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Abstrat. In this paper we give necessary and sufficient conditions for the
existence of orientation-preserving iterative roots of a homeomorphism
with a nonempty set of periodic points. We also give a construction
method for these roots.1. Introdution

The problem of the existence of iterative roots of a given function F , i.e., the
solution of the following equation Gm = F , where m ≥ 2 is an integer, has been
considered for nearly two hundred years (see for example [1], [10], [12], [14],
[15], [25]). There are also some results for some homeomorphisms of the unit
circle S1, e.g., homeomorphisms with an irrational rotation number (see [18],
[24]), for the identity function (see [11]) and for some other homeomorphisms
with a rational rotation number (see [16], [19], [20]). In particular, [16] relates
the existence of an iterative root of F to the existence of an iterative root of
F|PerF , where PerF := {z ∈ S1 | ∃k ∈ N F k(z) = z}. More precisely, an
orientation-preserving homeomorphism F :S1 −→ S1 such that Fn(z) = z for
z ∈ PerF , has an iterative root of orderm if and only if there exists an iterative
root ψ: PerF −→ PerF of order m of F|PerF such that

(i) ψ preserves orientation;

(ii) for any connected component
−−−−→
(u, v) of S1 \ PerF ,

−−−−−−−−−→
(ψ(u), ψ(v)) and−−−−→

(u, v) are both increasing (or both decreasing) arcs of Fn.

Recall that an arc
−−−→
(u, v) , where u, v ∈ PerF and

−−−−→
(u, v) ∩ PerF = ∅, is called

increasing (resp. decreasing) arc of Fn if there is an x ∈ −−−−→
(u, v) such that

Fn(x) ∈ −−−−→
(x, v) (resp. Fn(x) ∈ −−−−→

(u, x) ).
This paper answers the question when iterative roots of the function F|PerF

exist and generalizes results from [20]. For this purpose we apply the method
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which is used for the construction of the iterative roots of a homeomorphism
with an irrational rotation number (i.e., the method that uses a solution of
some Schröder equation, see [18]).2. Preliminaries

We begin with recalling some definitions and notations. For any u,w, z ∈ S1

there exist unique t1, t2 ∈ 〈0, 1) such that we2πit1 = z, we2πit2 = u. Define

u ≺ w ≺ z if and only if 0 < t1 < t2

(see [2]). Some properties of this relation can be found in [3], [4] and [5].
We say that a function F :A −→ S1, where A ⊂ S1, preserves orientation

if for any u,w, z ∈ A such that u ≺ w ≺ z we have F (u) ≺ F (w) ≺ F (z).
For every orientation-preserving homeomorphism F :S1 −→ S1 there exists

a unique (up to translation by an integer) homeomorphism f :R −→ R, called
the lift of F , such that F

(

e2πix
)

= e2πif(x) and f(x + 1) = f(x) + 1 for all
x ∈ R. Moreover, the limit

α(F ) := lim
n→∞

fn(x)

n
(mod 1), x ∈ R

always exists and does not depend on x and the choice of f . This number is
called the rotation number of F (see [9]). It appears that a homeomorphism
F :S1 −→ S1 preserves orientation if and only if f is a strictly increasing
function (see for example [4]). Moreover, α(F ) is a rational number if and only
if PerF 6= ∅ (see for example [9]).

Let us introduce a classification of orientation-preserving homeomorphisms.
Namely, for n ∈ N and q ∈ {0, 1 . . . , n− 1} such that gcd(q, n) = 1 denote by
Fq,n the set of all orientation-preserving homeomorphisms F of the circle with
α(F ) = q

n . From now on writing F ∈ Fq,n without any additional assumptions
on q and n, we mean that the numbers q and n are such that n ∈ N, q ∈
{0, . . . , n− 1} and gcd(q, n) = 1.

Finally, for any distinct u, z ∈ S1 put
−−−−→
(u, z) := {w ∈ S1 | u ≺ w ≺ z} (such

a set is said to be an open arc) and
−−−−→〈u, z) :=

−−−−→
(u, z) ∪ {u}.

Remark 1
If F ∈ Fq,n, then PerF = {z ∈ S1 | Fn(z) = z} and n is the minimal
number such that Fn(z) = z for z ∈ PerF . In fact, notice that α(Fn) =
nα(F ) (mod 1) = 0. Therefore Fn has a fixed point (see [9], Ch. 3, § 3). The
assertion follows from the fact that every two periodic points of an orientation-
preserving homeomorphism have the same period (see for example [17], p. 16).
Now suppose that Fm(z) = z for an m ∈ {1, . . . , n− 1} and a z ∈ PerF . Then
m q
n (mod 1) = 0. Thus n divides m, a contradiction.
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For any F ∈ Fq,n define the following set

MF := {u ∈ PerF | ∃w ∈ PerF, w 6= u :
−−−−→
(u,w) ∩ PerF = ∅}.

Such a set is F -invariant (i.e., F (MF ) = MF ). It may happen that MF = ∅ (if
PerF = S1), MF = PerF (for example, if PerF is finite) or ∅  MF  PerF
(for example, if int(PerF ) 6= ∅). Moreover, if MF 6= ∅, then S1 \ PerF 6= ∅.
Since PerF is closed, we have that S1 \PerF is a sum of pairwise disjoint open

arcs. Denote the family of these arcs by AF . For every
−−−−→
(u,w) ∈ AF , where

u,w ∈ PerF , put l
(−−−−→

(u,w)
)

:= u and observe that l maps bijectively AF onto

MF . Setting Iu := l−1(u) for u ∈ MF we have

S1 \ PerF =
⋃

u∈MF

Iu .

For the convenience of the reader we recall the relevant, slightly modified
material from [21].

Proposition 1
Let F ∈ Fq,n be such that PerF 6= S1 and let I ∈ AF . Then

−−−−−−−→
( z, Fn(z)) ⊂ I

for every z ∈ I or
−−−−−−−→
(Fn(z), z) ⊂ I for every z ∈ I.

Moreover, if
−−−−−−−→
(z, Fn(z)) ⊂ I (resp.

−−−−−−−→
(Fn(z), z) ⊂ I) for a z ∈ I, then

−−−−−−−−−→
(z1, F

n(z1)) ⊂ F (I) (resp.
−−−−−−−−−→
(Fn(z1), z1) ⊂ F (I)) for all z1 ∈ F (I).

We also recall a sketch of the proof. Assume z ∈ I ∈ AF . Then Fn(z) ∈ I

and z 6= Fn(z). Therefore
−−−−−−−→
(z, Fn(z)) ⊂ I or

−−−−−−−→
(Fn(z), z) ⊂ I. Suppose that

−−−−−−−→
(z, Fn(z)) ⊂ I. Since F preserves orientation we have

−−−−−−−−−−−−−−−→
(F ln(z), Fn(l+1)(z)) ⊂ I for all l ∈ Z.

Moreover,
⋃

l∈Z

−−−−−−−−−−−−−−−→
〈F ln(z), F (l+1)n(z)) = I. Now fix u ∈ I. We may assume

u 6= F ln(z) for l ∈ Z. Then u ∈
−−−−−−−−−−−−−−−→
(Fnj(z), Fn(j+1)(z)) for some j ∈ Z.

Hence Fn(u) ∈
−−−−−−−−−−−−−−−−−−−→
(Fn(j+1)(z), Fn(j+2)(z)) , as F preserves orientation. This

gives
−−−−−−−−→
(u, Fn(u)) ⊂ I.

For the second assertion suppose that
−−−−−−−→
(z, Fn(z)) ⊂ I for an z ∈ I. Let

z1 ∈ F (I) be fixed. Then there exists a z0 ∈ I such that F (z0) = z1 and
−−−−−−−−−→
(z0, F

n(z0)) ⊂ I. Hence
−−−−−−−−−→
(z1, F

n(z1)) = F
(−−−−−−−−−→

(z0, F
n(z0))

)

⊂ F (I). This

ends the sketch of the proof.

Now we present some results concerning the Schröder equation

ψ ◦ F = sψ, (1)
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where s ∈ S1 and F :S1 −→ S1 is an orientation-preserving homeomorphism
with a rational rotation number. It is a known fact (see for example [9], [17]
or [22]) that if F is a homeomorphism with an irrational rotation number
and s = e2πiα(F ), then (1) has a continuous solution ψ:S1 −→ S1. If F is a
homeomorphism with a rational rotation number and such that card(PerF ) ≤
ℵ0, then the only continuous solutions of (1) are constant functions. Of course,
in this case s = 1 (see Theorem 4.1 in [7]). On the other hand, it follows from
Theorem 4.2 in [7] that, if F is an orientation-preserving homeomorphism such
that PerF = S1 and F 6= idS1 , then there exists a constant s 6= 1 for which
(1) has a homeomorphic and orientation-preserving solution ψ:S1 −→ S1. The
following theorem generalizes the results from Theorem 4.2 in [7].

Theorem 1
Let n > 1 and F ∈ Fq,n . There exists an orientation-preserving continuous

mapping ψ: PerF −→ S1 such that

ψ(F (z)) = e2πiα(F )ψ(z), z ∈ PerF. (2)

The solution of (2) depends on an arbitrary function.

The proof of the above theorem is based on Theorem 4.2 from [7] and the
following observation.

Lemma 1
For any F ∈ Fq,n , where n > 1, with PerF 6= S1 there exist infinitely many

homeomorphisms F̂ ∈ Fq,n such that Per F̂ = S1 and F̂ (z) = F (z) for z ∈
PerF .

Proof. Fix F ∈ Fq,n such that PerF 6= S1. Define the equivalence relation
on MF :

p ∼ q ⇐⇒ ∃k ∈ Z p = F k(q).

By E∼ denote the set of class representatives. In other words, we decompose
MF onto cycles of F . Let φp,k: IFk(p) −→ IFk+1(p) for all p ∈ E∼ and k ∈
{0, . . . , n− 2} be arbitrary orientation-preserving homeomorphisms. Put

φp,n−1(z) := φ−1
p,0 ◦ φ−1

p,1 ◦ . . . ◦ φ−1
p,n−2(z), z ∈ IFn−1(p) . (3)

It is easy to see that φp,n−1: IFn−1(p) −→ Ip for p ∈ E∼ are orientation-
preserving homeomorphisms. Let z ∈ S1 \PerF . There exist a unique p ∈ E∼

and k ∈ {0, . . . , n− 1} such that z ∈ IFk(p) . Set

φ(z) := φp,k(z).
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and observe that φ maps S1 \ PerF onto S1 \ PerF and

φn(z) =

{

φp,n−1 ◦ . . . ◦ φp,0(z), k = 0,

φp,k−1 ◦ . . . ◦ φp,0 ◦ φp,n−1 ◦ . . . ◦ φp,k(z), k 6= 0.

This and (3) give φn(z) = z for z ∈ S1 \ PerF .
Now we show that φ preserves orientation. To do this, observe that for

every z ∈ Ip , where p ∈ MF , we have φ(z) ∈ IF (p). Fix u,w, z ∈ S1 \ PerF
such that u ≺ w ≺ z. Notice that if {u,w, z} ⊂ Ip for a p ∈ MF , then the
definition of φ gives φ(u) ≺ φ(w) ≺ φ(z). Now assume that there exist distinct
p, q ∈ MF such that exactly one element from the set {u,w, z} belongs to Ip
and the rest of them belong to Iq . In view of Lemma 2 in [4], it is sufficient to

consider only the case:
−−−−→
(z, u) ⊂ Ip and w ∈ Iq. Hence

−−−−−−−−−→
(φ(z), φ(u)) ⊂ IF (p)

and φ(w) ∈ IF (q). Since IF (q)∩IF (p) = ∅, we have φ(u) ≺ φ(w) ≺ φ(z). Finally,
let card(MF ) ≥ 3 and let u ∈ Ip, w ∈ Iq and z ∈ It , where p, q, t ∈ MF are
such that p 6= q 6= t 6= p. The arcs Ip , Iq and It are pairwise disjoint, so we
have p ≺ q ≺ t. Hence F (p) ≺ F (q) ≺ F (t). On the other hand, φ(u) ∈ IF (p),
φ(w) ∈ IF (q) and φ(z) ∈ IF (t). Thus φ(u) ≺ φ(w) ≺ φ(z), as IF (p), IF (q) and
IF (t) are pairwise disjoint arcs.

Define the function F̂ :S1 −→ S1 as follows:

F̂ (z) :=

{

F (z), z ∈ PerF,

φ(z), z ∈ S1 \ PerF.

Clearly, F̂ is a surjection. To show that F̂ is an orientation-preserving home-
omorphism it is sufficient to prove that it preserves orientation. Similarly as
above fix u,w, z ∈ S1 such that u ≺ w ≺ z. By virtue of Lemma 2 in [4] it is
enough to consider three cases:

(i) card(PerF ) ≥ 3 and u,w, z ∈ PerF or u,w, z ∈ S1 \ PerF (this one is
clear).

(ii) u, z ∈ PerF and w ∈ S1 \ PerF . There exists a p ∈ MF ∩ −−−−→〈u, z) such

that w ∈ Ip and F̂ (w) = φ(w) ∈ IF (p). Thus F (p) ∈ −−−−−−−−−→〈F (u), F (z)) .

Consequently, IF (p) ⊂ −−−−−−−−−→
(F (u), F (z)) . Finally, F̂ (u) ≺ F̂ (w) ≺ F̂ (z), as

F̂|PerF = F .

(iii) u, z ∈ S1\PerF and w ∈ PerF . In this case it may happen that u, z ∈ Ip
for a p ∈ MF or u ∈ Ip and z ∈ Iq for some p, q ∈ MF , p 6= q. Suppose

that u, z ∈ Ip for a p ∈ MF . Then
−−−−→
(z, u) ⊂ Ip and w /∈ Ip . Hence

−−−−−−−−−→
(F̂ (z), F̂ (u)) =

−−−−−−−−−→
(φ(z), φ(u)) ⊂ IF (p) and F̂ (w) = F (w) /∈ IF (p). Thus

F̂ (u) ≺ F̂ (w) ≺ F̂ (z). Now suppose that u ∈ Ip and z ∈ Iq for some
p, q ∈ MF , p 6= q. Then p ≺ u ≺ w and w ≺ z ≺ p. A similar reasoning to
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this in (ii) yields F̂ (p) ≺ F̂ (u) ≺ F̂ (w) and F̂ (w) ≺ F̂ (z) ≺ F̂ (p). Hence,
by Lemma 1 in [3], we obtain F̂ (u) ≺ F̂ (w) ≺ F̂ (z).

Finally, notice that F̂|O(z) = F|O(z), where O(z) := {z, F (z), . . . , Fn−1(z)}
for z ∈ PerF . Thus α(F ) = α(F̂ ). Consequently, F̂ ∈ Fq,n , and the proof is
completed.

Now we give the proof of Theorem 1. To do this fix F ∈ Fq,n , where n > 1.
Notice that if PerF = S1, then, in view of Theorem 4.2 in [7], there exist an
orientation-preserving homeomorphism (depending on an arbitrary function)
ψ:S1 −→ S1 and a q′ ∈ {1, . . . , n− 1} with gcd(q′, n) = 1 such that

ψ(F (z)) = e2πi q
′

n ψ(z), z ∈ S1.

The equality α(F ) = q′

n follows from the fact that the homeomorphism ψ

conjugates F and the rotationR(z) = e2πi q
′

n z and ψ is an orientation-preserving
homeomorphism (see Theorem 1 in [8]). Henceforth assume that PerF 6= S1.
Let F̂ be an orientation-preserving homeomorphism, which exists by Lemma 1,
and let ψ̂:S1 −→ S1 be an orientation-preserving homeomorphic solution of

ψ̂(F̂ (z)) = e2πiα(F )ψ̂(z), z ∈ S1.

Put ψ := ψ̂|PerF . Observe that ψ: PerF −→ S1 is the desired solution of (2).

Definition 1
Given F ∈ Fq,n put

M+
F :=

{

p ∈ MF | −−−−−−−→(z, Fn(z)) ⊂ Ip for z ∈ Ip

}

and

M−
F :=

{

p ∈ MF | −−−−−−−→(Fn(z), z) ⊂ Ip for z ∈ Ip

}

.

Notice that M+
F ∩M−

F = ∅. Indeed, if p ∈ M+
F ∩M−

F , then for any z ∈ Ip

we would have
−−−−−−−→
(Fn(z), z) ⊂ Ip and

−−−−−−−→
(z, Fn(z)) ⊂ Ip . Hence S1 = Ip , a

contradiction.

Remark 2
From Proposition 1 we get M+

F ∪ M−
F = MF and F (M+

F ) ⊂ M+
F . This

inclusion and the fact that M+
F ⊂ PerF yield

M+
F = Fn−1(F (M+

F )) ⊂ F (M+
F ).

Thus for any F ∈ Fq,n , we have M+
F ∪M−

F = MF and F (M+
F ) = M+

F .

Since for all F ∈ Fq,n the sets PerF , MF , M+
F and M−

F are invariant sets
of F we have the following result.
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Remark 3
Let F ∈ Fq,n , n > 1, ψ: PerF −→ S1 be an orientation-preserving continuous

solution of (2) and let X ∈ {PerF,MF ,M+
F ,M−

F }. Then

ψ(X) = e2πiα(F )ψ(X).3. Main results
Here we give necessary and sufficient conditions for the existence of orienta-

tion-preserving continuous iterative roots of order m > 2 of a mapping F ∈
Fq,n . Throughout this section we will assume that n > 1. We begin with the
following observation.

Lemma 2
Let m ≥ 2 be an integer and let F ∈ Fq,n . Suppose that the equation

Gm(z) = F (z), z ∈ S1 (4)

has an orientation-preserving continuous solution. Then there are an orienta-

tion-preserving continuous solution of (2) and a j ∈ {0, . . . ,m− 1} such that

e2πiα(F )+j

m ψ(X) = ψ(X), (5)

where X ∈ {PerF,MF ,M+
F ,M−

F }.

Proof. Since G satisfies (4), we have α(F ) = mα(G) (mod 1). This yields
α(F )+j
m = α(G) for a j ∈ {0, . . . ,m− 1}. Theorem 1 implies the existence of an

orientation-preserving continuous solution of the following equation

ψ(G(z)) = e2πiα(F )+j

m ψ(z), z ∈ PerG. (6)

Thus

ψ(Gm(z)) = ψ(F (z)) = e2πiα(F )ψ(z), z ∈ PerG.

Hence and from the fact that PerF = PerG implies MF = MG , we get that
ψ is a solution of (2) satisfying (5) for X ∈ {PerF,MF }. Moreover, α(G) =
α(F )+j
m = q′

nl , where q′ := q+jn
gcd(q+jn,m) , l := m

gcd(q+jn,m) and gcd(q′, nl) = 1, so

G ∈ Fq′nl . Hence, if PerF 6= S1, then p ∈ M+
G gives

−−−−−−−−→
(z,Gnl(z)) ⊂ Ip for

every z ∈ Ip . Since

Gkln(z) ∈ Ip and
−−−−−−−−−−−−−−−−−→
(Gkln(z), G(k+1)nl(z)) ⊂ Ip for k ∈ Z,

we have
−−−−−−−−−→
(z,Gnm(z)) ⊂ Ip . Consequently, p ∈ M+

F . Whence M+
G ⊂ M+

F .
Similarly, M−

G ⊂ M−
F , so MF \ M−

F = M+
F ⊂ M+

G = MG \ M−
G . Finally,

M+
F = M+

G and M−
F = M−

G . In view of the above facts and Remark 3 equality
(5) holds for X ∈ {PerF,MF ,M+

F ,M−
F }.
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Corollary 1
Let F ∈ Fq,n . If G:S1 −→ S1 is an orientation-preserving homeomorphism

satisfying (4) for an integer m ≥ 2, then MF = MG , M+
F = M+

G and M−
F =

M−
G .

Now suppose that F ∈ Fq,n is such that PerF 6= S1, m > 1 is an integer
and ψ: PerF −→ S1 is an orientation-preserving continuous solution of (2)
satisfying (5) for X = PerF and a j ∈ {0, . . . ,m−1}. This fact yields equality
(5) for X = MF . Indeed, put

hψ(z) := ψ−1
(

e2πi
α(F )+j

m ψ(z)
)

, z ∈ PerF. (7)

It is easy to see that hψ: PerF −→ PerF is an orientation-preserving home-
omorphism. Notice that z ∈ PerF \ MF 6= ∅ if and only if there exist a

w ∈ PerF \ {z} and zn ∈ −−−−→
(z, w) ∩ PerF for n ∈ N such that zn → z as

n → ∞. This is equivalent to h−1
ψ (zn) → h−1

ψ (z) as n → ∞ and h−1
ψ (zn) ∈

−−−−−−−−−−−−−→
(h−1
ψ (z), h−1

ψ (w)) ∩ PerF , which gives h−1
ψ (z) ∈ PerF \ MF or equivalently

z ∈ hψ(PerF \MF ). Hence hψ(MF ) = MF .
However, (5) with X = PerF does not imply (5) for X ∈ {M+

F ,M−
F }.

An example of a function F ∈ F1,2 such that PerF = MF = {1, i,−1,−i},
M+

F = {1,−1} may be given. Put ψ(z) = z for z ∈ PerF . Then ψ is a
solution of (2) satisfying (5) for m = 2, j = 0 and X ∈ {PerF,MF }, but

e2πi 1
4M+

F 6= M+
F . Therefore assume subsidiarily that (5) holds for X = M+

F

and introduce the equivalence relation ρ on MF :

(p, q) ∈ ρ ⇐⇒ ∃k ∈ Z q = Hk
ψ(p), p, q ∈ MF , (8)

where Hψ := hψ |MF
and hψ is given by (7). Let Wρ be the set of class repre-

sentatives of ρ.
Notice that (5) with X = M+

F yields [p]ρ ⊂ M+
F or [p]ρ ⊂ M−

F for all
p ∈Wρ .

Definition 2
Let F ∈ Fq,n be such that PerF 6= S1, m > 1 be an integer, ψ: PerF −→
S1 be an orientation-preserving continuous solution of (2) satisfying (5) for
X ∈ {PerF,M+

F } and a j ∈ {0, . . . ,m − 1} and let Wρ be the set of class
representatives of the relation ρ given by (8). Put

m′ := gcd(q + jn,m), l :=
m

m′
and n′ := nl. (9)

Let (zp,k)k∈Z for p ∈ Wρ be sequences such that the points zp,dn′+r ∈ IHr
ψ

(p)

for r ∈ {0, . . . , l− 1} and d ∈ {0, . . . ,m′ − 1} are arbitrary fixed and such that

Hr
ψ(p) ≺ zp,r ≺ zp,n′+r ≺ . . . ≺ zp,(m′−1)n′+r ≺ Fn(zp,r), if p ∈ M+

F

or

Hr
ψ(p) ≺ Fn(zp,r) ≺ zp,(m′−1)n′+r ≺ . . . ≺ zp,n′+r ≺ zp,r, if p ∈ M−

F

(10)
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and the remaining points are given by

zp,k+m := F (zp,k), k ∈ Z, p ∈Wρ . (11)

Now we show that the above sequences are well defined and we prove some
of their properties.

Lemma 3
Under assumptions of Definition 2, for all i ∈ Z and p ∈Wρ there exist unique

s ∈ {0, . . . ,m′−1}, r′ ∈ {0, . . . , l−1} and k ∈ Z such that zp,i = F k(zp,sn′+r′).
Moreover,

{zp,dn′+r}d∈Z ⊂ IHr
ψ

(p), p ∈ Wρ , r ∈ {0, . . . , n′ − 1}, (12)

and for any p ∈Wρ , [p]ρ ⊂ M+
F (resp. [p]ρ ⊂ M−

F ) if and only if

zp,an′+r ≺ zp,bn′+r ≺ zp,cn′+r (resp. zp,cn′+r ≺ zp,bn′+r ≺ zp,an′+r) (13)

for any r ∈ {0, . . . , n′ − 1} and all a, b, c ∈ Z such that a < b < c.

Proof. Fix p ∈ Wρ and i ∈ Z. Write i = dn′ + r, where d ∈ Z and
r ∈ {0, . . . , n′ − 1}. If d ∈ {0, . . . ,m′ − 1} and r ∈ {0, . . . , l − 1}, then by
Definition 2, s = d, r′ = r, k = 0 and obviously zp,dn′+r ∈ IHr

ψ
(p) .

Suppose that d ∈ Z \ {0, . . . ,m′ − 1} and r ∈ {0, . . . , l − 1}. Put t =
[

d
m′

]

([x] denotes the integer part of x), k = tn, s = d− tm′ and r′ = r. Notice that
d = tm′ + s, s ∈ {0, . . . ,m′ − 1} and by (11),

F tn(zp,sn′+r) = zp,sn′+r+mtn = zp,(tm′+s)n′+r = zp,dn′+r . (14)

Since F tn(Iu) = Iu for u ∈ MF and zp,sn′+r ∈ IHr
ψ

(p) , by (14) we have

zp,dn′+r ∈ IHr
ψ

(p) .

Finally assume that d ∈ Z and r ∈ {l, . . . , n′ − 1}. As gcd(q, n) = 1 and
m′ = gcd(q + jn,m) we have gcd(m′, n) = 1. Hence there exists a unique
b ∈ {1, . . . , n− 1} such that m′b = 1 (mod n). Set ar :=

[

r
l

]

, r′ = r − arl and
kr := arb (mod n). Thus m′kr = ar (mod n) which, in view of the fact that
r = arl + r′, gives mkr + r′ = r(mod n′) and, in consequence,

mkr + r′ = xn′ + r for some x ∈ Z. (15)

This time put tr :=
[

d−x
m′

]

, k = kr + trn and s = d− x− trm
′. Then

F kr+trn(zp,sn′+r′) = z
p,
(

d−krm+r′−r

n′

)

n′+r′+krm
= zp,dn′+r .

Since r′ ∈ {0, . . . , l − 1} and d − x ∈ Z, we obtain zp,(d−x)n′+r′ ∈ IHr′
ψ

(p) . To
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prove zp,dn′+r ∈ IHr

ψ
(p) it is enough to show that F kr (Hr′

ψ (p)) = Hr
ψ(p). Notice

that from (7),

Hm
ψ (z) = ψ−1(e2πi q

nψ(z)) = F (z), z ∈ MF .

This, (15) and the fact that Hxn′

ψ (p) = p yield

F kr
(

Hr′

ψ (p)
)

= Hmkr+r
′

ψ (p) = Hxn′+r
ψ (p) = Hr

ψ(p).

The proof of the remaining part of the lemma runs in the same way as the
proof of the second assertion of Lemma 7 in [20] (it is enough to take Hr

ψ(p),
r1 , and kr instead of aRNF (i+rk′q′) , Rl(r) and pr, respectively).

Let (zp,k)k∈Z , where p ∈Wρ , be the family of sequences given by (10) and
(11). Define the following families of arcs:

Lp,k :=

{−−−−−−−−−−→〈zp,k, zp,k+n′) , p ∈ M+
F ,

−−−−−−−−−−→〈zp,k+n′ , zp,k) , p ∈ M−
F

for k ∈ Z, p ∈Wρ . (16)

From Lemma 3 it follows that

F (Lp,k) = Lp,k+m, k ∈ Z, p ∈Wρ .

Lemma 4
Under assumptions of Definition 2 if for any p ∈ Wρ the sequences (zp,k)k∈Z

are given by (10) and (11) and {Lp,k}k∈Z are the families of arcs defined by

(16), then
⋃

d∈Z

Lp,dn′+r = IHr
ψ

(p) , r ∈ {0, . . . , n′ − 1}. (17)

Proof. Fix r ∈ {0, . . . , n′ − 1} and suppose that p ∈Wρ ∩M+
F . From (13)

we have zp,dn′+r ∈ −−−−−−−−−−−−−−−−−−−−→〈zp,(d−1)n′+r, zp,(d+1)n′+r) for d ∈ Z. Hence by (12) and
(16),

Lp,dn′+r ⊂
−−−−−−−−−−−−−−−−−−−−→〈zp,(d−1)n′+r, zp,(d+1)n′+r) ⊂ IHr

ψ
(p) , d ∈ Z.

Thus
⋃

d∈Z

Lp,dn′+r ⊂ IHr
ψ

(p) .

To prove the converse inclusion fix z ∈ IHr
ψ

(p) . By Lemma 4 in [21] (see

also Remark 3 in [20]) we have

IHr
ψ

(p) =
⋃

k∈Z

−−−−−−−−−−−−−−−−−−−−→
〈F kn(zp,r), F

(k+1)n(zp,r)) .
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Hence z ∈

−−−−−−−−−−−−−−−−−−−−−→
〈F k0n(zp,r), F (k0+1)n(zp,r)) for a k0 ∈ Z. On the other hand, by

(11) and (13),

−−−−−−−−−−−−−−−−−−−−−→
〈F k0n(zp,r), F

(k0+1)n(zp,r)) =
−−−−−−−−−−−−−−−−−−−−→〈zp,k0nm+r, zp,(k0+1)nm+r)

=

m′

⋃

s=0

Lp,k0nm+sn′+r

⊂
⋃

k∈Z

Lp,kn′+r .

This ends the proof.

Theorem 2
Let F ∈ Fq,n be such that PerF 6= S1, m ≥ 2 be an integer and let ψ: PerF −→
S1 be an orientation-preserving continuous solution of (2) satisfying (5) for

X ∈ {PerF,M+
F } and a j ∈ {0, . . . ,m− 1}. Suppose that Wρ is the selector of

ρ given by (8), (zp,k)k∈Z for p ∈ Wρ are the families of sequences given by (10)
and (11) and {Lp,k}k∈Z

for p ∈ Wρ are the families of arcs defined by (16). If

Gp,k:Lp,k −→ Lp,k+1 for k ∈ {0, 1, . . . ,m − 2} and p ∈ Wρ are orientation-

preserving surjections, then there exists a unique orientation-preserving home-

omorphism G : S1 −→ S1 satisfying (4) and such that

G|Lp,k = Gp,k for p ∈Wρ and k ∈ {0, 1, . . . ,m− 2}.

Moreover, α(G) = q+jn
nm .

Proof. Some parts of the proof of this theorem are similar to the proof
of Theorem 5 from [20]. Here we give only the sketch of these parts. For
the details we refer the reader to [20]. Fix p ∈ Wρ and orientation-preserving
surjections Gp,k:Lp,k −→ Lp,k+1 for k ∈ {0, 1, . . . ,m− 2}. Put

Gp,m−1 := F ◦G−1
p,0 ◦G−1

p,1 ◦ . . . ◦G−1
p,m−2 . (18)

For the remaining integers k there exist unique d ∈ Z \ {0} and an r ∈
{0, 1, . . . ,m− 1} such that k = md+ r. For such k’s define

Gp,k = Gp,md+r := F d ◦Gp,r ◦ F−d
|Lp,k

. (19)

It might be shown that Gp,k (Lp,k) = Lp,k+1 for k ∈ Z and Gp,k:Lp,k −→
Lp,k+1 for k ∈ Z are orientation-preserving surjections.

Now fix z ∈ S1 \ PerF . There exist a p ∈ Wρ and an r ∈ {0, . . . , n′ − 1},
where n′ is determined by (9), such that z ∈ IHr

ψ
(p) . By (17), z ∈ Lp,dn′+r

for some d ∈ Z. Notice that such a d is unique. Indeed, the assumption
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Lp,cn′+r ∩ Lp,dn′+r 6= ∅ for some c, d ∈ Z, c 6= d, contradicts (13). Define a

function ˜G:S1 \ PerF −→ S1 \ PerF as follows:

˜G(z) := Gp,dn′+r(z), z ∈ Lp,dn′+r , p ∈Wρ , d ∈ Z, r ∈ {0, . . . , n′ − 1}. (20)

Notice that for every u ∈ MF there exist unique p ∈ Wρ and r ∈ {0, . . . , n′−1}
such that u = Hr

ψ(p). Therefore by (20), (17) and the properties of Gp,k we
have

˜G(Iu) = ˜G
(

IHr
ψ

(p)

)

= ˜G

(

⋃

d∈Z

Lp,dn′+r

)

=
⋃

d∈Z

Lp,dn′+r+1 = IHr+1

ψ
(p)

= IHψ(u)

(if r + 1 = n′ we use the equality Hn′

ψ (p) = p).

It is easy to see that ˜G:S1 \ PerF −→ S1 \ PerF is a surjection. By

induction it can be proved that ˜G satisfies

˜Gm(z) = F (z), z ∈ S1 \ PerF. (21)

Moreover, using the same method as in the proof of Theorem 5 in [20] (the proof

of 1o) it can be shown that ˜G preserves orientation on every Ip for p ∈ MF .
We are now in a position to define the solution of (4). Namely, put

G(z) =

{

˜G(z), z ∈ S1 \ PerF,

hψ(z), z ∈ PerF,
(22)

where hψ is defined by (7). It is easy to see that G maps S1 onto itself.

Furthermore, setting F = hψ and φ = ˜G and repeating the same argument as

in the proof of Lemma 1 (i.e., the proof of the fact that F̂ preserves orientation)
one can obtain that G preserves orientation. Since S1 is a closed set, it follows
that G is an orientation-preserving homeomorphism. Moreover, (7) and (21)
imply that G satisfies (4).

It remains to show that α(G) = q+jn
nm . From Lemma 1 there exists an

orientation-preserving homeomorphism Ĝ such that α(Ĝ) = α(G), Ĝ(z) = G(z)
for z ∈ PerF = PerG and Per Ĝ = S1. From Theorem 4.2 in [7] it follows that

Ĝ is conjugated to a rotation. On the other hand, by (22), Ĝ(z) = hψ(z) for

z ∈ PerF . By (7) we get that Ĝ is conjugated to R(z) = e2πi q+jn
mn z, z ∈ S1.

Hence α(Ĝ) = q+jn
mn (see Theorem 1 in [8]), and the assertion follows.

Remark 4
Suppose that F ∈ Fq,n is such that PerF 6= S1. Then every continuous and

orientation-preserving solution G of (4) with α(G) = α(F )+jn
mn , where j ∈
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{0, . . . ,m − 1}, may be obtained by the method described in the proof of
Theorem 2. Indeed, suppose that G:S1 −→ S1 is a solution of (4) for an inte-

ger m ≥ 2. Then α(G) = α(F )+jn
mn for a j ∈ {0, . . . ,m − 1}. Furthermore, by

(4), PerF = PerG, AF = AG and, by Corollary 1, MF = MG , M+
F = M+

G

and M−
F = M−

G . Lemma 2 implies that there exists an orientation-preserving
continuous mapping ψ: PerF −→ S1 satisfying (6). Put hψ := G|PerG and
Hψ := G|MG

. By (6), hψ satisfies (7) and Hψ = hψ |MG
. Notice that

G(Ip) = IG(p) = IHψ(p) , p ∈ MG . (23)

Let ρ be the relation on MG = MF given by (8) and let Wρ be its selector.
Fix p ∈Wρ , zp,0 ∈ Ip and put

zp,k := Gk(zp,0), k ∈ Z \ {0}. (24)

Obviously, (zp,k)k∈Z satisfies (11). Moreover, (23) and the fact that Hn′

=
idMF

, where n′ is given in (9), yield

zp,dn′+r = Gdn
′+r(zp,0) ∈ I

Hdn
′+r

ψ
(p)

= IHr
ψ

(p),

d ∈ Z, r ∈ {0, . . . , n′ − 1}.
(25)

By Definition 1, since n′ is the minimal number such that Gn
′

(z) = z for

z ∈ PerG and M+
F = M+

G , we have
−−−−−−−−→〈zp,0, zp,n′) ⊂ Ip , if p ∈ M+

G and
−−−−−−−−→〈zp,n′ , zp,0) ⊂ Ip , if p ∈ M−

G . Hence in view of (24), (25) and the fact
that G preserves orientation we get

−−−−−−−−−−−−−−−−−→〈zp,(d+1)n′+r, zp,dn′+r) ⊂ IHr
ψ

(p) , (resp.
−−−−−−−−−−−−−−−−−→〈zp,dn′+r, zp,(d+1)n′+r) ⊂ IHr

ψ
(p))

for d ∈ Z, r ∈ {0, . . . , n′ − 1} and p ∈ M+
G (resp. p ∈ M−

G). Consequently,

Hr
ψ(p) ≺ zp,r ≺ zp,n′+r ≺ . . . ≺ zp,(m′−1)n′+r ≺ Gm

′n′

(zp,r) = Fn(zp,r)

(resp. Hr
ψ(p) ≺ Fn(zp,r) = Gm

′n′

(zp,r) ≺ zp,(m′−1)n′+r ≺ . . . ≺ zp,n′+r ≺ zp,r).

Let {Lp,k}k∈Z be defined by (16). Notice that

G(Lp,k) = Lp,k+1 , k ∈ Z. (26)

Now put

Gp,k := G|Lp,k , p ∈Wρ , k ∈ Z. (27)

From (4), (26) and (27) we have

F|Lp,0 = Gp,m−1 ◦Gp,m−2 ◦ . . . ◦Gp,1 ◦Gp,0 , p ∈Wρ ,

thus (18) holds. Furthermore, (4) implies G◦F = F ◦G. Thus G◦F k = F k ◦G
for any k ∈ Z. From this, (26) and (27) we get (19).
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Theorem 2 and Remark 4 solve the problem of the existence of iterative

roots of homeomorphisms having the set of periodic points different from the
whole circle. Notice that if F ∈ Fq,n is such that PerF = S1, then taking
G := hψ , where hψ is defined by (7), we get Gm = F . To sum up, we have
obtained the following result.

Theorem 3
Let m ≥ 2 be an integer and let F ∈ Fq,n . Equation (4) has orientation-

preserving and continuous solution if and only if an orientation-preserving con-

tinuous solution ψ: PerF −→ S1 of (2) satisfies (5) for X ∈ {PerF,M+
F } and

for a j ∈ {0, . . . ,m − 1}. Moreover, if PerF 6= S1, then for all ψ and j

satisfying (5) for X ∈ {PerF,M+
F } there exist infinitely many solutions of (4).

The following remark results from the above theorem. It answers the ques-
tion of the existence of the iterative roots of the mapping F|PerF , where
F :S1 −→ S1 is an orientation-preserving homeomorphism having periodic
points.

Remark 5
Let m ≥ 2 be an integer and let F ∈ Fq,n . The mapping F|PerF : PerF −→
PerF has continuous and orientation-preserving iterative roots of order m if
and only if some orientation-preserving continuous solution ψ: PerF −→ S1 of
(2) satisfies

e2πiα(F )+j

m ψ(PerF ) = ψ(PerF )

for some j ∈ {0, . . . ,m− 1}.

We conclude with an observation concerning homeomorphisms with a finite
and non-empty set of periodic points.

Theorem 4
Suppose that F ∈ Fq,n is such that 1 < card (PerF ) =: NF < ∞ and m ≥ 2
is an integer. Let moreover ψ1 and ψ2 be orientation-preserving continuous

solutions of (2) satisfying (5) for X ∈ {PerF,M+
F } and a j ∈ {0, . . . ,m − 1}

and let hψ1
, hψ2

: PerF −→ PerF be defined by (7). Then hψ1
(z) = hψ2

(z) for

z ∈ PerF .

In the proof of Theorem 4 we will use the following proposition, which is a
slightly modified Theorem 3 from [21] (see also Theorem 2 in [20]).

Proposition 2
Suppose that F :S1 −→ S1 is an orientation-preserving homeomorphism such

that 1 < card (PerF ) =: NF <∞. Let z0 ∈ PerF be an arbitrary element and

let z1, . . . , zNF−1 ∈ PerF satisfy the following condition:

Arg
zp

z0
< Arg

zp+1

z0
, p ∈ {0, . . . , NF − 2}.
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Then α(F ) = q

n , where 0 ≤ q < n and gcd(q, n) = 1, if and only if

F (zp) = z(p+kF q) (mod NF ), p ∈ {0, . . . , NF − 1},

where kF := NF
n .

Proof of Theorem 4. In view of Theorem 2 there exist orientation-preser-
ving homeomorphisms G1 and G2 such that PerGi = PerF , Gmi = F and

α(Gi) = q+jn
mn = q′

n′
for i ∈ {1, 2}, where q′ := q+jn

m′
and m′, n′ are given in (9).

Moreover, Gi(z) = hψi(z) for z ∈ PerF and i ∈ {1, 2}. Let z0, . . . , zNF−1 ∈
PerF be defined as in Proposition 2 and let K := NF

n′
= kG1

= kG2
. By

Proposition 2 we have

hψ1
(zp) = G1(zp) = z(p+Kq′) (mod NF ) = G2(zp)

= hψ2
(zp)

for every p ∈ {0, . . . , NF − 1}. Thus the assertion follows.

The property described in Theorem 4 does not have to occur for homeo-
morphisms with infinitely many periodic points. For example, let F (z) = eπiz

for z ∈ S1 and let m = 2. Then F ∈ F1,2 , M+
F = ∅ and PerF = S1. Put

ψ1(z) = z for z ∈ S1 and ψ2(e
2πix) = e2πid(x) for x ∈ 〈0, 1), where

d(x) =

{

−2x2 + 2x, x ∈ 〈0, 1
2 ),

−2
(

x− 1
2

)2
+ 2

(

x− 1
2

)

+ 1
2 , x ∈ 〈1

2 , 1).

Notice that ψ1 and ψ2 satisfy (2) and (5) for X ∈ {PerF,M+
F } and j = 0, but

hψ1
6= hψ2
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