Studia Mathematica VI

Pawet Solarz Iterative roots of homeomorphisms possessing periodi points

Abstract. In this paper we give necessary and sufficient conditions for the existence of orientation-preserving iterative roots of a homeomorphism with a nonempty set of periodic points. We also give a construction method for these roots.

$\mathbf{1}$ Introduction

The problem of the existence of *iterative roots* of a given function F , i.e., the solution of the following equation $G^m = F$, where $m \geq 2$ is an integer, has been considered for nearly two hundred years (see for example [1], [10], [12], [14], [15], [25]). There are also some results for some homeomorphisms of the unit circle S^1 , e.g., homeomorphisms with an irrational rotation number (see [18], [24]), for the identity function (see [11]) and for some other homeomorphisms with a rational rotation number (see [16], [19], [20]). In particular, [16] relates the existence of an iterative root of F to the existence of an iterative root of $F_{\text{Per } F}$, where $\text{Per } F := \{z \in S^1 \mid \exists k \in \mathbb{N} \ F^k(z) = z\}.$ More precisely, an orientation-preserving homeomorphism $F: S^1 \longrightarrow S^1$ such that $F^n(z) = z$ for $z \in \text{Per } F$, has an iterative root of order m if and only if there exists an iterative root $\psi: \text{Per } F \longrightarrow \text{Per } F$ of order m of $F_{\text{Per } F}$ such that

- (i) ψ preserves orientation;
- (ii) for any connected component $\overrightarrow{(u,v)}$ of $S^1 \setminus \text{Per } F$, $\overrightarrow{(\psi(u), \psi(v))}$ and $\overrightarrow{(u,v)}$ are both increasing (or both decreasing) arcs of F^n .

Recall that an arc $\overrightarrow{(u,v)}$, where $u, v \in \text{Per } F$ and $\overrightarrow{(u,v)} \cap \text{Per } F = \emptyset$, is called increasing (resp. decreasing) arc of F^n if there is an $x \in \overrightarrow{(u,v)}$ such that $F^{n}(x) \in \overrightarrow{(x,v)} \text{ (resp. } F^{n}(x) \in \overrightarrow{(u,x)}).$

This paper answers the question when iterative roots of the function $F_{|PerF}$ exist and generalizes results from [20]. For this purpose we apply the method

AMS (2000) Subject Classification: Primary 39B12, Secondary 26A18.

which is used for the construction of the iterative roots of a homeomorphism with an irrational rotation number (i.e., the method that uses a solution of some Schröder equation, see [18]).

2. Preliminaries

We begin with recalling some definitions and notations. For any $u, w, z \in S^1$ there exist unique $t_1, t_2 \in (0, 1)$ such that $we^{2\pi it_1} = z$, $we^{2\pi it_2} = u$. Define

$$
u \prec w \prec z \quad \text{if and only if} \quad 0 < t_1 < t_2
$$

(see [2]). Some properties of this relation can be found in [3], [4] and [5].

We say that a function $F: A \longrightarrow S^1$, where $A \subset S^1$, preserves orientation if for any $u, w, z \in A$ such that $u \prec w \prec z$ we have $F(u) \prec F(w) \prec F(z)$.

For every orientation-preserving homeomorphism $F: S^1 \longrightarrow S^1$ there exists a unique (up to translation by an integer) homeomorphism $f: \mathbb{R} \longrightarrow \mathbb{R}$, called the lift of F, such that $F(e^{2\pi ix}) = e^{2\pi i f(x)}$ and $f(x+1) = f(x) + 1$ for all $x \in \mathbb{R}$. Moreover, the limit

$$
\alpha(F) := \lim_{n \to \infty} \frac{f^n(x)}{n} \text{ (mod 1)}, \qquad x \in \mathbb{R}
$$

always exists and does not depend on x and the choice of f . This number is called the *rotation number* of F (see [9]). It appears that a homeomorphism $F: S¹ \longrightarrow S¹$ preserves orientation if and only if f is a strictly increasing function (see for example [4]). Moreover, $\alpha(F)$ is a rational number if and only if $\text{Per } F \neq \emptyset$ (see for example [9]).

Let us introduce a classification of orientation-preserving homeomorphisms. Namely, for $n \in \mathbb{N}$ and $q \in \{0, 1, \ldots, n-1\}$ such that $gcd(q, n) = 1$ denote by $\mathcal{F}_{q,n}$ the set of all orientation-preserving homeomorphisms F of the circle with $\alpha(F) = \frac{q}{n}$. From now on writing $F \in \mathcal{F}_{q,n}$ without any additional assumptions on q and n, we mean that the numbers q and n are such that $n \in \mathbb{N}$, $q \in$ $\{0, \ldots, n-1\}$ and $gcd(q, n) = 1$.

Finally, for any distinct $u, z \in S^1$ put $\overrightarrow{(u, z)} := \{w \in S^1 | u \prec w \prec z\}$ (such a set is said to be an *open arc*) and $\overrightarrow{(u,z)} := \overrightarrow{(u,z)} \cup \{u\}.$

Remark 1

If $F \in \mathcal{F}_{q,n}$, then $\text{Per } F = \{z \in S^1 \mid F^n(z) = z\}$ and n is the minimal number such that $F^n(z) = z$ for $z \in \text{Per } F$. In fact, notice that $\alpha(F^n) =$ $n\alpha(F)$ (mod 1) = 0. Therefore $Fⁿ$ has a fixed point (see [9], Ch. 3, §3). The assertion follows from the fact that every two periodic points of an orientationpreserving homeomorphism have the same period (see for example [17], p. 16). Now suppose that $F^m(z) = z$ for an $m \in \{1, ..., n-1\}$ and a $z \in \text{Per } F$. Then $m_{\overline{n}}^{\underline{q}} \pmod{1} = 0$. Thus *n* divides *m*, a contradiction.

For any $F \in \mathcal{F}_{q,n}$ define the following set

$$
\mathcal{M}_F := \{ u \in \operatorname{Per} F \mid \exists w \in \operatorname{Per} F, w \neq u : \overrightarrow{(u, w)} \cap \operatorname{Per} F = \emptyset \}.
$$

Such a set is F-invariant (i.e., $F(\mathcal{M}_F) = \mathcal{M}_F$). It may happen that $\mathcal{M}_F = \emptyset$ (if $Per F = S^1$, $\mathcal{M}_F = Per F$ (for example, if Per F is finite) or $\emptyset \subsetneq \mathcal{M}_F \subsetneq Per F$ (for example, if $\text{int}(\text{Per } F) \neq \emptyset$). Moreover, if $\mathcal{M}_F \neq \emptyset$, then $S^1 \setminus \text{Per } F \neq \emptyset$. Since Per F is closed, we have that $S^1 \setminus \text{Per } F$ is a sum of pairwise disjoint open arcs. Denote the family of these arcs by \mathcal{A}_F . For every $\overline{(u,w)} \in \mathcal{A}_F$, where $u, w \in \text{Per } F$, put $l\left(\overrightarrow{(u, w)}\right) := u$ and observe that l maps bijectively \mathcal{A}_F onto \mathcal{M}_F . Setting $I_u := l^{-1}(u)$ for $u \in \mathcal{M}_F$ we have

$$
S^1 \setminus \text{Per } F = \bigcup_{u \in \mathcal{M}_F} I_u \, .
$$

For the convenience of the reader we recall the relevant, slightly modified material from [21].

PROPOSITION 1 Let $F \in \mathcal{F}_{q,n}$ be such that $\text{Per } F \neq S^1$ and let $I \in \mathcal{A}_F$. Then $\overline{(z, F^n(z))} \subset I$ for every $z \in I$ or $\overline{(F^n(z), z)} \subset I$ for every $z \in I$.

Moreover, if $\overline{(z, F^n(z))}^{\sim} \subset I$ (resp. $\overline{(F^n(z), z)}^{\sim} \subset I$) for $a \ z \in I$, then $\overrightarrow{(z_1, F^n(z_1))} \subset F(I)$ (resp. $\overrightarrow{(F^n(z_1), z_1)} \subset F(I)$) for all $z_1 \in F(I)$.

We also recall a sketch of the proof. Assume $z \in I \in \mathcal{A}_F$. Then $F^n(z) \in I$ and $z \neq F^{n}(z)$. Therefore $\overline{(z, F^{n}(z))} \subset I$ or $\overline{(F^{n}(z), z)} \subset I$. Suppose that $\overrightarrow{(z, F^n(z))} \subset I$. Since F preserves orientation we have

$$
\overrightarrow{(F^{ln}(z), F^{n(l+1)}(z))} \subset I \quad \text{for all } l \in \mathbb{Z}.
$$

Moreover, $\bigcup_{l\in\mathbb{Z}}\overline{\langle F^{ln}(z), F^{(l+1)n}(z)\rangle} = I$. Now fix $u \in I$. We may assume $u \neq F^{ln}(z)$ for $l \in \mathbb{Z}$. Then $u \in \overline{(F^{nj}(z), F^{n(j+1)}(z))}$ for some $j \in \mathbb{Z}$. Hence $F^{n}(u) \in \overline{(F^{n(j+1)}(z), F^{n(j+2)}(z))}$, as F preserves orientation. This gives $\overrightarrow{(u, F^n(u))} \subset I$.

For the second assertion suppose that $\overline{(z, F^n(z))} \subset I$ for an $z \in I$. Let $z_1 \in F(I)$ be fixed. Then there exists a $z_0 \in I$ such that $F(z_0) = z_1$ and $\overline{(z_0, F^n(z_0))}^{\prime} \subset I$. Hence $\overline{(z_1, F^n(z_1))}^{\prime} = F\left(\overline{(z_0, F^n(z_0))}^{\prime}\right) \subset F(I)$. This ends the sketch of the proof.

Now we present some results concerning the Schröder equation

$$
\psi \circ F = s\psi,\tag{1}
$$

where $s \in S^1$ and $F: S^1 \longrightarrow S^1$ is an orientation-preserving homeomorphism with a rational rotation number. It is a known fact (see for example [9], [17] or $[22]$ that if F is a homeomorphism with an irrational rotation number and $s = e^{2\pi i \alpha(F)}$, then (1) has a continuous solution $\psi: S^1 \longrightarrow S^1$. If F is a homeomorphism with a rational rotation number and such that $\text{card}(\text{Per } F)$ < \aleph_0 , then the only continuous solutions of (1) are constant functions. Of course, in this case $s = 1$ (see Theorem 4.1 in [7]). On the other hand, it follows from Theorem 4.2 in $[7]$ that, if F is an orientation-preserving homeomorphism such that Per $F = S^1$ and $F \neq id_{S^1}$, then there exists a constant $s \neq 1$ for which (1) has a homeomorphic and orientation-preserving solution $\psi: S^1 \longrightarrow S^1$. The following theorem generalizes the results from Theorem 4.2 in [7].

THEOREM 1 Let $n > 1$ and $F \in \mathcal{F}_{q,n}$. There exists an orientation-preserving continuous mapping $\psi: \text{Per } F \longrightarrow S^1$ such that

$$
\psi(F(z)) = e^{2\pi i \alpha(F)} \psi(z), \qquad z \in \text{Per } F. \tag{2}
$$

The solution of (2) depends on an arbitrary function.

The proof of the above theorem is based on Theorem 4.2 from [7] and the following observation.

Lemma 1

For any $F \in \mathcal{F}_{q,n}$, where $n > 1$, with $\text{Per } F \neq S^1$ there exist infinitely many homeomorphisms $\hat{F} \in \mathcal{F}_{q,n}$ such that $\text{Per } \hat{F} = S^1$ and $\hat{F}(z) = F(z)$ for $z \in \mathcal{F}_{q,n}$ Per F.

Proof. Fix $F \in \mathcal{F}_{q,n}$ such that $\text{Per } F \neq S^1$. Define the equivalence relation on \mathcal{M}_F :

$$
p \sim q \iff \exists k \in \mathbb{Z} \quad p = F^k(q).
$$

By $E_∼$ denote the set of class representatives. In other words, we decompose \mathcal{M}_F onto cycles of F. Let $\phi_{p,k}: I_{F^k(p)} \longrightarrow I_{F^{k+1}(p)}$ for all $p \in E_{\sim}$ and $k \in$ $\{0, \ldots, n-2\}$ be arbitrary orientation-preserving homeomorphisms. Put

$$
\phi_{p,n-1}(z) := \phi_{p,0}^{-1} \circ \phi_{p,1}^{-1} \circ \dots \circ \phi_{p,n-2}^{-1}(z), \qquad z \in I_{F^{n-1}(p)}.
$$
 (3)

It is easy to see that $\phi_{p,n-1}: I_{F^{n-1}(p)} \longrightarrow I_p$ for $p \in E_{\sim}$ are orientationpreserving homeomorphisms. Let $z \in S^1 \setminus \text{Per } F$. There exist a unique $p \in E_{\sim}$ and $k \in \{0, \ldots, n-1\}$ such that $z \in I_{F^k(p)}$. Set

$$
\phi(z):=\phi_{p,k}(z).
$$

and observe that ϕ maps $S^1 \setminus \text{Per } F$ onto $S^1 \setminus \text{Per } F$ and

$$
\phi^n(z) = \begin{cases} \phi_{p,n-1} \circ \ldots \circ \phi_{p,0}(z), & k = 0, \\ \phi_{p,k-1} \circ \ldots \circ \phi_{p,0} \circ \phi_{p,n-1} \circ \ldots \circ \phi_{p,k}(z), & k \neq 0. \end{cases}
$$

This and (3) give $\phi^{n}(z) = z$ for $z \in S^1 \setminus \text{Per } F$.

Now we show that ϕ preserves orientation. To do this, observe that for every $z \in I_p$, where $p \in \mathcal{M}_F$, we have $\phi(z) \in I_{F(p)}$. Fix $u, w, z \in S^1 \setminus \text{Per } F$ such that $u \prec w \prec z$. Notice that if $\{u, w, z\} \subset I_p$ for a $p \in \mathcal{M}_F$, then the definition of ϕ gives $\phi(u) \prec \phi(w) \prec \phi(z)$. Now assume that there exist distinct $p, q \in \mathcal{M}_F$ such that exactly one element from the set $\{u, w, z\}$ belongs to I_p and the rest of them belong to I_q . In view of Lemma 2 in [4], it is sufficient to consider only the case: $\overrightarrow{(z,u)} \subset I_p$ and $w \in I_q$. Hence $\overrightarrow{(\phi(z), \phi(u))} \subset I_{F(p)}$ and $\phi(w) \in I_{F(q)}$. Since $I_{F(q)} \cap I_{F(p)} = \emptyset$, we have $\phi(u) \prec \phi(w) \prec \phi(z)$. Finally, let card $(\mathcal{M}_F) \geq 3$ and let $u \in I_p, w \in I_q$ and $z \in I_t$, where $p, q, t \in \mathcal{M}_F$ are such that $p \neq q \neq t \neq p$. The arcs I_p , I_q and I_t are pairwise disjoint, so we have $p \prec q \prec t$. Hence $F(p) \prec F(q) \prec F(t)$. On the other hand, $\phi(u) \in I_{F(p)}$, $\phi(w) \in I_{F(q)}$ and $\phi(z) \in I_{F(t)}$. Thus $\phi(u) \prec \phi(w) \prec \phi(z)$, as $I_{F(p)}$, $I_{F(q)}$ and $I_{F(t)}$ are pairwise disjoint arcs.

Define the function $\hat{F}: S^1 \longrightarrow S^1$ as follows:

$$
\hat{F}(z) := \begin{cases} F(z), & z \in \text{Per } F, \\ \phi(z), & z \in S^1 \setminus \text{Per } F. \end{cases}
$$

Clearly, \hat{F} is a surjection. To show that \hat{F} is an orientation-preserving homeomorphism it is sufficient to prove that it preserves orientation. Similarly as above fix $u, w, z \in S^1$ such that $u \prec w \prec z$. By virtue of Lemma 2 in [4] it is enough to consider three cases:

- (i) card(Per F) \geq 3 and $u, w, z \in \text{Per } F$ or $u, w, z \in S^1 \setminus \text{Per } F$ (this one is clear).
- (ii) $u, z \in \text{Per } F$ and $w \in S^1 \setminus \text{Per } F$. There exists a $p \in \mathcal{M}_F \cap \overline{\langle u, z \rangle}$ such that $w \in I_p$ and $\hat{F}(w) = \phi(w) \in I_{F(p)}$. Thus $F(p) \in \overline{\langle F(u), F(z) \rangle}$. Consequently, $I_{F(p)} \subset \overline{(F(u), F(z))}$. Finally, $\hat{F}(u) \prec \hat{F}(w) \prec \hat{F}(z)$, as $\hat{F}_{\rm |Per\,F} = F.$
- (iii) $u, z \in S^1 \backslash \text{Per } F$ and $w \in \text{Per } F$. In this case it may happen that $u, z \in I_p$ for a $p \in M_F$ or $u \in I_p$ and $z \in I_q$ for some $p, q \in \mathcal{M}_F$, $p \neq q$. Suppose that $u, z \in I_p$ for a $p \in M_F$. Then $\overrightarrow{(z,u)} \subset I_p$ and $w \notin I_p$. Hence $\overrightarrow{F(z), F(u)}$ = $\overrightarrow{\phi(z), \phi(u)}$ $\subset I_{F(p)}$ and $\hat{F}(w) = F(w) \notin I_{F(p)}$. Thus $\hat{F}(u) \prec \hat{F}(w) \prec \hat{F}(z)$. Now suppose that $u \in I_p$ and $z \in I_q$ for some $p, q \in M_F$, $p \neq q$. Then $p \prec u \prec w$ and $w \prec z \prec p$. A similar reasoning to

this in (ii) yields $\hat{F}(p) \prec \hat{F}(u) \prec \hat{F}(w)$ and $\hat{F}(w) \prec \hat{F}(z) \prec \hat{F}(p)$. Hence, by Lemma 1 in [3], we obtain $\hat{F}(u) \prec \hat{F}(w) \prec \hat{F}(z)$.

Finally, notice that $\hat{F}_{|O(z)} = F_{|O(z)}$, where $O(z) := \{z, F(z), \ldots, F^{n-1}(z)\}\$ for $z \in \text{Per } F$. Thus $\alpha(F) = \alpha(\hat{F})$. Consequently, $\hat{F} \in \mathcal{F}_{q,n}$, and the proof is completed.

Now we give the *proof of Theorem 1*. To do this fix $F \in \mathcal{F}_{q,n}$, where $n > 1$. Notice that if $Per F = S^1$, then, in view of Theorem 4.2 in [7], there exist an orientation-preserving homeomorphism (depending on an arbitrary function) $\psi: S^1 \longrightarrow S^1$ and a $q' \in \{1, \ldots, n-1\}$ with $\gcd(q', n) = 1$ such that

$$
\psi(F(z)) = e^{2\pi i \frac{q'}{n}} \psi(z), \qquad z \in S^1.
$$

The equality $\alpha(F) = \frac{q'}{n}$ $\frac{q}{n}$ follows from the fact that the homeomorphism ψ conjugates F and the rotation $R(z) = e^{2\pi i \frac{q'}{\pi}} z$ and ψ is an orientation-preserving homeomorphism (see Theorem 1 in [8]). Henceforth assume that $Per F \neq S^1$. Let \hat{F} be an orientation-preserving homeomorphism, which exists by Lemma 1, and let $\hat{\psi}: S^1 \longrightarrow S^1$ be an orientation-preserving homeomorphic solution of

$$
\hat{\psi}(\hat{F}(z)) = e^{2\pi i \alpha(F)} \hat{\psi}(z), \qquad z \in S^1.
$$

Put $\psi := \hat{\psi}_{|\text{Per } F}$. Observe that $\psi: \text{Per } F \longrightarrow S^1$ is the desired solution of (2).

DEFINITION 1 Given $F \in \mathcal{F}_{q,n}$ put

$$
\mathcal{M}_F^+ := \left\{ p \in \mathcal{M}_F \mid \overline{(z, F^n(z))}^{\circ} \subset I_p \text{ for } z \in I_p \right\}
$$

and

$$
\mathcal{M}_F^- := \left\{ p \in \mathcal{M}_F \mid \overrightarrow{(F^n(z), z)} \subset I_p \text{ for } z \in I_p \right\}.
$$

Notice that $\mathcal{M}_F^+ \cap \mathcal{M}_F^- = \emptyset$. Indeed, if $p \in \mathcal{M}_F^+ \cap \mathcal{M}_F^-$, then for any $z \in I_p$ we would have $\overrightarrow{(F^n(z),z)} \subset I_p$ and $\overrightarrow{(z,F^n(z))} \subset I_p$. Hence $S^1 = I_p$, a contradiction.

Remark 2

From Proposition 1 we get $\mathcal{M}_F^+ \cup \mathcal{M}_F^- = \mathcal{M}_F$ and $F(\mathcal{M}_F^+) \subset \mathcal{M}_F^+$. This inclusion and the fact that $\mathcal{M}_F^+ \subset \operatorname{Per} F$ yield

$$
\mathcal{M}_F^+ = F^{n-1}(F(\mathcal{M}_F^+)) \subset F(\mathcal{M}_F^+).
$$

Thus for any $F \in \mathcal{F}_{q,n}$, we have $\mathcal{M}_F^+ \cup \mathcal{M}_F^- = \mathcal{M}_F$ and $F(\mathcal{M}_F^+) = \mathcal{M}_F^+$.

Since for all $F \in \mathcal{F}_{q,n}$ the sets Per F, \mathcal{M}_F , \mathcal{M}_F^+ and \mathcal{M}_F^- are invariant sets of F we have the following result.

Remark 3

Let $F \in \mathcal{F}_{q,n}$, $n > 1$, ψ : Per $F \longrightarrow S^1$ be an orientation-preserving continuous solution of (2) and let $X \in \{ \operatorname{Per} F, \mathcal{M}_F, \mathcal{M}_F^+, \mathcal{M}_F^- \}.$ Then

$$
\psi(X) = e^{2\pi i \alpha(F)} \psi(X).
$$

3. Main results

Here we give necessary and sufficient conditions for the existence of orientation-preserving continuous iterative roots of order $m > 2$ of a mapping $F \in$ $\mathcal{F}_{q,n}$. Throughout this section we will assume that $n > 1$. We begin with the following observation.

Lemma 2 Let $m \geq 2$ be an integer and let $F \in \mathcal{F}_{q,n}$. Suppose that the equation

$$
G^m(z) = F(z), \qquad z \in S^1 \tag{4}
$$

has an orientation-preserving continuous solution. Then there are an orientation-preserving continuous solution of (2) and a $j \in \{0, \ldots, m-1\}$ such that

$$
e^{2\pi i \frac{\alpha(F)+j}{m}}\psi(X) = \psi(X),\tag{5}
$$

where $X \in \{ \operatorname{Per} F, \mathcal{M}_F, \mathcal{M}_F^+, \mathcal{M}_F^- \}.$

Proof. Since G satisfies (4), we have $\alpha(F) = m\alpha(G) \pmod{1}$. This yields $\frac{\alpha(F)+j}{m} = \alpha(G)$ for a $j \in \{0, \ldots, m-1\}$. Theorem 1 implies the existence of an orientation-preserving continuous solution of the following equation

$$
\psi(G(z)) = e^{2\pi i \frac{\alpha(F) + j}{m}} \psi(z), \qquad z \in \text{Per } G.
$$
\n(6)

Thus

$$
\psi(G^m(z)) = \psi(F(z)) = e^{2\pi i \alpha(F)} \psi(z), \qquad z \in \text{Per } G.
$$

Hence and from the fact that $Per F = Per G$ implies $\mathcal{M}_F = \mathcal{M}_G$, we get that ψ is a solution of (2) satisfying (5) for $X \in \{Per\, F, \mathcal{M}_F\}$. Moreover, $\alpha(G)$ $\frac{\alpha(F)+j}{m}=\frac{q'}{n!}$, where $q' := \frac{q+jn}{\gcd(q+jn,m)}$, $l := \frac{m}{\gcd(q+jn,m)}$ and $\gcd(q',nl) = 1$, so $G \in \mathcal{F}_{q'nl}$. Hence, if $\text{Per } F \neq S^1$, then $p \in \mathcal{M}_G^+$ gives $\overrightarrow{(z, G^{nl}(z))} \subset I_p$ for every $z \in I_p$. Since

$$
G^{kln}(z) \in I_p
$$
 and $\overrightarrow{(G^{kln}(z), G^{(k+1)nl}(z))} \subset I_p$ for $k \in \mathbb{Z}$,

we have $\overline{(z, G^{nm}(z))} \subset I_p$. Consequently, $p \in \mathcal{M}_F^+$. Whence $\mathcal{M}_G^+ \subset \mathcal{M}_F^+$. Similarly, $\mathcal{M}_G^- \subset \mathcal{M}_F^-$, so $\mathcal{M}_F \setminus \mathcal{M}_F^- = \mathcal{M}_F^+ \subset \mathcal{M}_G^+ = \mathcal{M}_G \setminus \mathcal{M}_G^-$. Finally, $\mathcal{M}_F^+ = \mathcal{M}_G^+$ and $\mathcal{M}_F^- = \mathcal{M}_G^-$. In view of the above facts and Remark 3 equality (5) holds for $X \in \{ \text{Per } F, \mathcal{M}_F, \mathcal{M}_F^+, \mathcal{M}_F^- \}.$

Corollary 1

Let $F \in \mathcal{F}_{q,n}$. If $G: S^1 \longrightarrow S^1$ is an orientation-preserving homeomorphism satisfying (4) for an integer $m \geq 2$, then $\mathcal{M}_F = \mathcal{M}_G$, $\mathcal{M}_F^+ = \mathcal{M}_G^+$ and $\mathcal{M}_F^- =$ \mathcal{M}^{+}_{G} .

Now suppose that $F \in \mathcal{F}_{q,n}$ is such that $\text{Per } F \neq S^1$, $m > 1$ is an integer and $\psi: \text{Per } F \longrightarrow S^1$ is an orientation-preserving continuous solution of (2) satisfying (5) for $X = \text{Per } F$ and a $j \in \{0, \ldots, m-1\}$. This fact yields equality (5) for $X = \mathcal{M}_F$. Indeed, put

$$
h_{\psi}(z) := \psi^{-1}\left(e^{2\pi i \frac{\alpha(F)+j}{m}}\psi(z)\right), \qquad z \in \operatorname{Per} F. \tag{7}
$$

It is easy to see that h_{ψ} : Per $F \longrightarrow \text{Per } F$ is an orientation-preserving homeomorphism. Notice that $z \in \text{Per } F \setminus \mathcal{M}_F \neq \emptyset$ if and only if there exist a $w \in \text{Per } F \setminus \{z\}$ and $z_n \in \overrightarrow{(z,w)} \cap \text{Per } F$ for $n \in \mathbb{N}$ such that $z_n \to z$ as $n \to \infty$. This is equivalent to $h_{\psi}^{-1}(z_n) \to h_{\psi}^{-1}(z)$ as $n \to \infty$ and $h_{\psi}^{-1}(z_n) \in$ $\overrightarrow{(h_{\psi}^{-1}(z), h_{\psi}^{-1}(w))} \cap \text{Per } F$, which gives $h_{\psi}^{-1}(z) \in \text{Per } F \setminus \mathcal{M}_F$ or equivalently $z \in h_{\psi}(\operatorname{Per} F \setminus \mathcal{M}_F)$. Hence $h_{\psi}(\mathcal{M}_F) = \mathcal{M}_F$.

However, (5) with $X = \text{Per } F$ does not imply (5) for $X \in \{M_F^+, M_F^-\}$. An example of a function $F \in \mathcal{F}_{1,2}$ such that $Per F = \mathcal{M}_F = \{1, i, -1, -i\}$, $\mathcal{M}_F^+ = \{1, -1\}$ may be given. Put $\psi(z) = z$ for $z \in \text{Per } F$. Then ψ is a solution of (2) satisfying (5) for $m = 2$, $j = 0$ and $X \in \{PerF, \mathcal{M}_F\}$, but $e^{2\pi i\frac{1}{4}}\mathcal{M}_F^+ \neq \mathcal{M}_F^+$. Therefore assume subsidiarily that (5) holds for $X = \mathcal{M}_F^+$ and introduce the equivalence relation ρ on \mathcal{M}_F :

$$
(p,q) \in \rho \iff \exists k \in \mathbb{Z} \quad q = H^k_{\psi}(p), \qquad p, q \in \mathcal{M}_F,
$$
 (8)

where $H_{\psi} := h_{\psi}|_{\mathcal{M}_F}$ and h_{ψ} is given by (7). Let W_{ρ} be the set of class representatives of ρ .

Notice that (5) with $X = \mathcal{M}_F^+$ yields $[p]_\rho \subset \mathcal{M}_F^+$ or $[p]_\rho \subset \mathcal{M}_F^-$ for all $p \in W_\rho$.

DEFINITION 2

Let $F \in \mathcal{F}_{q,n}$ be such that $\text{Per } F \neq S^1$, $m > 1$ be an integer, $\psi: \text{Per } F \longrightarrow$ $S¹$ be an orientation-preserving continuous solution of (2) satisfying (5) for $X \in \{ \text{Per } F, \mathcal{M}_F^+ \}$ and a $j \in \{0, \ldots, m-1\}$ and let W_ρ be the set of class representatives of the relation ρ given by (8). Put

$$
m' := \gcd(q + jn, m), \quad l := \frac{m}{m'} \text{ and } n' := nl.
$$
 (9)

Let $(z_{p,k})_{k\in\mathbb{Z}}$ for $p\in W_\rho$ be sequences such that the points $z_{p,dn'+r} \in I_{H^r_\psi(p)}$ for $r \in \{0, \ldots, l-1\}$ and $d \in \{0, \ldots, m'-1\}$ are arbitrary fixed and such that

$$
H_{\psi}^{r}(p) \prec z_{p,r} \prec z_{p,n'+r} \prec \ldots \prec z_{p,(m'-1)n'+r} \prec F^{n}(z_{p,r}), \quad \text{if } p \in \mathcal{M}_{F}^{+}
$$

or

$$
H_{\psi}^{r}(p) \prec F^{n}(z_{p,n'}) \prec F^{n}(z_{p,n'+r}) \prec \ldots \prec z_{p,(m'-1)n'+r} \prec F^{n}(z_{p,r}), \quad \text{if } p \in \mathcal{M}_{F}^{+}
$$
 (10)

$$
H^r_{\psi}(p) \prec F^n(z_{p,r}) \prec z_{p,(m'-1)n'+r} \prec \ldots \prec z_{p,n'+r} \prec z_{p,r}, \quad \text{if } p \in \mathcal{M}_F^-
$$

and the remaining points are given by

$$
z_{p,k+m} := F(z_{p,k}), \qquad k \in \mathbb{Z}, \ p \in W_\rho.
$$
 (11)

Now we show that the above sequences are well defined and we prove some of their properties.

Lemma 3

Under assumptions of Definition 2, for all $i \in \mathbb{Z}$ and $p \in W_{\rho}$ there exist unique $s \in \{0, ..., m' - 1\}, r' \in \{0, ..., l - 1\}$ and $k \in \mathbb{Z}$ such that $z_{p,i} = F^k(z_{p, sn' + r'}).$ Moreover,

$$
\{z_{p,dn'+r}\}_{d\in\mathbb{Z}}\subset I_{H_{\psi}^{r}(p)},\qquad p\in W_{\rho},\ r\in\{0,\ldots,n'-1\},\tag{12}
$$

and for any $p \in W_\rho$, $[p]_\rho \subset \mathcal{M}_F^+$ (resp. $[p]_\rho \subset \mathcal{M}_F^-$) if and only if

$$
z_{p,an'+r} \prec z_{p,bn'+r} \prec z_{p,cn'+r} \quad (resp. \ z_{p,cn'+r} \prec z_{p,bn'+r} \prec z_{p,an'+r}) \tag{13}
$$

for any $r \in \{0, \ldots, n'-1\}$ and all $a, b, c \in \mathbb{Z}$ such that $a < b < c$.

Proof. Fix $p \in W_\rho$ and $i \in \mathbb{Z}$. Write $i = dn' + r$, where $d \in \mathbb{Z}$ and $r \in \{0, \ldots, n'-1\}$. If $d \in \{0, \ldots, m'-1\}$ and $r \in \{0, \ldots, l-1\}$, then by Definition 2, $s = d, r' = r, k = 0$ and obviously $z_{p,dn'+r} \in I_{H^r_{\psi}(p)}$.

Suppose that $d \in \mathbb{Z} \setminus \{0, \ldots, m' - 1\}$ and $r \in \{0, \ldots, l - 1\}$. Put $t = \left[\frac{d}{m'}\right]$ ([x] denotes the integer part of x), $k = tn$, $s = d - tm'$ and $r' = r$. Notice that $d = tm' + s, s \in \{0, \ldots, m' - 1\}$ and by (11),

$$
F^{tn}(z_{p,sn'+r}) = z_{p,sn'+r+mtn} = z_{p,(tm'+s)n'+r} = z_{p,dn'+r}.
$$
 (14)

Since $F^{tn}(I_u) = I_u$ for $u \in \mathcal{M}_F$ and $z_{p, sn'+r} \in I_{H^r_{\psi}(p)}$, by (14) we have $z_{p,dn'+r} \in I_{H^r_\psi(p)}$.

Finally assume that $d \in \mathbb{Z}$ and $r \in \{l, ..., n'-1\}$. As $gcd(q, n) = 1$ and $m' = \gcd(q + jn, m)$ we have $\gcd(m', n) = 1$. Hence there exists a unique $b \in \{1, \ldots, n-1\}$ such that $m'b = 1 \pmod{n}$. Set $a_r := \left[\frac{r}{l}\right], r' = r - a_r l$ and $k_r := a_r b \pmod{n}$. Thus $m'k_r = a_r \pmod{n}$ which, in view of the fact that $r = a_r l + r'$, gives $mk_r + r' = r \pmod{n'}$ and, in consequence,

$$
mk_r + r' = xn' + r \qquad \text{for some } x \in \mathbb{Z}.\tag{15}
$$

This time put $t_r := \left[\frac{d-x}{m'}\right]$, $k = k_r + t_r n$ and $s = d - x - t_r m'$. Then

$$
F^{k_r+t_r n}(z_{p,sn'+r'}) = z_{p,(d-\frac{k_r m+r'-r}{n'})n'+r'+k_r m} = z_{p,dn'+r}.
$$

Since $r' \in \{0, \ldots, l-1\}$ and $d-x \in \mathbb{Z}$, we obtain $z_{p,(d-x)n'+r'} \in I_{H_{\psi}^{r'}(p)}$. To

prove $z_{p,dn'+r} \in I_{H^r_\psi(p)}$ it is enough to show that $F^{k_r}(H^{r'}_{\psi})$ $u_{\psi}^{r'}(p) = H_{\psi}^{r}(p)$. Notice that from (7),

$$
H_{\psi}^{m}(z) = \psi^{-1}(e^{2\pi i \frac{q}{n}}\psi(z)) = F(z), \qquad z \in \mathcal{M}_{F}.
$$

This, (15) and the fact that $H_{\psi}^{xn'}(p) = p$ yield

$$
F^{k_r}(H^{r'}_{\psi}(p)) = H^{mk_r+r'}_{\psi}(p) = H^{xn'+r}_{\psi}(p) = H^{r}_{\psi}(p).
$$

The proof of the remaining part of the lemma runs in the same way as the proof of the second assertion of Lemma 7 in [20] (it is enough to take $H^r_{\psi}(p)$, r_1 , and k_r instead of $a_{R_{N_F}(i+rk'q')}$, $R_l(r)$ and p_r , respectively).

Let $(z_{p,k})_{k\in\mathbb{Z}}$, where $p\in W_\rho$, be the family of sequences given by (10) and (11). Define the following families of arcs:

$$
L_{p,k} := \begin{cases} \overrightarrow{\langle z_{p,k}, z_{p,k+n'} \rangle}, & p \in \mathcal{M}_F^+, \\ \overrightarrow{\langle z_{p,k+n'}, z_{p,k} \rangle}, & p \in \mathcal{M}_F^- \end{cases} \quad \text{for } k \in \mathbb{Z}, \ p \in W_\rho. \tag{16}
$$

From Lemma 3 it follows that

$$
F(L_{p,k}) = L_{p,k+m}, \qquad k \in \mathbb{Z}, \ p \in W_{\rho}.
$$

Lemma 4

Under assumptions of Definition 2 if for any $p \in W_\rho$ the sequences $(z_{p,k})_{k\in\mathbb{Z}}$ are given by (10) and (11) and $\{L_{p,k}\}_{k\in\mathbb{Z}}$ are the families of arcs defined by (16) , then

$$
\bigcup_{d \in \mathbb{Z}} L_{p,dn'+r} = I_{H^r_{\psi}(p)}, \qquad r \in \{0, \dots, n'-1\}.
$$
 (17)

Proof. Fix $r \in \{0, ..., n' - 1\}$ and suppose that $p \in W_\rho \cap \mathcal{M}_F^+$. From (13) we have $z_{p,dn'+r} \in \overline{\langle z_{p,(d-1)n'+r}, z_{p,(d+1)n'+r} \rangle}$ for $d \in \mathbb{Z}$. Hence by (12) and (16),

$$
L_{p,dn'+r} \subset \overrightarrow{\langle z_{p,(d-1)n'+r}, z_{p,(d+1)n'+r} \rangle} \subset I_{H^r_{\psi}(p)}, \qquad d \in \mathbb{Z}.
$$

Thus

$$
\bigcup_{d\in\mathbb{Z}}L_{p,dn'+r}\subset I_{H_{\psi}^r(p)}.
$$

To prove the converse inclusion fix $z \in I_{H^r_{\psi}(p)}$. By Lemma 4 in [21] (see also Remark 3 in [20]) we have

$$
I_{H^r_{\psi}(p)} = \bigcup_{k \in \mathbb{Z}} \overrightarrow{\langle F^{kn}(z_{p,r}), F^{(k+1)n}(z_{p,r}) \rangle}.
$$

Hence $z \in \overrightarrow{\langle F^{k_0n}(z_{p,r}), F^{(k_0+1)n}(z_{p,r})\rangle}$ for a $k_0 \in \mathbb{Z}$. On the other hand, by (11) and (13),

$$
\overline{\langle F^{k_0n}(z_{p,r}), F^{(k_0+1)n}(z_{p,r}) \rangle} = \overline{\langle z_{p,k_0nm+r}, z_{p,(k_0+1)nm+r} \rangle}
$$

$$
= \bigcup_{s=0}^{m'} L_{p,k_0nm+s}r^{k_0+r}
$$

$$
\subset \bigcup_{k \in \mathbb{Z}} L_{p,k}r^{k_0+r}
$$

This ends the proof.

THEOREM 2

Let $F \in \mathcal{F}_{q,n}$ be such that $\text{Per } F \neq S^1$, $m \geq 2$ be an integer and let $\psi \colon \text{Per } F \longrightarrow$ $S¹$ be an orientation-preserving continuous solution of (2) satisfying (5) for $X \in \{ \text{Per } F, \mathcal{M}_F^+ \}$ and $a \, j \in \{0, \ldots, m-1\}$. Suppose that W_ρ is the selector of ρ given by (8), $(z_{p,k})_{k\in\mathbb{Z}}$ for $p\in W_{\rho}$ are the families of sequences given by (10) and (11) and ${L_{p,k}}_{k\in\mathbb{Z}}$ for $p \in W_\rho$ are the families of arcs defined by (16). If $G_{p,k}: L_{p,k} \longrightarrow L_{p,k+1}$ for $k \in \{0,1,\ldots,m-2\}$ and $p \in W_{\rho}$ are orientationpreserving surjections, then there exists a unique orientation-preserving homeomorphism $G: S^1 \longrightarrow S^1$ satisfying (4) and such that

$$
G_{|L_{p,k}} = G_{p,k}
$$
 for $p \in W_\rho$ and $k \in \{0, 1, ..., m-2\}.$

Moreover, $\alpha(G) = \frac{q+jn}{nm}$.

Proof. Some parts of the proof of this theorem are similar to the proof of Theorem 5 from [20]. Here we give only the sketch of these parts. For the details we refer the reader to [20]. Fix $p \in W_\rho$ and orientation-preserving surjections $G_{p,k}: L_{p,k} \longrightarrow L_{p,k+1}$ for $k \in \{0,1,\ldots,m-2\}$. Put

$$
G_{p,m-1} := F \circ G_{p,0}^{-1} \circ G_{p,1}^{-1} \circ \dots \circ G_{p,m-2}^{-1}.
$$
 (18)

For the remaining integers k there exist unique $d \in \mathbb{Z} \setminus \{0\}$ and an $r \in$ $\{0, 1, \ldots, m-1\}$ such that $k = md + r$. For such k's define

$$
G_{p,k} = G_{p,md+r} := F^d \circ G_{p,r} \circ F_{|L_{p,k}}^{-d}.
$$
\n(19)

It might be shown that $G_{p,k}(L_{p,k}) = L_{p,k+1}$ for $k \in \mathbb{Z}$ and $G_{p,k}: L_{p,k} \longrightarrow$ $L_{p,k+1}$ for $k \in \mathbb{Z}$ are orientation-preserving surjections.

Now fix $z \in S^1 \setminus \text{Per } F$. There exist a $p \in W_\rho$ and an $r \in \{0, \ldots, n'-1\}$, where *n'* is determined by (9), such that $z \in I_{H^r_{\psi}(p)}$. By (17), $z \in L_{p,dn'+r}$ for some $d \in \mathbb{Z}$. Notice that such a d is unique. Indeed, the assumption $L_{p,cn'+r} \cap L_{p,dn'+r} \neq \emptyset$ for some $c, d \in \mathbb{Z}, c \neq d$, contradicts (13). Define a function $\widetilde{G}: S^1 \setminus \text{Per } F \longrightarrow S^1 \setminus \text{Per } F$ as follows:

$$
\widetilde{G}(z) := G_{p, dn'+r}(z), \ \ z \in L_{p, dn'+r}, \ p \in W_{\rho}, \ d \in \mathbb{Z}, \ r \in \{0, \ldots, n'-1\}. \tag{20}
$$

Notice that for every $u \in \mathcal{M}_F$ there exist unique $p \in W_\rho$ and $r \in \{0, \ldots, n'-1\}$ such that $u = H^r_{\psi}(p)$. Therefore by (20), (17) and the properties of $G_{p,k}$ we have

$$
\widetilde{G}(I_u) = \widetilde{G}(I_{H^r_\psi(p)}) = \widetilde{G}\left(\bigcup_{d \in \mathbb{Z}} L_{p,dn'+r}\right) = \bigcup_{d \in \mathbb{Z}} L_{p,dn'+r+1} = I_{H^{r+1}_\psi(p)}
$$
\n
$$
= I_{H_\psi(u)}
$$

(if $r + 1 = n'$ we use the equality $H_{\psi}^{n'}$ $u_{\psi}^{n'}(p) = p.$

It is easy to see that $\tilde{G}: S^1 \setminus \text{Per } F \longrightarrow S^1 \setminus \text{Per } F$ is a surjection. By induction it can be proved that \tilde{G} satisfies

$$
\widetilde{G}^m(z) = F(z), \qquad z \in S^1 \setminus \text{Per } F. \tag{21}
$$

Moreover, using the same method as in the proof of Theorem 5 in [20] (the proof of 1^o) it can be shown that G preserves orientation on every I_p for $p \in M_F$.

We are now in a position to define the solution of (4). Namely, put

$$
G(z) = \begin{cases} \widetilde{G}(z), & z \in S^1 \setminus \text{Per } F, \\ h_{\psi}(z), & z \in \text{Per } F, \end{cases}
$$
(22)

where h_{ψ} is defined by (7). It is easy to see that G maps S^1 onto itself. Furthermore, setting $F = h_{\psi}$ and $\phi = \tilde{G}$ and repeating the same argument as in the proof of Lemma 1 (i.e., the proof of the fact that \hat{F} preserves orientation) one can obtain that G preserves orientation. Since S^1 is a closed set, it follows that G is an orientation-preserving homeomorphism. Moreover, (7) and (21) imply that G satisfies (4) .

It remains to show that $\alpha(G) = \frac{q+jn}{nm}$. From Lemma 1 there exists an orientation-preserving homeomorphism \hat{G} such that $\alpha(\hat{G}) = \alpha(G), \hat{G}(z) = G(z)$ for $z \in \text{Per } F = \text{Per } G$ and $\text{Per } \hat{G} = S^1$. From Theorem 4.2 in [7] it follows that \hat{G} is conjugated to a rotation. On the other hand, by (22) , $\hat{G}(z) = h_{\psi}(z)$ for $z \in \text{Per } F$. By (7) we get that \hat{G} is conjugated to $R(z) = e^{2\pi i \frac{q+jn}{mn}} z, z \in S^1$. Hence $\alpha(\hat{G}) = \frac{q + jn}{mn}$ (see Theorem 1 in [8]), and the assertion follows.

Remark 4

Suppose that $F \in \mathcal{F}_{q,n}$ is such that $\text{Per } F \neq S^1$. Then every continuous and orientation-preserving solution G of (4) with $\alpha(G) = \frac{\alpha(F) + jn}{mn}$, where $j \in$ $\{0,\ldots,m-1\}$, may be obtained by the method described in the proof of Theorem 2. Indeed, suppose that $G: S^1 \longrightarrow S^1$ is a solution of (4) for an integer $m \ge 2$. Then $\alpha(G) = \frac{\alpha(F) + jn}{mn}$ for a $j \in \{0, ..., m - 1\}$. Furthermore, by (4), Per $F = \text{Per } G$, $\mathcal{A}_F = \mathcal{A}_G$ and, by Corollary 1, $\mathcal{M}_F = \mathcal{M}_G$, $\mathcal{M}_F^+ = \mathcal{M}_G^+$ and $\mathcal{M}_F^- = \mathcal{M}_G^-$. Lemma 2 implies that there exists an orientation-preserving continuous mapping $\psi: \text{Per } F \longrightarrow S^1$ satisfying (6). Put $h_{\psi} := G_{|\text{Per } G}$ and $H_{\psi} := G_{|\mathcal{M}_G}$. By (6), h_{ψ} satisfies (7) and $H_{\psi} = h_{\psi|_{\mathcal{M}_G}}$. Notice that

$$
G(I_p) = I_{G(p)} = I_{H_{\psi}(p)}, \qquad p \in \mathcal{M}_G.
$$
 (23)

Let ρ be the relation on $\mathcal{M}_G = \mathcal{M}_F$ given by (8) and let W_ρ be its selector. Fix $p \in W_{\rho}$, $z_{p,0} \in I_p$ and put

$$
z_{p,k} := G^k(z_{p,0}), \qquad k \in \mathbb{Z} \setminus \{0\}.
$$
 (24)

Obviously, $(z_{p,k})_{k\in\mathbb{Z}}$ satisfies (11). Moreover, (23) and the fact that $H^{n'} =$ $\mathrm{id}_{\mathcal{M}_F}$, where n' is given in (9), yield

$$
z_{p,dn'+r} = G^{dn'+r}(z_{p,0}) \in I_{H_{\psi}^{dn'+r}(p)} = I_{H_{\psi}^{r}(p)},
$$

\n
$$
d \in \mathbb{Z}, \ r \in \{0, \dots, n'-1\}.
$$
\n(25)

By Definition 1, since n' is the minimal number such that $G^{n'}(z) = z$ for $z \in \text{Per } G$ and $\mathcal{M}_F^+ = \mathcal{M}_G^+$, we have $\overline{\langle z_{p,0}, z_{p,n'} \rangle} \subset I_p$, if $p \in \mathcal{M}_G^+$ and $\overline{(z_{p,n'},z_{p,0})}$ $\subset I_p$, if $p \in \mathcal{M}_G^-$. Hence in view of (24), (25) and the fact that G preserves orientation we get

$$
\overrightarrow{\langle z_{p,(d+1)n'+r}, z_{p,dn'+r} \rangle} \subset I_{H^r_\psi(p)}, \qquad \text{(resp. } \overrightarrow{\langle z_{p,dn'+r}, z_{p,(d+1)n'+r} \rangle} \subset I_{H^r_\psi(p)})
$$

for $d \in \mathbb{Z}$, $r \in \{0, ..., n' - 1\}$ and $p \in \mathcal{M}_G^+$ (resp. $p \in \mathcal{M}_G^-$). Consequently,

$$
H_{\psi}^r(p) \prec z_{p,r} \prec z_{p,n'+r} \prec \ldots \prec z_{p,(m'-1)n'+r} \prec G^{m'n'}(z_{p,r}) = F^n(z_{p,r})
$$

 $(\text{resp. } H^r_{\psi}(p) \prec F^n(z_{p,r}) = G^{m'n'}(z_{p,r}) \prec z_{p,(m'-1)n'+r} \prec \ldots \prec z_{p,n'+r} \prec z_{p,r}).$

Let ${L_{p,k}}_{k\in\mathbb{Z}}$ be defined by (16). Notice that

$$
G(L_{p,k}) = L_{p,k+1}, \qquad k \in \mathbb{Z}.
$$
 (26)

Now put

$$
G_{p,k} := G_{|L_{p,k}} , \qquad p \in W_\rho , \ k \in \mathbb{Z} . \tag{27}
$$

From (4) , (26) and (27) we have

$$
F_{|L_{p,0}} = G_{p,m-1} \circ G_{p,m-2} \circ \ldots \circ G_{p,1} \circ G_{p,0}, \qquad p \in W_{\rho},
$$

thus (18) holds. Furthermore, (4) implies $G \circ F = F \circ G$. Thus $G \circ F^k = F^k \circ G$ for any $k \in \mathbb{Z}$. From this, (26) and (27) we get (19).

⁹⁰ Pawe³ Solarz

Theorem 2 and Remark 4 solve the problem of the existence of iterative roots of homeomorphisms having the set of periodic points different from the whole circle. Notice that if $F \in \mathcal{F}_{q,n}$ is such that $\text{Per } F = S^1$, then taking $G := h_{\psi}$, where h_{ψ} is defined by (7) , we get $G^m = F$. To sum up, we have obtained the following result.

THEOREM 3

Let $m \geq 2$ be an integer and let $F \in \mathcal{F}_{q,n}$. Equation (4) has orientationpreserving and continuous solution if and only if an orientation-preserving continuous solution $\psi: \text{Per } F \longrightarrow S^1$ of (2) satisfies (5) for $X \in \{\text{Per } F, \mathcal{M}_F^+\}$ and for a $j \in \{0, \ldots, m-1\}$. Moreover, if $\text{Per } F \neq S^1$, then for all ψ and j satisfying (5) for $X \in \{Per\, F, M_F^+\}$ there exist infinitely many solutions of (4).

The following remark results from the above theorem. It answers the question of the existence of the iterative roots of the mapping $F_{|\text{Per } F}$, where $F: S^1 \longrightarrow S^1$ is an orientation-preserving homeomorphism having periodic points.

Remark 5

Let $m \geq 2$ be an integer and let $F \in \mathcal{F}_{q,n}$. The mapping $F_{\text{Per } F}$: Per $F \longrightarrow$ $Per F$ has continuous and orientation-preserving iterative roots of order m if and only if some orientation-preserving continuous solution $\psi: \text{Per } F \longrightarrow S^1$ of (2) satisfies

$$
e^{2\pi i \frac{\alpha(F)+j}{m}}\psi(\text{Per } F) = \psi(\text{Per } F)
$$

for some $j \in \{0, ..., m-1\}$.

We conclude with an observation concerning homeomorphisms with a finite and non-empty set of periodic points.

THEOREM 4

Suppose that $F \in \mathcal{F}_{q,n}$ is such that $1 < \text{card}(Per F) =: N_F < \infty$ and $m \geq 2$ is an integer. Let moreover ψ_1 and ψ_2 be orientation-preserving continuous solutions of (2) satisfying (5) for $X \in \{\text{Per } F, \mathcal{M}_F^+\}$ and $a, j \in \{0, ..., m-1\}$ and let h_{ψ_1}, h_{ψ_2} : Per $F \longrightarrow \text{Per } F$ be defined by (7). Then $h_{\psi_1}(z) = h_{\psi_2}(z)$ for $z \in \text{Per } F$.

In the proof of Theorem 4 we will use the following proposition, which is a slightly modified Theorem 3 from [21] (see also Theorem 2 in [20]).

PROPOSITION 2

Suppose that $F: S^1 \longrightarrow S^1$ is an orientation-preserving homeomorphism such that $1 < \text{card}(Per F) =: N_F < \infty$. Let $z_0 \in Per F$ be an arbitrary element and let $z_1, \ldots, z_{N_F-1} \in \text{Per } F$ satisfy the following condition:

$$
Arg \frac{z_p}{z_0} < Arg \frac{z_{p+1}}{z_0}, \qquad p \in \{0, ..., N_F - 2\}.
$$

Then $\alpha(F) = \frac{q}{n}$, where $0 \le q < n$ and $\gcd(q, n) = 1$, if and only if

$$
F(z_p) = z_{(p+k_F q) \pmod{N_F}}, \qquad p \in \{0, \ldots, N_F - 1\},\
$$

where $k_F := \frac{N_F}{n}$.

Proof of Theorem 4. In view of Theorem 2 there exist orientation-preserving homeomorphisms G_1 and G_2 such that $Per G_i = Per F$, $G_i^m = F$ and $\alpha(G_i) = \frac{q+jn}{mn} = \frac{q'}{n'}$ for $i \in \{1,2\}$, where $q' := \frac{q+jn}{m'}$ and m' , n' are given in (9). Moreover, $G_i(z) = h_{\psi_i}(z)$ for $z \in \text{Per } F$ and $i \in \{1, 2\}$. Let $z_0, \ldots, z_{N_F-1} \in$ Per F be defined as in Proposition 2 and let $K := \frac{N_F}{n'} = k_{G_1} = k_{G_2}$. By Proposition 2 we have

$$
h_{\psi_1}(z_p) = G_1(z_p) = z_{(p+Kq') \pmod{N_F}} = G_2(z_p)
$$

= $h_{\psi_2}(z_p)$

for every $p \in \{0, \ldots, N_F - 1\}$. Thus the assertion follows.

The property described in Theorem 4 does not have to occur for homeomorphisms with infinitely many periodic points. For example, let $F(z) = e^{\pi i} z$ for $z \in S^1$ and let $m = 2$. Then $F \in \mathcal{F}_{1,2}$, $\mathcal{M}_F^+ = \emptyset$ and $\text{Per } F = S^1$. Put $\psi_1(z) = z$ for $z \in S^1$ and $\psi_2(e^{2\pi i x}) = e^{2\pi i d(x)}$ for $x \in \langle 0, 1 \rangle$, where

$$
d(x) = \begin{cases} -2x^2 + 2x, & x \in \langle 0, \frac{1}{2} \rangle, \\ -2\left(x - \frac{1}{2}\right)^2 + 2\left(x - \frac{1}{2}\right) + \frac{1}{2}, & x \in \langle \frac{1}{2}, 1 \rangle. \end{cases}
$$

Notice that ψ_1 and ψ_2 satisfy (2) and (5) for $X \in \{\text{Per } F, \mathcal{M}_F^+\}$ and $j = 0$, but $h_{\psi_1} \neq h_{\psi_2}$.

References

- [1] Ch. Babbage, Essay towards the calculus of functions, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. (1815), 389 - 423; II, ibid. (1816), 179 - 256.
- [2] M. Bajger, On the structure of some flows on the unit circle, Aequationes Math. 55 (1998), 106-121.
- [3] K. Ciepliński, General construction of non-dense disjoint iteration groups on the circle, Czechoslovak Math. J. 55 (2005), 1079 - 1088.
- [4] K. Ciepliński, On the embeddability of a homeomorphism of the unit circle in disjoint iteration groups, Publ. Math. Debrecen 55 (1999), no. 3-4, 363-383.
- [5] K. Ciepliński, On conjugacy of disjoint iteration groups on the unit circle, European Conference on Iteration Theory (Muszyna Złockie,1998), Ann. Math. Sil. **13** (1999), 103-118.
- [6] K. Ciepliński, The rotation number of the composition of homeomorphisms, Rocznik Nauk.-Dydakt. Prace Mat. 17 (2000), 83 - 87.
- [7] K. Ciepliński, M.C. Zdun, On a system of Schröder equations on the circle, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), 1883 - 1888.
- [8] K. Ciepliński, M.C. Zdun, On semi-conjugacy equation for homeomorphisms of the circle, in: Functional Equations – Results and Advances, Adv. Math. (Dordr.) 3, Kluwer Academic Publishers, Dordrecht 2002, 135 - 158.
- [9] I.P. Cornfeld, S.V. Fomin, Y.G. Sinai, Ergodic theory, Grundlehren Math. Wiss. 245, Spirnger-Verlag, Berlin, Heidelberg, New York, 1982.
- [10] R. Isaacs, Iterates of fractional order, Canad. J. Math. 2 (1950), 409 416.
- [11] W. Jarczyk, Babagge equation on the circle, Publ. Math. Debrecen 63 (2003), no. 3, 389 - 400.
- [12] M. Kuczma, On the functional equation $\varphi^{n}(x) = g(x)$, Ann. Polon. Math. 11 $(1961), 161 - 175.$
- [13] M. Kuczma, Functional Equations in a single variable, Monografie Mat. 46 Polish Scientific Publishers, Warszawa, 1968.
- [14] M. Kuczma, B. Choczewski, R. Ger, Iterative functional equations, Encyclopaedia Math. Appl. 32, Cambridge Univ. Press, Cambridge, 1990.
- [15] S. Łojasiewicz, Solution générale de l'équation fonctionnelle $f(f \dots f(x) \dots) =$ $g(x)$, Ann. Soc. Polon. Math. 24 (1951), 88-91.
- [16] J.H. Mai, Conditions for the existence of Nth iterative roots of self-homeomorphisms of the circle, Acta Math. Sinica (Chin. Ser.) 30 (1987), no. 2, 280-283.
- [17] W. de Melo, S. van Strein, One-dimensional dynamics, Ergeb. Math. Grenzgeb. (3), [Results in Mathematics and Related Areas (3)] 25, Springer-Verlag, Berlin, 1993.
- [18] P. Solarz, On iterative roots of a homeomorphism of the circle with an irrational rotation number, Math. Pannon. 13 (2002), no. 1, 137 - 145.
- [19] P. Solarz, On some iterative roots, Publ. Math. Debrecen 63 (2003), no. 4, 677 - 692.
- [20] P. Solarz, Iterative roots of some homeomorphism with a rational rotation number, Aequationes Math. **72** (2006), no. 1-2, 152-171.
- [21] P. Solarz, On some propreties of orientation-preserving surjections of the circle, (to appear).
- [22] P. Walters, An Introduction to Ergodic Theory, Grad. Texts in Math. 79, Springer-Verlag, New York, Berlin, 1982.
- [23] M.C. Zdun, On embedding of homeomorphisms of the circle in continuous flow, Iteration theory and its functional equations, (Lochau 1984), Lecture Notes in Math. 1163, Springer-Verlag, Berlin, New York, 1985, 218 - 231.
- [24] M.C. Zdun, On iterative roots of homeomorphisms of the circle, Bull. Pol. Acad. Sci. Math. 48 (2000), no. 2, 203 - 213.

[25] G. Zimmermann, Über die Existenz iterativer Wurzeln von Abbildungen, Doctoral dissertation, University of Marburg 1978.

> Institute of Mathematics Pedagogical University ul. Podchorążych 2 PL-30-084 Kraków Poland E-mail: psolarz@ap.krakow.pl

Received: 18 January 2007; final version: 11 April 2007; available online: 6 June 2007.