valued function Fo: K — cc(Y'). Moreover,

lim F,(z) = Fy(z), z €K, (4)
n—oo

and the convergence in (4) is uniform on every nonempty compact subset of K.
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LEMMA 6 (Lemma 4 in [5])
If (Ap)nen is a sequence of elements of ¢(X) satisfying A, C Any1 C B for
n € N and a compact set B, then

oo
nli_)n;oAn =cl < U An> .
n=1

LEMMA 7

Let K be a closed convex cone such that int K # 0 in a Banach space X and let
Y be a normed space. If (Fp,)nen 18 a sequence of continuous additive set-valued
functions F,: K — cc(Y') such that

1) Fo(z) C Fhog1(z) for allz € K andn €N,

2) Fo(x) C G(z) for all x € K, n € N and a set-valued function G: K —
c(Y),

then the formula

Fy(z) :=cl ( U F.(z (5)

defines a continuous additive set-valued function Fyo: K — cc(Y'). Moreover,

~
8
m
=

lim F,(z) = Fy(x), z €K, (6)

n—oo

and the convergence in (6) is uniform on every nonempty compact subset of K .

Proof. The sets Fy(x) defined by the formula (5) are obviously closed and
convex. Since Fy(z) C G(z) and G(x) are compact, they belong to cc(Y) for
every z € K. Equality (6) holds according to Lemma 6. By Lemma 5.6 in [4]
we have

Fo(e +y) = lim Fp(z+y) = lim (Fu(z) + Fa(y)) = Fo(x) + Fo(y)

n—oo

for all z,y € K. Thus the set-valued function Fy is additive. Since Fi(x) C
Fy(z) for z € K and F; is continuous, the set-valued function Fy is continuous
on int K (see Theorem 5.2 in [4]). Fix y € int K and 2 € K, then 22 € int K
(see Chapter V, §1, Lemma 8 in [3]). Let (z,,) be a sequence of elements of K
convergent to xo. Then

d (Fo(zn), Fo(zo)) = d (Fo(xn) + Fol(y), Fo(zo) + Fo(y))

—2d (FO <x”2+y Fy <x°;y)>

The continuity of Fy at 22 implies that
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lim Fo(l‘n) = Fo(l‘o).

n—oo
This means that Fp is continuous on K. The sequence (d(F,(x), Fo(z))) n € N
is a decreasing sequence of continuous functions convergent to the zero func-
tion and according to Dini Theorem this function is the uniform limit of this
sequence on every nonempty compact subset of K.

Let F: [0, +00) — cc(X) be a set-valued function such that there exist the
Hukuhara differences F'(t) — F'(s) for 0 < s < t. The Hukuhara derivative of F
at t > 0 is defined by the formula

o ) . F(t)—F(t—h)
DE(t) = lm ———— = lim ———,

whenever both these limits exist (see [2]). Moreover,

DF(0) = hhj{)l+ M

Let (K, +) be a semigroup. A one-parameter family {F; : t > 0} of set-
valued functions Fy: K — n(K) is said to be a cosine family if

Fo(z) = {z} forz e K
and
Feys(@) + Frs(2) = 2R (Fo(2)) = 2| J{F(y) - y € Fu(w)} (7)

forre Kand 0 <s<t.
Let X be a normed space. A cosine family {F} : ¢ > 0} is said to be regular
if
lim d(F; =0.
Jim d(Fy(z), {x})

LEMMA 8

Let X be a Banach space and let K be a closed convex cone in X such that
int K # 0. Assume that {Fy : t > 0} is a regular cosine family of continuous
additive set-valued functions Fy: K — cc(K) and x € Fy(z) for all x € K and
t > 0. Then there exist the Hukuhara differences Fy(x) — Fs(x) for all0 < s <t
andz € K.

Proof. We first prove, by induction on n, that there exist the Hukuhara
differences

Fis (37) - F(nfl)s(x) (8>
forall s >0,z € K,n€N.
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For n =1 it suffices to show that
Fy(z)—zCK
for v € K and s > 0. Let € K and s > 0. Putting ¢t = s in (7) we have
Fas(x) + a0 = 2F(Fs(2)). 9)
Hence and by the assumption z € Fy(z) we get
Fs(z) C ngs(x) + lx
2 2

Replacing s by 2s in the last inclusion we obtain

Fyy(x) C %F4S(:£) + %x,
whence
Fy(x) C 1F48(3L‘) + lx + lx
4 4 2
By induction we can prove that
Fi(z) C %ngs(x) + Q%x +o 4 %x

for all p € N. Therefore
Fi(z)Cc K+ (1-277)x.

Let y € Fy(x). Then y—(1 — 27P) z € K and letting p — co we havey—z € K.
Thus Fs(z) —x C K.
By (9) and by the additivity of Fs we obtain

Fos(z) + x = 2F,(Fs(x) — x) 4+ 2F(x)
and
Fos(x) — Fs(x) = 2Fs(Fs(z) — x) + Fs(x) — .

Let & € N. Assuming (8) to hold for n = k, we will prove it for n = k + 1.
Putting ¢ = ks in (7) we get

Flgnys (@) + Fp1ys(z) = 2Fks(Fs(2)),
whence and by the additivity of F

F(k+1)s(x) + F(k,l)s(:);‘) = 2Fs(Fs(x) — ) 4+ 2F)s(x).
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By the induction assumption we obtain
Flr1ys(r) = 2F s (Fs(x) — x) + (st (z) — F(k_l)s(:n)) + Fis(x).
Thus
Flog1)s(x) — Fis(x) = 2Fps (Fs(x) — x) + (st(m) - F(k,l)s(m)) )
From this we see that there exist the Hukuhara differences
Frs(2) = Fins (7) (10)

for all m,n € N, m < n, s > 0. Suppose that 0 < s < ¢. Replacing s by % in
(10) we can assert that there exist the Hukuhara differences

There exists a sequence a,, € QN[0, 1] such that a,t is convergent to s. By the
continuity of t — Fy(x) (Theorem 2 in [10]), F,, :(z) — Fs(z) and by Lemma 1,
there exists the difference

Fy(z) - Fy(z) = nh—>n;<> (Fi(z) — Fa,e(z)).
A cosine family {F} : t > 0} of set-valued functions Fy: K — cc(K) is said

to be differentiable if all set-valued functions ¢t — Fy(z), x € K, have Hukuhara
derivative on [0, +00).

LEMMA 9

Let X be a Banach space and let K be a closed convex cone in X such that
int K # (0. Suppose that {F; : t > 0} is a regular cosine family of continuous
additive set-valued functions Fy: K — cc(K) and © € Fi(x) for all x € K
and t > 0. Then multifunctions t — Fi(x) (x € K) are concave, there exist
set-valued functions G : K — cc(K) and G : K — cc(K) such that

B — F Fi(z) - Frp,
G (x) = lim, M, Gy (x) = lim, M

forallt >0, x € K and the convergence is uniform on every nonempty compact
subset of K. Moreover, G} and Gy are additive, continuous,

G?(m):ﬂw’ Gy (z) =cl U M
h>0 t>h>0

and Gy (z) C Gf (z) forz € K.
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Proof. Let us fix © € K. We consider the mutlifunction ¢ — Fi(x) for

t>0. Setting t = %, s =224 0 <wu < vin (7) we get

Fy(z)+ Fu(x) = 2F1,+Tu(F%(:n)
Since x € Fy(z) for all t > 0, we have

Fy(x) + Fu(x)

FHTu(-%’)C 9

Hence, by the continuity (Theorem 2 in [10]) and by Theorem 4.1 in [4] the
multifunction ¢ — Fi(x) is concave. Moreover, by Lemma 8 there exist the
Hukuhara differences

Fion(z) = Fi(x),  Fi(z) - Fon()
for all 0 < h < t. Thus (Theorem 3.2 in [6]) there exist limits

. F; r) — Fi(x
G/ () :hlgng — )h - )’ It h

for all t > 0. As ¢t — Fi(x) is concave we see that h — Fron(@)=F(@) 4

increasing, h — M is decreasing in (0,t) and M C Gf (2).
Lemmas 5 and 7 respectively imply that the convergence in (11) is uni-

form on every nonempty compact subset of K and G, G; are additive and
continuous.

THEOREM

Let X be a Banach space and let K be a closed convexr cone with the nonempty
interior. Suppose that {F; : t > 0} is a regular cosine family of continuous
linear set-valued functions Fy: K — cc(K), x € Fy(x) for all x € K and
t >0 and Fy o Fs = Fs 0 Fy for all s,t > 0. Then this cosine family is twice
differentiable and

D?Fy(x) = Fy(H(x))
for v € K, t > 0, where D*Fy(x) denotes the second Hukuhara derivative

of Fi(x) with respect to t and H(x) is the second Hukuhara derivative of this
multifunction at t = 0.

Proof. Let us fix z € K. Consider the multifunction ¢ — Fi(z) for ¢t > 0.
By Lemma 8 there exist the Hukuhara differences Fi(z) — Fs(z) for 0 < s < ¢.
By Lemma 9 the multifunction ¢ — F;(z) is concave and there exist

F - F
Ot ) = iy HIEIE a6 o) = g, B
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for t > 0 and G; (z) C Gy (x). The same argument may be used to prove that
there exists
Fo(z) —
lim 78 =2
t—0+ t

It follows from (7) that

Bdgxla(ﬂﬁgx>+FK?x'

Letting t — 0T we get

i A (FEE) =

and since
F, — F; —
oe @l =z o <7t(x) x)
t t
we have
. F(z)—=z
DF =1 ——  — ={0L 12
o(x) ti%l+ f { } ( )

Let 0 < h <t. By (7) and the additivity of F}; we obtain
Ft+}L(.'L‘) — Ft(.'I,') = 2Ft(Fh(.’I}) — LL‘) + Ft(l‘) — Ft_h(.'I}).
Dividing the last equality by h we get

Fiin(x) — Fi(x) Fp(z)—=z Fi(x) — Fi_p(2)
MT = 2Ft < h h ) + h h .

Letting h — 0T, by Lemma 9 and (12) we have
G/ (z) = Gy (v) =: Gy(z) for t > 0.

This and (12) imply that the family {F; : ¢ > 0} is differentiable.

Next we will show that there exist the Hukuhara differences G¢(z) — Gs(z)
for 0 < s < t. It is enough to consider the case 0 < s < t. Let h > 0 be such
that t — s — h > 0. By Lemma 8 there exist the differences

Fry agpipn(@) = Fy_a, 1,(®), Fgn(z) - Fi(z) and  Fopn(z) — Fo(z)

in ce(K). Since F 144 Leyin is linear and continuous with respect to Lemma 3
there exists the difference

F%tJr%er%h(F%tf%s#»%h(x)) - F%tJr%er%h(F%tf%sf%h(x))'
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By (7) we have
2F 111 (Freo1op1n(®) = 2F1 0o 1 (Fry 1o 1p,(2))
= Fyyn(z) + F(2) — (Fi(2) + Foyn(z))
= (Fin(z) — Fi(z)) — (Fsgn(z) — Fs(2)) .
Because of Lemma 1 there exists

Fon(@) — Fy(z)  Fopn(x) — Fs(x))
h h '

Gi(z) — Gy(z) = lim <

h—0t

Our next claim is that the multifunction ¢ — Gy(x) is concave and differ-
entiable. Replacing in (7) ¢t by ¢t 4+ h, h > 0 and substracting Fi4s(x) + Fi—s(z)
from both the sides of this equality we get

Fipsin(z) = Fis() + Fisin(z) — Fis(2) = 2F 0 (Fs () — 2F(Fs(2)).
The equality F; o Fs = F5 o Fy, s,t > 0 leads to

Fiys h(x) - F 5(95) Fy s h(x) - Ft—s(l‘) - F h(l‘) - Ft(l‘)
+s+ : + + + : — 9F, ( + - > 7

whence, as h — 07,

Gits(7) + Gis(w) = 2Fs(Gi(2)). (13)

Setting t = ”g“, s = 5%, where 0 < u < v in (13) yields

Gu(x) + Gu(r) = 2Fo_u (G ogu (7).
By the assumption = € F;(x) we get

Gy(z) + Gy(2) .

GwTu(.'L‘)C 9

Fix an interval [a,b] C [0,00) and let ¢ € [a,b]. Since the multifunctions
t — Fi(z), v € K, are concave and differences Fi(x) — Fs(x) exist for z € K
and 0 < s < ¢, the multifunctions ¢t — G¢(x) are increasing (Theorem 3.2
in [6]) and we have G¢(x) C Gp(x). Therefore the multifunctions ¢t — G:(z)
are bounded on [a,b]. By Theorem 4.4 in [4] the multifunction ¢t — G:(z)
is continuous in (0,00) and by Theorem 4.1 in [4] it is concave. In virtue of
Theorem 3.2 in [6] there exist

H (2) = hhr& Gt+h(5ﬂ)h* Gi(z) h- . Gi(z) *thfh(f)
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for t > 0 and H; (x) C H; (x). Since G)\)\;t(‘t) C G”T(“C) for t > 0 and X € (0,1),
there also exists

and H(x) € cc(K).
Let 0 < s < t. The relation F; o Fy = F5 o F; and Lemmas 2, 3 and 9 yield

Fy(Ge(z))
B - Fun(@) - (@) _ L Fa(Faa(r) — Fo(Fi(2))
g ) i)
~ i Fyon(Fs(z) — B (Fs(x))
h—0+ h
C lim (Fetn — F)(Fs(x))
h—0+ h
= Gi(Fs(z))

which together with (13) lead to
Gt_t,_s(.'IJ) + Gt_s(.’E) C 2Gt(Fé(.’L‘)>
By the additivity of G; we get

Gt+3($) + Gt_s(.’E) C 2Gt(F5(.'E) — JI) + 2Gt($),

whence
Gigs(x) — Ge(x) C2Ge(Fs(x) — ) + Gi(x) — Gi—s(x).
Dividing the last inclusion by s and letting s — 0™ we obtain

H; (z) C H; (x).
Therefore
Hf () = Hy (z) =: Hy(z)
for t > 0 and the family {F; : ¢t > 0} is twice differentiable.

It remains to prove the equality in the assertion. Let 0 < s < t. Lemmas 1,
3 and (7) lead to

B . Fy h(x)iFS(x)
2F(Gs(x)) = 2F; (hlirng %)

~ lim 26 (Fsyn()) — 2F(Fs(x))

h—0+ h

. Fipsin(r) + Fios—n(x) — (Fis(2) + Fi—s(2))
1m

h—0+ h
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lim {Ft+s+h(5ﬂ) —Fs(e) Fs(@) - Fsn(z)
h—0+ h h

= Giys(x) — Gi—s(2)

= Giys(2) = Ge(2) + Ge(x) — Gi—s ().

Dividing the last equality by s we get

9

oF, (Gs(ﬂf)> _ Giis(z) — Gi(2) n Gi(z) — Gi—s()

S S S

letting s — 0 and dividing by 2 we have
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