
Annales Aademiae Paedagogiae CraoviensisFolia 45 Studia Mathematia VI
Anna BahyryzOn sets assoiated to onditional equationof exponential funtion

Abstrat. In the present paper we give a description and properties of the
system of cones over Q which are one of parameters determining the
solutions of the conditional equation of exponential function.1. Introdution

F.S. Roberts, generalizing the mathematical description of choices intro-
duced by himself in [10, 11], considers functions f : R(n) −→ R(n), where
R(n) := {(x1, . . . , xn) ∈ R

n : xj ≥ 0 for j = 1, . . . , n}, 0n := (0, . . . , 0) ∈ R
n,

which satisfy, among others, the following conditional functional equation:

f(x) · f(y) 6= 0n =⇒ f(x + y) = f(x) · f(y),

for x, y ∈ R(n). Here x + y and x · y are defined in the following way:

x + y := (x1 + y1, . . . , xn + yn), x · y := (x1 · y1, . . . , xn · yn).

Mathematical theory of this approach was developed by Z. S. Rosenbaum
[12], Z. Moszner [3,7,8,9,], G.L. Forti and L. Paganoni [4,5] and A. Bahyrycz
[1,2,3].

As a generalization, one may consider functions f : R(n) −→ R(m) (where
n, m are arbitrary natural numbers, independent of each other) satisfying the
condition

∀x, y ∈ R(n) : f(x) · f(y) 6= 0m =⇒ f(x + y) = f(x) · f(y). (1)

It may be shown that in such a case the description of all the solutions f =
(f1, . . . , fm) of equation (1) takes the form:

fν(x) =

{

expaν(x) for x ∈ Zν ,

0 for x ∈ R(n) \ Zν ,
(2)
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where aν : Rn −→ R are additive functions for ν = 1, . . . , m, whereas the sets
Zν satisfy the conditions

Z1 ∪ . . . ∪ Zm = R(n), (3)

ij 6= 0m =⇒ Zi1
1 ∩ . . . ∩ Zim

m + Z
j1
1 ∩ . . . ∩ Zjm

m ⊂ Z
i1j1
1 ∩ . . . ∩ Zimjm

m , (4)

where i = (i1, . . . , im), j = (j1, . . . , jm) ∈ 0(m) := {0, 1}m \ {0m},
E1 + E2 := {x + y : x ∈ E1 and y ∈ E2} for E1, E2 ⊂ R

n,
E1 := E, E0 := R(n) \ E for E ⊂ R(n).

The proof of this fact is analogous to the proof for the case of n = m in [7].
Because of the form of the solutions, equation (1), will be called the condi-

tional equation of exponential function.
Let us notice that the parameters determining the solutions of equation

(1) are systems of sets Z1, ..., Zm satisfying conditions (3) and (4), as well
as additive functions aν : Rn −→ R. For this reason, it is interesting to find
conditions equivalent to condition (4) under the assumption of condition (3).2. Auxiliary lemma

Let us recall the following definition:

Definition 1
A set C is called a cone over an ordered field K (K = Q or K = R), if x+y ∈ C

for all x, y ∈ C and αx ∈ C for all x ∈ C and α ∈ K ∩ (0, +∞).

Let us observe that if the sets Z1, . . . , Zm satisfy condition (3), then for
every a ∈ R(n) and every k ∈ {1, . . . , m} there exists a unique ik ∈ {0, 1} such
that a ∈ Zik

k (further on it will be denoted by ik(a)) and at least one j such
that ij(a) = 1.

Lemma 1
If a system of sets Z1, . . . , Zm satisfies conditions (3) and (4), then for every

non-empty subset {l1, . . . , lp} of the set {1, . . . , m} and for every (il1 , . . . , ilp) ∈
0(p) the set Z

il1

l1
∩ . . . ∩ Z

ilp

lp
is a cone over Q.

Proof.

Step 1
◦

Consider arbitrary ∅ 6= {l1, . . . , lp} ⊂ {1, . . . , m} and (il1 , . . . , ilp) ∈ 0(p).

Take x ∈ Z
il1

l1
∩. . .∩Z

ilp

lp
and y ∈ Z

il1

l1
∩. . .∩Z

ilp

lp
. Since (il1 , . . . , ilp) 6= 0p , there

exists ν ∈ {l1, . . . , lp} such that iν = 1. Obviously, x ∈ Z
i1(x)
1 ∩ . . . ∩ Z

im(x)
m ,

y ∈ Z
i1(y)
1 ∩ . . .∩Z

im(y)
m and ilk(x) = ilk(y) = ilk for every k ∈ {1, . . . , p}. Since

iν(x) = iν(y) = 1, from condition (4) it follows that
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x + y ∈ Z

i1(x)
1 ∩ . . . ∩ Zim(x)

m + Z
i1(y)
1 ∩ . . . ∩ Zim(y)

m

⊂ Z
i1(x)i1(y)
1 ∩ . . . ∩ Zim(x)im(y)

m

⊂ Z
(il1

)2

l1
∩ . . . ∩ Z

(ilp
)2

lp

= Z
il1

l1
∩ . . . ∩ Z

ilp

lp
.

Therefore, for every ∅ 6= {l1, . . . , lp} ⊂ {1, . . . , m} and every (il1 , . . . , ilp) ∈ 0(p)

the set Z
il1

l1
∩ . . . ∩ Z

ilp

lp
is closed under addition.

Step 2
◦

Take arbitrary ∅ 6= {l1, . . . , lp} ⊂ {1, . . . , m} and (il1 , . . . , ilp) ∈ 0(p). Con-

sider the set Z
il1

l1
∩ . . . ∩ Z

ilp

lp
. Take x ∈ Z

il1

l1
∩ . . . ∩ Z

ilp

lp
and k ∈ N. The set

Z
il1

l1
∩ . . . ∩ Z

ilp

lp
is closed under addition, so kx ∈ Z

il1

l1
∩ . . . ∩ Z

ilp

lp
. Consider

1
kx. Obviously,

1

k
x ∈ Z

i1( 1

k
x)

1 ∩ . . . ∩ Z
im( 1

k
x)

m

and since Z1∪. . .∪Zm = R(n), there exists ν ∈ {1, . . . , m} such that iν( 1
kx) = 1.

It follows from step 1◦ that the set Z
i1( 1

k
x)

1 ∩ . . . ∩ Z
im( 1

k
x)

m is closed under
addition, so consequently

x = k ·
(1

k
x
)

∈ Z
i1( 1

k
x)

1 ∩ . . . ∩ Z
im( 1

k
x)

m .

As a result, for every l ∈ {1, . . . , m} we have

il(x) = il

(1

k
x
)

,

which means that
1

k
x ∈ Z

il1

l1
∩ . . . ∩ Z

ilp

lp
.

We have shown that the set Z
il1

l1
∩ . . . ∩ Z

ilp

lp
is a cone over Q.

Remark 1
Notice that for m 6= 1 the converse of Lemma 1 is false, and here is an example
for m = n = 2.

Define

Z1 = {(x, y) ∈ R(2) : y ≤ 2x},
Z2 = {(x, y) ∈ R(2) : y ≥ 1

2x}.
It is obvious that the sets Z1

1 , Z1
2 , Z1

1 ∩Z1
2 , Z1

1 ∩Z0
2 and Z0

1 ∩Z1
2 are cones over

R (because the sets Z1
1 , Z1

2 , Z0
1 , Z0

2 are cones over R). Condition (4) is not
satisfied, since (1, 0) ∈ Z1

1 ∩ Z0
2 and (2, 2) ∈ Z1

1 ∩ Z1
2 whereas (3, 2) 6∈ Z1

1 ∩ Z0
2 .
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Remark 2
Let us observe that if the sets Z1, . . . , Zm satisfy conditions (3) and (4), then
for m ∈ {1, 2} the set Z0

1 in the case of m = 1 and the sets Z0
1 , Z0

2 , Z0
1 ∩Z0

2 for
m = 2 are also cones over Q. If m = 1, then Z1 = R(n), so Z0

1 = ∅. If m = 2,
then Z1∪Z2 = R(n), so R(n)\Z1

1 ⊂ Z1
2 and R(n)\Z1

2 ⊂ Z1
1 , and consequently

Z0
1 ⊂ Z1

2 and Z0
2 ⊂ Z1

1 . Therefore

Z0
1 ∩ Z1

2 = Z0
1 and Z0

2 ∩ Z1
1 = Z0

2 ,

and, by Lemma 1, Z0
1 and Z0

2 are cones over Q and the set Z0
1 ∩ Z0

2 is empty.
If the sets Z1, . . . , Zm satisfy conditions (3) and (4), then for m > 2 not

every set

Z0
l1 ∩ . . . ∩ Z0

lp ,

where ∅ 6= {l1, . . . , lp} is necessarily a cone over Q. Here is a suitable example
for n = 2 and m = 3.

Define

Z1 = {(x, y) ∈ R(2) : y ≤ 1
2x},

Z2 = {(x, y) ∈ R(2) : 1
2x < y ≤ 2x},

Z3 = {(x, y) ∈ R(2) : y > 2x}.

It can be easily checked that the sets Z1, Z2, Z3 satisfy conditions (3) and (4)
and that the set

Z0
2 = {(x, y) ∈ R(2) : y ≤ 1

2x} ∪ {(x, y) ∈ R(2) : y > 2x}

is not a cone over Q.3. Main result
The following theorem gives the conditions equivalent to condition (4) under

the assumption of condition (3).

Theorem 1
Assume that sets Z1, . . . , Zm satisfy condition (3). The following conditions

are equivalent:

(i) condition (4);

(ii) the sets Z1, . . . , Zm are cones over Q for which

Z1
l + Z1

l ∩ Z0
k ⊂ Z1

l ∩ Z0
k (5)

for all k, l ∈ {1, . . . , m} (it is enough to consider k 6= l);

(iii) the sets Z1, . . . , Zm satisfy the conditions
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Z1

k + Z1
k ⊂ Z1

k , (6)

for every k ∈ {1, . . . , m} and condition (5) for all k, l ∈ {1, . . . , m};
(iv) for all x, y ∈ R(n) if there exists ν ∈ {1, . . . , m} such that x ∈ Zν and

y ∈ Zν , then

∀ k ∈ {1, . . . , m} : x + y ∈ Zk ⇐⇒ x ∈ Zk and y ∈ Zk , (7)

(v) for all k, l ∈ {1, . . . , m} the following implication holds

ij 6= 02 =⇒ Zik

k ∩ Zil

l + Z
jk

k ∩ Z
jl

l ⊂ Z
ikjk

k ∩ Z
iljl

l , (8)

where i = (ik, il), j = (jk, jl) ∈ 0(2).

Proof. (i)⇒(ii) By Lemma 1, the sets Z1, . . . , Zm are cones over Q. As-
sume that z ∈ Z1

l + Z1
l ∩ Z0

k for k, l ∈ {1, . . . , m} such that k 6= l. It implies
that there exist such x ∈ Z1

l and y ∈ Z1
l ∩ Z0

k that x + y = z. Clearly,

x ∈ Z
i1(x)
1 ∩ . . . ∩ Z

im(x)
m , y ∈ Z

i1(y)
1 ∩ . . . ∩ Z

im(y)
m and il(x) = il(y) = 1. By

applying condition (4) we get

x + y ∈ Z
i1(x)
1 ∩ . . . ∩ Zim(x)

m + Z
i1(y)
1 ∩ . . . ∩ Zim(y)

m

⊂ Z
i1(x)i1(y)
1 ∩ . . . ∩ Zim(x)im(y)

m ⊂ Z
il(x)il(y)
l ∩ Z

ik(x)ik(y)
k

= Z1
l ∩ Z0

k .

(ii)⇒(iii) The sets Z1, . . . , Zm are cones over Q, so each of them is closed
under addition, condition (6) is therefore satisfied for every k ∈ {1, . . . , m},
which completes the proof.

(iii)⇒(iv) Let x, y ∈ R(n), ν ∈ {1, . . . , m} be arbitrary and such that x ∈
Zν and y ∈ Zν .

(⇐ in (7)) Lets us take an arbitrary k ∈ {1, . . . , m} such that x ∈ Z1
k and

y ∈ Z1
k . Condition (6) yields

x + y ∈ Z1
k + Z1

k ⊂ Z1
k .

(⇒ in (7)) Fix an arbitrary k ∈ {1, . . . , m} such that x + y ∈ Z1
k . If k = ν,

then, by assumption, x ∈ Z1
k and y ∈ Z1

k . If k 6= ν, then suppose
that x ∈ Z0

k or y ∈ Z0
k . Without loss of generality we may assume

that y ∈ Z0
k . Then, by (5), we obtain

x + y ∈ Z1
ν + Z1

ν ∩ Z0
k ⊂ Z1

ν ∩ Z0
k ⊂ Z0

k ,

which is a contradiction, since the sets Z1
k and Z0

k are mutually
disjoint. It means that

x ∈ Z1
k and y ∈ Z1

k ,

which finishes the proof.
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(iv)⇒(v) Let k, l ∈ {1, . . . , m} and i = (ik, il), j = (jk, jl) ∈ 0(2) be such

that ij 6= 02 . Consider z ∈ Zik

k ∩Zil

l +Z
jk

k ∩Z
jl

l . Then there exist x ∈ Zik

k ∩Zil

l

and y ∈ Z
jk

k ∩ Z
jl

l such that z = x + y. Since ij 6= 02 , there exist ν ∈ {k, l}
such that iν = jν = 1, and condition (7) gives

x + y ∈ Z1
ν = Ziνjν

ν .

For t ∈ {k, l} \ {ν} the following cases are possible:

a) it = jt = 1,

b) it = 0 or jt = 0.

Case a). If it = jt = 1, then x ∈ Z1
t and y ∈ Z1

t , so, by condition (7), we
obtain

x + y ∈ Z1
t = Z

itjt

t .

Case b). If it = 0 or jt = 0, then it is not true that x ∈ Z1
t and y ∈ Z1

t . Since
x ∈ Z1

ν and y ∈ Z1
ν , from condition (iv) it follows that it is not true

that x + y ∈ Z1
t , therefore

x + y ∈ Z0
t = Z

itjt

t .

Thus

x + y ∈ Z
ikjk

k ∩ Z
iljl

l .

(v)⇒(i) Let i, j ∈ 0(m) be such that ij 6= 0m . Consider z ∈ Zi1
1 ∩. . .∩Zim

m +

Z
j1
1 ∩ . . . ∩ Zjm

m . Then there exist x ∈ Zi1
1 ∩ . . . ∩ Zim

m and y ∈ Z
j1
1 ∩ . . . ∩ Zjm

m

such that z = x + y. Since ij 6= 0m , there exists k ∈ {1, . . . , m} such that
ik = jk = 1.

Let l ∈ {1, . . . , m}. In such a case (ik, il) · (jk, jl) 6= 02 and, by condition
(v), we obtain

x + y ∈ Z
ikjk

k ∩ Z
iljl

l ⊂ Z
iljl

l ,

so

x + y ∈ Z
i1j1
1 ∩ . . . ∩ Zimjm

m ,

which completes the proof of Theorem 1.

Theorem 1 leads to the following

Corollary 1
If sets Z1, . . . , Zm are pairwise disjoint and satisfy condition (3), then condition

(4) is equivalent to the following condition: Z1, . . . , Zm are cones over Q.

Proof. Assume that sets Z1, . . . , Zm are pairwise disjoint and satisfy con-
dition (3). Then, by Theorem 1, condition (4) is equivalent to condition
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(ii), namely, the sets Z1, . . . , Zm are cones over Q which satisfy condition (5)
for all k, l ∈ {1, . . . , m} such that k 6= l. Because of the fact that for all
k, l ∈ {1, . . . , m} such that k 6= l the sets Zk, Zl are disjoint, the condition

Z1
l + Z1

l ∩ Z0
k ⊂ Z1

l ∩ Z0
k

is reduced to the condition

Z1
l + Z1

l ⊂ Z1
l ,

because Z1
l ⊂ R(n)\Z1

k = Z0
k (since Z1

k ∩Z1
l = ∅), and therefore Z1

l ∩Z0
k = Z1

l .
Similarly, the condition

Z1
k + Z1

k ∩ Z0
l ⊂ Z1

k ∩ Z0
l

is reduced to the condition

Z1
k + Z1

k ⊂ Z1
k .

Thus, in order to verify condition (5) for two disjoint sets contained in
R(n) it suffices to check whether these sets are closed under addition, which
completes the proof.

Remark 3
Notice that if sets Z1, . . . , Zm satisfy condition (3), then the fact that they fulfil
condition (4) implies that they satisfy condition (5). The converse implication
is not true, the assumption that the sets Z1, . . . , Zm are cones over Q cannot
be omitted in condition (ii). Here is an example for m = n = 2.

Define

Z1 = {(x, y) ∈ R(2) : x ≤ 1},
Z2 = R(2).

The sets Z1, Z2 satisfy condition (3), as well as the conditions

Z1
1 +Z1

1∩Z0
2 = ∅ = Z1

1∩Z0
2 , Z1

2 +Z1
2∩Z0

1 = {(x, y) ∈ R(2) : x > 1} = Z1
2∩Z0

1 .

Therefore, condition (5) is satisfied for k, l ∈ {1, 2}. Obviously, the sets Z1, Z2

do not satisfy condition (4), since the set Z1 is not a cone over Q.

Remark 4
Let us have a closer look at condition (4). Notice that the number of pairs
(i, j) ∈ {0, 1}m ×{0, 1}m equals 4m. The product ij = 0m if and only if ik = 0
and jk = 0 or ik = 1 and jk = 0 or ik = 0 and jk = 1 for every k ∈ {1, . . . , m}.
Therefore the number of pairs (i, j) ∈ 0(m) × 0(m) satisfying the condition
ij 6= 0m is equal to 4m − 3m.

Observe that condition (4) is symmetrical with respect to i and j, so instead
of verifying 4m − 3m conditions in order to verify condition (4) we will show
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that it suffices to verify 4m−3m+2m−1

2 conditions. The number of pairs (i, i) ∈
0(m)× 0(m) is equal to 2m − 1 and for all remaining pairs (i, j) ∈ 0(m)× 0(m)
such that ij 6= 0m and i 6= j it suffices to verify condition (4) for half of them;
that is to say, if it is verified for the pair (i, j), then there is no need to verify
it for the pair (j, i) so we have

2m − 1 +
4m − 3m − (2m − 1)

2
=

4m − 3m + 2m − 1

2
.

Notice that in order to verify condition (iii) of Theorem 1 (which is equiv-
alent to condition (4) if condition (3) is assumed) it suffices to verify m2 con-
ditions (m in order to verify condition (6) and m(m − 1) to verify condition
(5)).

m 1 2 3 4 5

4m − 3m + 2m − 1

2
1 5 22 95 406

m2 1 4 9 16 25

Table 1

Hence, verification of condition (iii) of Theorem 1 for m ≥ 2 requires exam-
ining less conditions then it is the case for condition (4). Let us additionally
observe that the conditions obtained from (iii) of Theorem 1 are of a simpler
form than the ones obtained from (4).

Remark 5
We will show that the system of conditions obtained from condition (iii) of
Theorem 1 for n > 1 and m > 1 is complete.

I. Consider the following sets:

Z1 = {(x, y, 0, . . . , 0) ∈ R(n) : y ≥ x},
Z2 = R(n)

and if m ≥ 3, then

Z3 = . . . = Zm = ∅.
Notice that condition (6) is satisfied for every k ∈ {1, . . . , m}, since

the sets Z1, . . . , Zm are cones over R. Condition (5) is satisfied for all
(k, l) ∈ {1, . . . , m}2 \ {(1, 2)}, and for k = 1 and l = 2 we have

R(n) + R(n) ∩ Z0
1 = R(n) \ {(0, x2, 0, . . . , 0) ∈ R(n)}
6⊂ R(n) ∩ Z0

1

= Z0
1 .
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II. Consider the following sets:

Z1 = {(x, x, 0, . . . , 0) ∈ R(n)},
Z2 = R(n) \ Z1

and if m ≥ 3, then

Z3 = . . . = Zm = ∅.
Condition (5) is satisfied for all k, l ∈ {1, . . . , m}, since the sets

Z1, . . . , Zm are pairwise disjoint. Condition (6) is satisfied for every
k ∈ {1, . . . , m} \ {2}, since the sets Zk for k ∈ {1, . . . , m} \ {2} are cones
over R. Condition (6) is not satisfied for k = 2, because (1, 0, . . . , 0) ∈ Z2

and (0, 1, 0, . . . , 0) ∈ Z2 whereas (1, 1, 0, . . . , 0) 6∈ Z2.

The independence of the conditions obtained from condition (iii) of Theorem
1, which occurs even under additional assumption that the sets Z1, . . . , Zm

are cones over R, means that when verifying condition (iii) it is necessary to
consider m2 conditions (none of them may be omitted).

Remark 6
We are going to show that if sets Z1, . . . , Zm fulfilling condition (3) satisfy
condition (iii) of Theorem 1, then, as a consequence, they satisfy the conditions

Z1
k + Z1

k = Z1
k ,

Z1
l + Z1

l ∩ Z0
k = Z1

l ∩ Z0
k

for all k, l ∈ {1, . . . , m}.
It suffices to prove that Z1

k ⊂ Z1
k + Z1

k and Z1
l ∩ Z0

k ⊂ Z1
l + Z1

l ∩ Z0
k .

Fix x ∈ Z1
k and y ∈ Z1

l ∩ Z0
k . On account of Theorem 1, the system

Z1, . . . , Zm satisfies condition (3), which fact, combined with Lemma 1, implies
that the sets Z1

k and Z1
l ∩ Z0

k are cones over Q, so

1

2
x ∈ Z1

k and x =
1

2
x +

1

2
x ∈ Z1

k + Z1
k,

1

2
y ∈ Z1

l ∩ Z0
k and y =

1

2
y +

1

2
y ∈ Z1

l ∩ Z0
k + Z1

l ∩ Z0
k ⊂ Z1

l + Z1
l ∩ Z0

k .

Hence, in conditions (5) and (6) of condition (iii) of Theorem 1 the inclusion
may by replaced by equality. Analogous reasoning proves that in condition (5)
of condition (ii) of Theorem 1 the inclusion may by replaced by equality.

We will show that the fact that sets Z1, . . . , Zm satisfy condition (3) and
condition (i) of Theorem 1 does not necessarily imply that the condition

ij 6= 0m =⇒ Zi1
1 ∩ . . . ∩ Zim

m + Z
j1
1 ∩ . . . ∩ Zjm

m = Z
i1j1
1 ∩ . . . ∩ Zimjm

m ,

is satisfied (that is to say, that the inclusion in condition (4) cannot be replaced
with equality). Here is an example for m > 1.
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Put

Z1 = R(n),

Z2 = . . . = Zm = ∅.
Notice that

Z1
1 ∩ Z0

2 ∩ . . . ∩ Z0
m + Z1

1 ∩ Z1
2 ∩ Z0

3 ∩ . . . ∩ Z0
m

= ∅ ⊆/ Z1
1 ∩ Z0

2 ∩ . . . ∩ Z0
m = R(n).

Similarly, in condition (v) of Theorem 1 the inclusion cannot be replaced
with equality. It suffices to consider the same sets as above and put k = 1,
l = 2, i = (1, 0), j = (1, 1) and we obtain

Z1
1 ∩ Z0

2 + Z1
1 ∩ Z1

2 = ∅ ⊆/ Z1
1 ∩ Z0

2 = R(n).

Remark 7
Characterizing a function f : R(2) −→ R(2) satisfying equation (1), Z. Moszner
in [9] replaces condition (4) with four conditions which are equivalent to (4)
under the assumption of condition (3). These are the following conditions:

(a) Z1 + Z1 ⊂ Z1 ,

(b) Z2 + Z2 ⊂ Z2 ,

(c) Z0
1 + Z2 ⊂ Z0

1 ,

(d) Z0
2 + Z1 ⊂ Z0

2 .

Let us compare the above conditions with the ones obtained by expanding
condition (iii) of Theorem 1 for the case of n = m = 2. In this way, we obtain
two conditions from condition (5):

(a’) Z1
1 + Z1

1 ⊂ Z1
1 ,

(b’) Z1
2 + Z1

2 ⊂ Z1
2

and two conditions to be verified from condition (6):

(c’) Z1
1 + Z1

1 ∩ Z0
2 ⊂ Z1

1 ∩ Z0
2 ,

(d’) Z1
2 + Z1

2 ∩ Z0
1 ⊂ Z1

2 ∩ Z0
1 .

Clearly, conditions (a) and (a’), (b) and (b’) are identical. If we assume that
condition (3) holds (Z1∪Z2 = R(2)), then we have Z1

1∩Z0
2 = Z0

2 and Z1
2 ∩Z0

1 =
Z0

1 , and, since addition is commutative, condition (c’) corresponds precisely
with condition (d), and so does (d’) with (c), although they differ by notation.
Therefore, if we assume that condition (3) is satisfied, then condition (iii) of
Theorem 1 may be treated as a generalization of the system of conditions (a),
(b), (c) and (d) from [9] for the case of n, m being arbitrarily chosen natural
numbers, independent of each other.



On sets assoiated to onditional equation of exponential funtion 29
Remark 8
It is easily seen that if in Lemma 1 and Theorem 1 we delete the assumption
that

Z1 ∪ . . . ∪ Zm = R(n)

and define

Z1
i := Zi and Z0

i :=

(

m
⋃

j=1

Zj

)

\ Zi

for i = 1, . . . , m, then both Lemma 1 and Theorem 1 remain valid.4. Another properties of the systems satisfying (3) and (4)

We start from the following

Definition 2
Let C ⊂ R(n) be a cone over Q. Denote:

〈C〉 − the linear subspace of R
n over the field R generated by C;

C − the closure of the set C in 〈C〉;
C∗ − the interior of the set C in 〈C〉;
intC − the interior of the set C in R

n.

Now we will be investigated another properties of the systems Z1, . . . , Zm

satisfying conditions (3) and (4).

Theorem 2
Let a system Z1, . . . , Zm satisfy conditions (3) and (4). If there exist k, l ∈
{1, . . . , m} such that k 6= l and (Zk ∩ Zl)

∗ 6= ∅, then

Zk ∩ 〈Zk ∩ Zl〉 = Zl ∩ 〈Zk ∩ Zl〉.

Proof. Let x ∈ (Zk ∩ Zl)
∗. Then there exists r > 0 such that the ball

K(x, r) ⊂ Zk ∩ Zl ⊂ 〈Zk ∩ Zl〉.

For z ∈ Zl ∩ 〈Zk ∩ Zl〉 there exists q ∈ Q+ such that ||qz|| < r, so

x + qz ∈ K(x, r) ⊂ Zk ∩ Zl,

and, by condition (iv) of Theorem 1 (the condition equivalent to (4) when
condition (3) is assumed), because of the fact that x ∈ Z1

l and qz ∈ Z1
l we

obtain qz ∈ Z1
k . Since qz ∈ 〈Zk ∩Zl〉, z ∈ Zk ∩ 〈Zk ∩ Zl〉 (for Zk is a cone over

Q), which gives Zl ∩ 〈Zk ∩ Zl〉 ⊂ Zk ∩ 〈Zk ∩ Zl〉; consequently, by symmetry,
we get

Zl ∩ 〈Zk ∩ Zl〉 = Zk ∩ 〈Zk ∩ Zl〉.
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Notice that if int(Zk ∩ Zl) 6= ∅, then Theorem 2 yields Zk = Zl , which

results in the following

Corollary 2
If a system Z1, . . . , Zm satisfies conditions (3) and (4), then for all k, l ∈
{1, . . . , m} Zk = Zl or Zk ∩ Zl is a set with empty interior in R

n.

Remark 9
If the sets Z1, Z2 satisfy conditions (3) and (4), then int(Z1 ∩ Z2) 6= ∅ if and
only if Z1 = Z2 = R(n) (the only possible division of R(n) into two equal sets
whose union is R(n)).

Let us make the following definition

Definition 3
For every subset {l1, . . . , lp} ⊂ {1, . . . , n} we define the set

Bl1,...,lp := {(x1, . . . , xn) ∈ R(n) : xl1 = . . . = xlp = 0},

and then we define the set

B := {Bl1,...,lp : {l1, . . . , lp} ⊂ {1, . . . , n}}.

Notice that for every B ∈ B the set R(n) \ B is a cone over R.

Lemma 2
If a set ∅ 6= Z ⊂ R(n) is a cone over Q, then there exists a subset {l1, . . . , lp}
of the set {1, . . . , n} such that Z ⊂ Bl1,...,lp and exists x = (x1, . . . , xn) ∈ Z

such that xk > 0 for every k ∈ {1, . . . , n} \ {l1, . . . , lp}.

Proof. Let K be the family of all the subsets of the set {1, . . . , n} which
satisfy the condition

∀k = {k1, . . . , kν} ∈ K Z ⊂ Bk1,...,kν
.

The set K is non-empty, for Z ⊂ R(n) = B∅ , so ∅ ∈ K. Obviously,

Z ⊂ Bl1,...,lp ,

where L = {l1, . . . , lp} =
⋃

k∈K k.
Take x = (x1, . . . , xn) ∈ Z. Let M = {m1, . . . , mt} be such a subset of the

set {1, . . . , n} \ L that

∀ j ∈ {1, . . . , t} xmj
= 0 and ∀ s ∈ ({1, . . . , n} \ L) \ M xs > 0.

Observe that if the set M 6= ∅, since the set Z 6⊂ Bmj
, for every j ∈ {1, . . . , t}

there exists ymj = (y
mj

1 , . . . , y
mj

n ) ∈ Z such that y
mj

mj
> 0. Define
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x :=











x +
t
∑

j=1

ymj if M 6= ∅,

x if M = ∅,
which finishes the proof.

Theorem 3
If a system Z1, . . . , Zm satisfies conditions (3) and (4) and if there exists such

k ∈ {1, . . . , m} that Zk = R(n), then Zi ∈ B for every i ∈ {1, . . . , m}.

Proof. Fix an arbitrary i ∈ {1, . . . , m} for which Zi 6= ∅. Lemma 2 guar-
antees the existence of {l1, . . . , lp} ⊂ {1, . . . , n} such that Zi ⊂ Bl1,...,lp and

∃x = (x1, . . . , xn) ∈ Zi : ∀ k ∈ {1, . . . , n} \ {l1, . . . , lp} xk > 0.

Let z = (z1, . . . , zn) ∈ Bl1,...,lp . Then, for every k ∈ {1, . . . , n} \ {l1, . . . , lp}
there exists qk ∈ Q+ such that

xk > qkzk

and for every j ∈ {l1, . . . , lp}

xj = zj = 0.

Denote

q = min{qj : j ∈ {1, . . . , n} \ {l1, . . . , lp}}.
Then, x − qz ∈ R(n) = Zk , qz ∈ R(n) = Zk and x = (x − qz) + qz ∈ Zi .
By condition (iv) of Theorem 1 (equivalent to (4) when (3)) is assumed), we
obtain qz ∈ Zi , therefore z ∈ Zi . We have shown that Bl1,...,lp ⊂ Zi , and
hence, because Zi ⊂ Bl1,...,lp we obtain

Zi = Bl1,...,lp ,

which proves the theorem.

Remark 10
Z. Moszner in [9] (see Theorem 1) proved that every function f = (f1, . . . , fp):
R(p) −→ R(p) satisfying condition (1) with n = m = p satisfies the condition

∀x, y ∈ R(p) : f(x + y) = f(x) · f(y), (9)

if and only if there exists k ∈ {1, . . . , p} for which fk 6= 0 on R(p), or, when we
use the “language of cones", if there exists k ∈ {1, . . . , p} such that Zk = R(p).

More exactly, for k = 1, . . . , p let Mk be subsets of {1, . . . , p} such that Mj

is empty for at least one index j ∈ {1, . . . , p}. Let
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Zk := {x ∈ R(p) : ∀i ∈ Mk xi = 0},

i.e. Zk ∈ B. Finally, let ak : R
p −→ R be additive functions. It was shown in

[9], Corollary 2, that all solutions of equation (9) are of the form

fk(x) =

{

exp ak(x) for x ∈ Zk ,

0 for x ∈ R(p) \ Zk .

Thus our Theorem 3 is a natural generalization expressed in the “language of
cones" of Corollary 2 in [9] to the case of functions f : R(n) −→ R(m) with n

and m possibly distinct.Aknowledgment
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