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Abstra
t. We look after the complementary means with respect to a weigh-
ted geometric mean of Stolarsky means in the family of Gini means and
in the family of Stolarsky means.1. Means

Usually, the means are given by the following

Definition 1
A mean (on the interval J) is a function M : J2 −→ J , which has the property

min(a, b) ≤ M(a, b) ≤ max(a, b), ∀ a, b ∈ J.

Each mean is reflexive, that is

M(a, a) = a, ∀ a ∈ J,

which will be used also as a definition of M(a, a) if it is necessary.
A mean can have additional properties.

Definition 2
The mean M is called:

a) symmetric if

M(a, b) = M(b, a), ∀ a, b ∈ J ;

b) strict at the left if

M(a, b) = a =⇒ a = b,

strict at the right if

M(a, b) = b =⇒ a = b,

and strict if is strict at the left and strict at the right.
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We can compose three means M , N and P on J to define another mean

P (M, N) by

P (M, N)(a, b) = P (M(a, b), N(a, b)), a, b ∈ J.

Most of the usual means are defined on R+ . So are the Stolarsky (or
extended) means given by

Er,s(a, b) =

(

s

r
· ar − br

as − bs

)
1

r−s

, r · s · (r − s) 6= 0, a 6= b

and the weighted Gini means defined by

Br,s;λ(a, b) =

[

λ · ar + (1 − λ) · br

λ · as + (1 − λ) · bs

]
1

r−s

, r 6= s ,

with λ ∈ [0, 1] fixed. Weighted Lehmer means, Cr;λ = Br,r−1;λ and weighted
power means Pr;λ = Br,0;λ (r 6= 0) are also used. We can remark that P0;λ =
Gλ = Br,−r;λ is the weighted geometric mean. Also

Br,s;0= Cr;0 = Pr;0 = Π2 and Br,s;1= Cr;1 = Pr;1 = Π1 ,

where we denote by Π1 and Π2 respectively the first and the second projection
defined by

Π1(a, b) = a, Π2(a, b) = b, ∀ a, b ≥ 0.2. Gaussian double sequen
es
The well known arithmetic-geometric process of Gauss was generalized for

arbitrary means as follows. Consider two means M and N defined on the
interval J and two initial values a, b ∈ J .

Definition 3
The pair of sequences (an)n≥0 and (bn)n≥0 defined by

an+1 = M(an, bn) and bn+1 = N(an, bn) , n ≥ 0 , (1)

where a0 = a, b0 = b, is called a Gaussian double sequence.

Definition 4
The mean M is compoundable in the sense of Gauss (or G -compoundable) with

the mean N if the sequences (an)n≥0 and (bn)n≥0 defined by (1) are convergent
to a common limit M ⊗ N(a, b) for each a, b ∈ J .

The function M ⊗ N defines a mean which is called Gaussian compound

mean (or G-compound mean).
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The study of convergence is quite complicated. A general result was proved

in [6]. If the means M and N are continuous and strict at the left then M and
N are G-compoudable. There is also a variant for means which are strict at
the right. The result is not valid if we assume one mean to be strict at the left
and the other strict at the right. For example the means Π1 and Π2 are not
G-compoudable (in any order). But, as we proved in [11], we can G-compose
a continuous strict mean with any mean. A similar result was given recently
in [5].

Some G-compound means can be determined using a characterization based
on the following result, proved in [2] (and rediscovered in [5]).

Theorem 5 (Invariance Principle)
Suppose that M ⊗N exists and is continuous. Then M ⊗N is the unique mean

P which is (M, N)-invariant, that is

P (M, N) = P. (2)

In fact, this is the way in which Gauss proved that the arithmetic-geometric
G-compound mean can be represented by

A⊗ G(a, b) =
π

2
·
[

∫ π

2

0

dθ
√

a2 cos2 θ + b2 sin2 θ

]−1

.

As usual A = P1; 1
2

and G = G 1

2

.3. Complementary means
As we can see in the last example, the product of two simply means, like A

and G, can be very complicated. So, to obtain some results, we change the point
of view from the Invariance Principle. The determination of an invariant mean
is very difficult. To simplify the search, we start with the following definitions

given in [7]: the means 2A − M and G2

M are called complementary of M and
inverse of M , respectively. We proposed in [11] a more general definition (that
was given again in [10]).

Definition 6
The mean N is called P -complementary to M (or complementary with respect

to P of M) if it satisfies (2).

If the P -complementary of M exists and is unique, we denote it by MP . It

is easy to verify that MA = 2A−M and MG = G2

M , thus the definitions given in
[7] are indeed special cases. An existence theorem of complementary means for
symmetric means, was proved in [10]. It is easy to verify the following results.
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Proposition 7
For every continuous strict mean M we have

MM = M, ΠM
1 = Π2, MΠ2 = Π2

and if M is moreover symmetric then

ΠM
2 = Π1 .

We shall call these results as trivial cases of complementariness.

Many non trivial examples can be found in [12]. In fact, for the ten Greek
means (or neo-Pytagorean means, as they are called in [2]), we determined the
ninety complementaries of a mean with respect to another. They are done by
direct computation. To make other determinations of complementaries, we use
series expansions. We try to identify the complementary of a mean from a
given family of means in an other family of means.

To illustrate this method, we study the complementariness with respect to
the weighted geometric mean Gλ. Denote the Gλ-complementary of M by MG(λ)

and we call it generalized inverse of M . For example, in [3] one was looking
after the generalized inverse of a weighted Gini mean in the same family. Here
we determine the generalized inverse of a weighted Gini mean in the family of
Stolarsky means and converse, the generalized inverse of a Stolarsky mean in
the family of weighted Gini means.

We omit anywhere to write λ if it is equal to 1
2 . In this case the generalized

inverse of M is simply the inverse of M . For instance, in [1] they are determined
the inverses of Stolarsky means in the same family of means.4. Series expansion of means

For the study of some problems related to means, in [9] the power series
expansion is used. Usually, for a mean M the series of the normalized function
M(1, 1 − x), x ∈ (0, 1) is considered.

For example, in [8] it is proved that the extended mean Er,s has the following
first terms of the power series expansion

Er,s(1, 1 − x)

= 1 − x

2
+ (r + s − 3) · x2

24
+ (r + s − 3) · x3

48

−
[

2(r3 + r2s + rs2 + s3) − 5(r + s)2 − 70(r + s) + 225
]

· x4

5760

−
[

2(r3 + r2s + rs2 + s3) − 5(r + s)2 − 30(r + s) + 105
]

· x5

3840
+ · · · .

Also in [4] it is given the series expansion of the weighted Gini mean, for
r 6= 0,
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Bq,q−r;ν(1, 1 − x)

= 1 − (1 − ν) · x + ν (1 − ν) (2q − r − 1) · x2

2!

− ν (1 − ν) · {ν[6q2 − 6q (r + 1) + (r + 1) (2r + 1)]

− 3q (q − r) − (r − 1) (r + 1)} · x3

3!

− ν (1 − ν) · {ν2[−24q3 + 36q2 (r + 1) − 12q (r + 1) (2r + 1)

+ (r + 1) (2r + 1) (3r + 1)]

+ ν[24q3 − 12q2 (3r + 1) + 12q (r + 1) (2r − 1)

− 3 (r + 1) (2r + 1) (r − 1)]

− 4q3 + 6q2 (r − 1) − 2q
(

2r2 − 3r − 1
)

+ (r − 2) (r − 1) (r + 1)} · x4

4!

− ν (1 − ν) ·
{

ν3
[

120q4 − 240q3 (r + 1) + 120q2(r + 1)(2r + 1)

− 20q(r + 1)(2r + 1)(3r + 1)

+ (r + 1)(2r + 1)(3r + 1)(4r + 1)]

+ ν2
[

−180q4 + 180q3(2r + 1) − 90q2(r + 1)(4r − 1)

+ 30q(r + 1)(2r + 1)(3r − 2)

− 6(r − 1)(r + 1)(2r + 1)(3r + 1)]

+ ν
[

70q4 − 20q3(7r − 2) + 10q2(14r2 − 6r − 9)

− 10q(r + 1)(7r2 − 12r + 3)

+ (r − 1)(2r + 1)(7r − 11)(r + 1)]

− 5q4 + 10q3(r − 2) − 5q2(2r2 − 6r + 3)

+ 5q(r − 2)(r2 − 2r − 1)

−(r + 1)(r − 1)(r − 2)(r − 3)} · x5

5!
+ · · · .

In the special case r = 1 we get the series expansion of the weighted Lehmer
means, while for q = r 6= 0 we get the series expansion of the weighted power
means.5. Generalized inverses

In [3] the series expansion of the generalized inverse of Bp,p−r;µ was given.

Theorem 8
The first terms of the series expansion of the generalized inverse of Bp,p−q;µ

are
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BG(λ)

p,p−q;µ (1, 1 − x)

= 1 − (αµ − α + 1) · x − α (1 − µ) [(α + 2p− q)µ − (α − 1)] · x2

2!

+ α (1 − µ)
{[

6p2 + 6 (α − q) p + (α − q) (α − 2q)
]

µ2

−
[

3p2 − 3p(q − 2α) + (2α − q) (α − q)] µ

+ (α − 1) (α + 1)} · x3

3!

− α (1 − µ)
{[

24p3 + 36p2 (α − q) + 12 (α − q) (α − 2q) p

+ (α − q) (α − 2q) (α − 3q)]µ3

+
[

−24p3 + 12p2 (3q − 4α − 1)

− 12 (2α − 2q + 1) (α − q) p

− (α − 2q) (α − q) (3α + 2 − 3q)] µ2

+
[

4p3 + 6 (2α − q + 1) p2

+ 2
(

6α (2α − 2q + 1) − 3q + 2q2 − 1
)

p

+ (α − q)(3α2 + 4α − 3qα − 2q + q2 −1)] µ

− (α − 1) (α + 1) (α + 2)} · x4

4!

+α (1 − µ)
{[

120p4 + 240p3 (α − q) + 120 (α − q) (α − 2q) p2

+ 20 (α − q) (α − 2q) (α − 3q) p

+ (α − q) · (α − 2q)(α − 3q) (α − 4q)] µ4

+
[

−180p4 + 60 (6q − 7α − 2) p3

− 90p2(3α − 4q + 2) (α − q)

− 30 (α − q) (α − 2q) (2α + 2 − 3q) p

− (α − q) (α − 2q) (α − 3q) (4α + 5 − 6q)] µ3

+
[

70p4 + 20 (10α − 7q + 6) p3

+ 10(−30qα + 18α2 + 24α + 3 + 14q2 − 18q)p2

+ 10 (α − q)
(

6α2 + 12α − 12qα + 7q2 − 12q + 3
)

p

+
(

6α2 − 12qα + 15α + 5 + 7q2 −15q) (α − 2q) (α − q)] µ2

+
[

−5p4 + 10(q − 2 − 2α)p3

+
(

30qα − 30α2 − 60α − 15 −10q2 + 30q
)

p2

− 52α + (2 − q)
(

2α2 − 2qα + 4α − 2q + q2 −1) p

− (α − q)
(

4α3 − 6qα2 + 15α2 − 15qα + 10α + 4q2α

− 5 + 5q2 − q3 −5q)] µ
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+ (α − 1) (α + 1) (α + 2) (α + 3)} · x5

5!
+ · · · ,

where α = λ
1−λ .

Using it, we can prove the following result.

Theorem 9
The relation

BG(λ)
p,p−q;µ = Er,s

holds if and only if we are in one of the following three cases:

(i) BG( 1

3
)

p,p−q;0 = Er,−r ;

(ii) BG
p,−p = Er,−r ;

(iii) BG
p,0 = E−p,−2p ,

or in equivalent cases, taking into account that Bs,r;ν = Br,s;ν and Er,s = Es,r.

Proof. Equating the coefficients of x , in BG(λ)
p,p−q;µ(1, 1−x) and in Er,s(1, 1−

x), we have the condition

2αµ = 2α − 1. (3)

Then the coefficients of x2 give the condition

(r + s)α = 3 (2α − 1) (q − 2p) , (4)

and the coefficients of x3 are equal if, moreover,

µ (2µ − 1)
(

3p2 − 3pq + q2
)

= 0. (5)

This gives the cases:

1) µ = 0; thus from (3), α = 1
2 and λ = 1

3 and from (4), s = −r, so (i)

and

2) µ = 1
2 which implies, from (3) and (4), α = 1 and

r + s = 3 (q − 2p) . (6)

Equating also the coefficients of x4, we obtain in this case:

(2p − q)
(

2q2 − 3qr + r2 − 13pq + 6pr + 13p2
)

= 0.

So, the case 2) splits into the cases:
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2.1) 2p = q, giving from (4), r = −s and leading to (ii)

and

2.2)

(q − r) (2q − r) = p (13q − 6r − 13p) . (7)

The coefficients of x5 are equal in this case. Equating also the coeffi-
cients of x6, we obtain

p (p − q) (2p − q)
(

11p2 − 11pq + 3q2
)

= 0. (8)

Thus, we get a new splitting in the cases:

2.2.1) p = 0 , r = q (from (7)) and s = 2q (from (6)), so we have (iii);

2.2.2) p = 0, r = 2q (from (7)) and s = q (from (6)), so we have again (iii);

2.2.3) p = q , r = −q (from (7)) and s = −2q (from (6)), so we have (iii);

2.2.4) p = q, r = −2q (again from (7)) and s = −q (from (6)), so we have
also (iii);

2.2.5) q = 2p, r = ±p
√

5 (from (7)) and s = −r (from (6)), so we have a
special case of (ii).

We have no other possibilities in (8) or (5). By direct computation, we verify
that the four obtained cases are valid. In fact they reduce to the following
results:

(i) Π
G( 1

3
)

1 = G; (ii) GG = G; (iii) PG
p = P−p .

Corollary 10
The relation

BG(λ)
p,p−q;µ = Er,s

holds only in the following nontrivial cases:

(i) BG( 1

3
)

p,p−q;0 = Er,−r ;

(ii) BG
p,0 = E−p,−2p ,

or in equivalent cases, taking into account that Bs,r;ν = Br,s;ν and Er,s = Es,r .

As it is done in [3], we can give the series expansion of the generalized
inverse of Er,s , using Euler’s formula: if the function f has the Taylor series
expansion f(x) =

∑∞
n=0 anxn, p is a real number, and [f(x)]p =

∑∞
n=0 bnxn,

then we have the recurrence relation
n

∑

k=0

[k (p + 1) − n] akbn−k = 0, n ≥ 0.

Theorem 11
The first terms of the series expansion of the generalized inverse of Er,s are
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EG(λ)

r,s (1, 1 − x)

= 1 +
1

2
(α − 2) · x − α

24
[r + s − 3 (α − 2)] · x2

− α

48

[

α (r + s) −
(

α2 − 4
)]

· x3

+
α

5760

[

2
(

r3 + s3
)

+ 5α (r + s)2 + 2rs (r + s)

+ 10 (r + s)
(

2 − 6α − 3α2
)

+ 15
(

α2 − 4
)

(α + 4)] · x4

+
α (α + 2)

11520

[

2
(

r3 + s3
)

+ 5α (r + s)
2
+ 20rs (r + s)

+ 10 (r + s)
(

2 − 4α − α2
)

+ 3 (α − 2) (α + 4) (α + 6)] · x5 + · · · ,

where α = λ
1−λ .

Using it we can prove some new results.

Theorem 12
The relation

EG(λ)
r,s = Bp,p−q;µ

holds if and only if we are in one of the following cases:

(i) EG(0)
r,s = Bp,p−q;0 ;

(ii) EG( 2

3
)

r,−r = Bp,p−q;1 ;

(iii) EG
r,−r = Bp,−p ;

(iv) EG
2s,s = B0,−s

or in the equivalent cases, taking into account the properties Bs,r;ν = Br,s;ν and

Er,s = Es,r .

Proof. Equating the coefficients of x in EG(λ)
r,s (1,1−x) and in Bp,p−q;µ(1,1−x)

we have the condition

α = 2µ. (9)

Then, the equality of the coefficients of x2 gives the condition

α [r + s + (1 − µ) (2p − q)] = 0.

We have thus

1) α = 0, which gives µ = 0 and so the equality (i)

or
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2)

r + s + (1 − µ) (2p− q) = 0. (10)

Replacing (9) and (10) into the coefficients of x3, we get the condition

α (α − 1) (α − 2)
(

3p2 − 3pq + q2
)

= 0

The last factor cannot be zero for q 6= 0.

So, we have only the following possibilities:

2.1) α = 2, so, by (9) and (10), µ = 1 and r = −s, thus (ii)

or

2.2) α = 1, for which we have to consider (9), (10) and also the equality of
the coefficients of x4, giving

(q − 2p)
(

2q2 − 3qs − 13pq + 13p2 + s2 + 6ps
)

= 0.

This also splits into:

2.2.1) q = 2p, so r = −s, giving (iii);

and

2.2.2)

2q2 − 3qs − 13pq + 13p2 + s2 + 6ps = 0. (11)

In this case, the coefficients of x5 are equal, while the coefficients of
x6 give

p (p − q) (2p − q)
(

11p2 − 11pq + 3q2
)

= 0.

We have so the possibilities:

2.2.2.1) p = 0, for which (11) becomes

(q − s) (2q − s) = 0,

obtaining two variants of (iv);

2.2.2.2) p = q, for which (11) becomes

(q + s) (2q + s) = 0,

obtaining again two variants of (iv);

2.2.2.3) p = 2q, for which (6) becomes

28q2 + 9qs + s2 = 0,

which has no solution q 6= 0.

The validity of the cases (i)-(iv) can be verified directly. In fact they can be
rewritten in order as:
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(i) BΠ2

p,p−q,µ = Π2 ; (ii) GG(2/3) = Π1 ; (iii) GG = G ; (iv) PG
s = P−s .

Corollary 13
The relation

EG(λ)
r,s = Bp,q;µ

holds only in the following two nontrivial cases:

(i) EG( 2

3
)

r,−r = Bp,q;1 ;

(ii) EG
2s,s = B0,−s .

Theorem 14
The relation

EG(λ)
r,s = Ep,q

holds if and only if we are in one of the following cases:

(i) EG
r,−r = Ep,−p ;

(ii) EG
r,s = E−r,−s .

or in an equivalent case, taking into account the property Er,s = Es,r .

Proof. Equating the coefficients of x, in EG(λ)
r,s (1, 1−x) and in Ep,q(1, 1−x)

we have the condition α = 1, thus λ = 1
2 . Then, the equality of the coefficients

of x2 gives the condition

r + s + p + q = 0.

In these conditions, the coefficients of x3 are allways equal, but those of x4 are
equal only if

(r + q) (s + q) (r + s) = 0.

This implies:

1) r = −q, s = −p giving a variant of (ii);

2) s = −q, r = −p giving (ii);

3) s = −r, q = −p which implies (i).

Corollary 15
The relation

EG(λ)
r,s = Ep,q

holds only in the following nontrivial case:

EG
r,s = E−r,−s .
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