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Abstrat. We study Riemann–Roch expected curves on P
1
× P

1 in the con-
text of the Nagata–Biran conjecture. This conjecture predicts that for
a sufficiently large number of points multiple points Seshadri constants
of an ample line bundle on algebraic surface are maximal. Biran gives
an effective lower bound N0 . We construct examples verifying to the ef-
fect that the assertions of the Nagata–Biran conjecture can not hold for
small number of points. We discuss cases where our construction fails.
We observe also that there exists a strong relation between Riemann–
Roch expected curves on P

1
× P

1 and the symplectic packing problem.
Biran relates the packing problem to the existence of solutions of certain
Diophantine equations. We construct such solutions for any ample line
bundle on P

1
×P

1 and a relatively small number of points. The solutions
geometrically correspond to Riemann–Roch expected curves. Finally we
discuss in how far the Biran number N0 is optimal in the case of P

1
×P

1.
In fact, we conjecture that it can be replaced by a lower number and we
provide an evidence justifying this conjecture.Introdution

The aim of this paper is to prove that for the surface X = P
1 ×P

1 with the
(a, b) polarization there exists a constant R0 = R0(a, b) such that for r ≥ R0

there are no Riemann–Roch expected submaximal curves through r general
points (Theorem 3.5).

This fact has consequences for the symplectic packing problem which is
strongly connected to the existence of Riemann–Roch expected submaximal
curves. More precisely, Biran relates the packing problem to the existence of
solutions of certain Diophantine equations ([Bi1] Theorem 6.1.A 2) but the so-
lutions geometrically correspond exactly to Riemann–Roch expected submax-
imal curves. In particular, Theorem 3.5 implies that for N ≥ R0 the surface
P

1 × P
1 with the polarization (a, b) admits full symplectic packing by N equal
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balls (Theorem 3.18). This improves the result of Biran [[Bi2] Theorem 1.A]
as in almost all cases our number R0 is smaller than Biran’s bound N0. We
conjecture that the Biran number N0 in the Nagata–Biran Conjecture 1.2 can
be replaced by R0 .

On the other hand, to complete Theorem 3.5, we are looking for Riemann–
Roch expected submaximal curves for r ≤ R0 points in general position. We
observe that for r ≤ 2 · ⌊a

b ⌋+5 points we can write down such curves (Proposi-
tion 3.7). The cases r ≥ 2 · ⌊a

b ⌋+6 are more complicated. Only for some polar-
izations (a, b) we can find Riemann–Roch expected submaximal curves. More
precisely, to find them, we construct first a sequence of Riemann–Roch expected
curves (Proposition 3.9) and next we compute their submaximality areas, i.e.,
we estimate polarizations for which curves are submaximal (Lemma 3.10). For
r = 2 · ⌊a

b ⌋ + 6 in Proposition 3.11 we give an algorithm producing Riemann-
Roch expected submaximal curves. For the number of points r in the range
between 2 ·⌊a

b ⌋+6 and R0, the situation seems to be hard to control (see Exam-
ples 3.13 and 3.14). For such r’s for which we found Riemann–Roch expected
submaximal curves, we compute Seshadri quotients. If we know that a curve
is irreducible, then this quotient is already the Seshadri constant, if not (i.e., a
curve can be reducible) then we found only an upper-bound for this constant
(Theorem 3.17).

Notation: The symbol Z≥0 denotes the set of non-negative integers. For a
given real number x we denote by ⌊x⌋ its round-down. We work throughout over
the field C of complex numbers. By a polarized variety we mean a pair (X, L)
consisting a smooth variety X and an ample line bundle L on it. For a coherent
sheaf F on X we write by Hi(F) = Hi(X,F) and hi(F) = dimC Hi(F).1. Seshadri onstants and the Nagata--Biran onjeture

The concept of Seshadri constant was introduced by Demailly in [De]. He
associated a real number ε(L; x) to an ample line bundle L and a point x of
an algebraic variety. This number in effect measures how much of positivity of
L is concetrated in x. In general, Seshadri constants are very hard to control
and their exact value is known only in few examples. In this paper we use a
generalized definition of Seshadri constant (see also [Xu]) on a surface X .

Definition 1.1
Let L be a nef line bundle on a smooth projective surface X . The Seshadri
constant of L at x1, . . . , xr ∈ X is the real number

ε(L; x1, . . . , xr) = inf
D∩{x1,...,xr}6=∅

L.D
∑r

i=1 multxi
D

,
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where the infimum is taken over all reduced and irreducible curves D passing
through at least one of the points x1, . . . , xr and multxi D is the multiplicity
of the curve D at xi .

It follows from Kleiman’s nefness criterion that ε(L; x1, . . . , xr) ≤
√

L2

r . If

the value of ε(L; x1, . . . , xr) is less than the upper bound, then we say that
the Seshadri constant of L at x1, . . . , xr is submaximal. If ε(L; x1, . . . , xr) =

L.D
∑

r
i=1

multxi
D , then we say that the curve D computes the Seshadri constant

and we call such a curve a Seshadri curve. By the Seshadri quotient of a curve
G at x1, . . . , xr we mean L.G

∑

r
i=1

multxi
G .

As a function on Xr the Seshadri constant ε(L; ·, . . . , ·) is semi-continuous
and it attains the greatest value at a very general point of Xr (i.e., on the
complement of a union of at most countably many Zariski closed subsets).
For more details see [Og]. We denote by ε(L; r) this greatest value. It is
conjectured that for r sufficiently large ε(L; r) has the maximal possible value

which is εmax(L; r) =
√

L2

r . In fact there are effective predictions of what the

least number r should be.

Nagata-Biran Conjecture 1.2
Let (X, L) be a polarized surface. Let k0 be the smallest integer such that in the

linear system |k0L| there exists a smooth non-rational curve and let N0 := k2
0L

2.

With the above assumptions

ε(L; x1, . . . , xr) =

√

L2

r

for general x1, . . . , xr ∈ X and r ≥ N0 .

We should note that in the case when the Seshadri constant ε(L; x1, . . . , xr)
is submaximal, the number of Seshadri curves is bounded.

Proposition 1.3
Let (X, L) be a polarized surface with the Picard number ̺ and let x1, . . . , xr

be points in X such that ε = ε(L; x1, . . . , xr) is submaximal. There are at most

̺ + r − 1 irreducible and reduced Seshadri curves.

Proof. Let π: Y −→ X be the blowing up of X at x1, . . . , xr with excep-
tional divisors E1, . . . , Er and let H := π∗L. Suppose that C1, . . . , Cs are
irreducible and reduced curves computing ε and ˜C1, . . . , ˜Cs are their proper
transforms. The Q-divisor M := H−ε

∑r
i=1 Ei is nef and big and for arbitrary

λi ≥ 0 we have
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M.

( s
∑

i=1

λi
˜Ci

)

=

s
∑

i=1

λi ·
(

M.˜Ci

)

=

s
∑

i=1

λi

(

π∗L.˜Ci − ε

r
∑

j=1

Ej .˜Ci

)

=

s
∑

i=1

λi

(

π∗L.π∗Ci −
r

∑

k=1

multxk
Ci · (π∗L.Ek) − ε

r
∑

j=1

multxj
Ci

)

=

s
∑

i=1

λi (L.Ci − 0 − L.Ci) = 0.

The Hodge Index Theorem implies that the intersection matrix of ˜C1, . . . , ˜Cs

is negative definite. Since ̺(Y ) = ̺ + r, it must be s ≤ ̺ + r − 1.

We also observe that this upper bound is optimal.

Example 1.4
Let X = P

2 and the number of points be r = 7. In this case ̺ = 1 and from
the previous proposition we have that the number of irreducible and reduced
Seshadri curves is at most 7. On the other hand for any i ∈ {1, . . . , 7} there
exists an irreducible cubic Di with multxi

Di = 2 and multxj
Di = 1 for j 6= i.

Every Di computes the Seshadri constant ε(OP2(1); x1, . . . , x7) = 3
8 <

√

1
7 . So

there are exactly 7 submaximal curves in this case.

Let D be a curve on a surface X passing through x1, . . . , xr with multi-
plicities m1 := multx1

D, . . . , mr := multxr
D respectively. To the curve D we

assign its multiplicity vector MD := (m1, . . . , mr) ∈ Z
r.

Definition 1.5
A curve D is almost-homogeneous if all but at most one of the coordinates of
its multiplicity vector MD are equal. In this case we can also say that the
multiplicity vector is almost-homogeneous.

Now using the same arguments as in [Sz] Corollary 4.6, after some elemen-
tary calculations we can prove the following

Proposition 1.6
Let (X, L) be a polarized surface with the Picard number ̺ and let x1, . . . , xr

be general points on X. If ̺ is equal one or two and the Seshadri constant

ε(L; x1, . . . , xr) is submaximal, then any irreducible and reduced Seshadri curve

is almost-homogeneous.
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Proof. A submaximal Seshadri constant ε(L; x1, . . . , xr) implies by the real

valued Nakai–Moishezon criterion [CP] that there exists a computing curve.
Let D be an irreducible and reduced Seshadri curve with the multiplicity

vector MD = (m1, . . . , mr). Since the points are general, the monodromy group
acts as the full symmetric group Sr , i.e., for σ ∈ Sr there exists a curve Dσ with
the multiplicity vector MDσ

= (mσ(1), . . . , mσ(r)) which is also an irreducible
Seshadri curve.

If the curve were not be almost-homogeneous, then it is easy to check that
we would get too many Seshadri curves contradicting Proposition 1.3.2. Seshadri submaximal urves on P

1 × P
1

By the (a, b) polarization or by a curve of type (a, b) in the product P
1×P

1

we mean a curve of bidegree a, b.

Definition 2.7
Let D ⊂ X be a curve passing through points x1, . . . , xr with multiplicities
m1, . . . , mr , respectively. We say that D is Riemann–Roch expected (for short
R-R expected) if

h0(OX(D)) −
r

∑

i=1

(

mi + 1

2

)

> 0.

This simply means that a curve D is R-R expected if its existence follows
from the naive dimension count (note that it takes at most

(

m+1
2

)

indepen-
dent linear conditions on a linear system to pass through a given point with
multiplicity at least m).

Remark 2.8
(1) On (P2,O(1)) we have N0 = 9 and curves computing Seshadri constants

for r ≤ N0 points are R-R expected.

(2) On P
1 × P

1 with the (1, 1) polarization, we have N0 = 8 and again
all curves computing Seshadri constant for at most 8 points are R-R
expected.

This implies that in these two examples the number N0 suggested by Biran
cannot be lowered. However, there are cases (e.g. (1, 2) polarization, see [S1])
suggesting that the Biran number N0 might not be optimal even in the simple
case of P

1 × P
1. We address this question in this article. Before proceeding,

we need some more notation. For a vector M = (m1, . . . , mr) ∈ Z
r
≥0 with

non-negative entries we define
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|M | :=

r
∑

i=1

mi,

α(M) := max{|mi − mj | : i, j = 1, . . . , r},

l(M) :=
r

∑

i=1

(

mi + 1

2

)

.

Lemma 2.9
Let M1 = (m, . . . , m, m+δ) ∈ Z

r
≥0 with r ≥ 2 and an integer δ. If |δ| = c ·r+q,

with c ∈ N, 0 ≤ q < r and

M2

= (m + sgn(δ) · c, . . . , m + sgn(δ) · c
︸ ︷︷ ︸

r−q

, m + sgn(δ) · (c + 1), . . . , m + sgn(δ) · (c + 1)
︸ ︷︷ ︸

q

),

then l(M2) ≤ l(M1) and the equality holds if and only if |δ| = 0 or |δ| = 1.

Proof. This is a simple computation.

An obvious consequence of this lemma is

Corollary 2.10
Let Mp = {M ∈ Z

r
≥0 : |M | = p}. Let M0 be an element in Mp imposing

the least theoretical number of conditions i.e. l(M0) = min{l(M) | M ∈ Mp}.
Then either α(M0) = 0, or if this is not the case, then α(M0) = 1.

We have also

Corollary 2.11
Let (X, L) be a polarized surface with the Picard number ̺ ≤ 2 and let x1, . . . ,

xr ∈ X be fixed general points. If MD = (m1, . . . , mr) ∈ Z
r
≥0 is a multiplic-

ity vector of a R-R expected submaximal irreducible and reduced curve D at

x1, . . . , xr , and r ≥ 3, then up to permutation MD is of the form

MD = (m, . . . , m, m + δ) with δ ∈ {−1, 0, 1}.

Proof. Since the Picard number ̺ ≤ 2 and D is a reduced and irreducible
submaximal curve, by Proposition 1.6 its multiplicity vector MD , up to per-
mutation, is of the form

MD = (m, . . . , m, m + δ).

Suppose that |δ| ≥ 2. Then as the points are general, we have r different
submaximal curves. By Lemma 2.9 there exists also a R-R expected submax-
imal curve D′ with α(D′) ≤ 1. This implies, again by generality of the points
x1, . . . , xr , the existence of at least 1

2 (r − 1)r additional submaximal curves
which contradicts Proposition 1.3. Hence |δ| ≤ 1.
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Let (M, ω) be a closed symplectic 4-manifold and B(λq , ωstd) be the stan-

dard closed 4-ball of radius λq with ωstd = dx1 ∧ dy1 + dx2 ∧ dy2 the standard
symplectic form of R

4. Consider a symplectic packing ϕλ of (M, ω) by N equal

balls of radii λ (i.e., ϕλ =
∐N

q=1 ϕq:
∐N

q=1 B(λ, ωstd) −→ (M, ω) is an embed-
ding and for all q we have that a restriction to the q-th ball coincides with
ϕq: B(λ, ωstd) −→ (M, ω) and ϕ∗

qω = ωstd). For a symplectic manifold of finite
volume McDuff and Polterovich in [MP] introduced

vN (M, Ω) = sup
λ

Vol(Imageϕλ)

Vol(M, Ω)
,

where the supremum we take over all λ ∈ R+ such that ϕλ exists. If vN (M, Ω) =
1 then there exists a full filling, in the other case, i.e., vN (M, Ω) < 1, there is
a packing obstruction.

In [Bi1] Biran proved the following theorem.

Theorem 3.1 ([Bi1] Theorem 6.1.A 2)
On P

1 × P
1 with the (a, b) polarization we have

vN = min

{

1,
N

2ab
· inf
(α,β)∈DN

(

aα + bβ

2α + 2β − 1

)2
}

,

where DN is the set of all non-negative solutions α, β, m1, . . . , mN ≥ 0 of the

system of Diophantine equations:



























2αβ =

N
∑

q=1

m2
q − 1,

2α + 2β =

N
∑

q=1

mq + 1.

In particular on P
1 × P

1 with the (1, 1) polarization we have: v1 = 1
2 , v2 =

1, v3 = 2
3 , v4 = 8

9 , v5 = 9
10 , v6 = 48

49 , v7 = 224
225 and vN = 1 for any N ≥ 8

([Bi1]).

For P
2 there is a similar picture obtained by McDuff and Polterovich in

[MP].

Later Biran proved that for a polarized surface (X, L) there exists N0 such
that for all N ≥ N0 we have vN = 1. More precisely, if we denote by k0

the smallest integer such that in the linear system |k0L| there exists a smooth
non-rational curve, then N0 = k2

0L
2 (see [Bi2] Theorem 1.A.).
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Now we want to study the surface P

1 × P
1 in the context of Theorem 3.1.

More precisely we want to find a relation between the number vN and the
existence of R-R expected submaximal curves at N points.

First we introduce the following definition.

Definition 3.2
For the (a, b) polarization L on P

1 × P
1 we define the following constants:

(1) N0 :=

{

8ab for a = 1 or b = 1,

2ab for a ≥ 2and b ≥ 2,

(2) R0 :=
3a2 + 2ab + 3b2

2ab
+

(a + b)
√

2(a2 + b2)

ab
,

(3) r0 :=

⌊

2(a + b)2

ab

⌋

.

Lemma 3.3
For every positive integers a and b one has

r0 ≤ R0 (3.3.1)

and the equality holds only for a = b. Moreover we have

R0 ≤ N0, (3.3.2)

and the equality holds if and only if a = 1 and b = 1 or a = 2 and b = 2.

Proof. Straightforward calculations.

Since the conditions in the last definition are symmetric, we can assume
without loss of generality that a ≥ b. We can write a in the unique way as

a = k · b + j, with k ≥ 1 and j ∈ {0, . . . , b − 1}. (3.3.3)

We keep this notation for the rest of this article.
Now we compute the value of r0 .

Lemma 3.4
For any (a, b) polarization we have

r0 =















2k + 4 for j ∈
〈

0,
√

4k2+4k−15−2k+1
4 b

)

∩ N,

2k + 5 for j ∈
〈

√
4k2+4k−15−2k+1

4 b, 1+
√

k2+2k−3−k
2 b

)

∩ N,

2k + 6 for j ∈
〈

1+
√

k2+2k−3−k
2 b, b − 1

〉

∩ N.
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Proof. Since a = k · b + j, from the Definition 3.2 it follows that

r0 = 2k + 4 +

⌊

2kbj + 2b2 + 2j2

b2k + bj

⌋

.

To prove our claim it is enough to show that for all w ∈ 〈0, b − 1〉

2kbw + 2b2 + 2w2

b2k + bw
< 3, (3.4.1)

or equivalently

2w2 + b(2k − 3)w − (3k − 2)b2 < 0.

This is an elementary calculation.

Now we are in a good position to formulate the following result,

Theorem 3.5
Let X = P

1 ×P
1. If L is the (a, b) polarization, then there are no R-R expected

submaximal curves on X through r ≥ R0 = R0(a, b) general points.

Proof. Fix r ≥ R0 and suppose to the contrary that D ⊂ X of type
(α, β) is R-R expected and submaximal. We can assume that the multiplicity
vector of D is MD = (m, . . . , m, m + δ), where δ ∈ {−1, 0, 1} and m is a
non-negative integer (by Corollary 2.11). Hence the number of independent
conditions imposed by MD is

l(M) = (r − 1)

(

m + 1

2

)

+

(

m + δ + 1

2

)

=
1

2

(

rm2 + rm + 2mδ + δ2 + δ
)

.

Since h0(OP1×P1(α, β)) = αβ + α + β + 1 and D is R-R expected, and by
Proposition 1.3 there is no continuous family of submaximal curves, we must
have

αβ + α + β =
1

2

(

rm2 + rm + 2mδ + δ2 + δ
)

,

or equivalently

β =
rm2 + rm + 2mδ + δ2 + δ − 2α

2(α + 1)
. (3.5.1)

The submaximality of D means that

aβ + αb

rm + δ
<

√

2ab

r
. (3.5.2)

Substituting t :=
√

r, conditions (3.5.1) and (3.5.2) give us the inequality

2tbα2 − (2
√

2abt2m + 2ta − 2tb + 2
√

2abδ)α

+ (at2m + aδ2 + at2m2 + 2amδ + aδ − 2
√

2abtm)t − 2
√

2abδ < 0.
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We consider it as a quadratic inequality in the variable α. We know that the
set of solutions is non-empty, hence

− 2abt3
(

t − 2(a + b)√
2ab

)

m + ((a − b)2

− 2ab(1 + δ)δ)t2 + 2
√

2ab(a + b)δt + 2abδ2 > 0.

(3.5.3)

If we assume that t >
2(a+b)
√

2ab
=

√
r0, then (3.5.3) is equivalent to

m <
((a − b)2 − 2ab(1 + δ)δ)t2 + 2

√
2ab(a + b)δt + 2abδ2

2t3(abt −
√

2ab(a + b))
. (3.5.4)

In the case δ = 0 the inequality (3.5.4) is equivalent to

m <
(a − b)2

2abt2 − 2
√

2ab(a + b)t
. (3.5.5)

If t ≥
√

R0 then the right side of (3.5.5) is smaller than 1 and it must be m = 0,
but this contradicts the definition of the multiple point Seshadri constant.

In the case δ = −1 the inequality (3.5.4) is equivalent to

m <
(a − b)2t2 − 2

√
2ab(a + b)t + 2ab

2t3(abt −
√

2ab(a + b))
. (3.5.6)

Since
√

r0 ≥ 1, t ≥ √
r0 implies also t ≥ 1√

r0
and

(a − b)2t2 − 2
√

2ab(a + b)t + 2ab ≤ (a − b)2t2.

Applying the last inequality to (3.5.6) we obtain the condition (3.5.5) and we
reduce our problem to the previous one.

In the case δ = 1, the inequality (3.5.4) is equivalent to

m <
((a − b)2 − 4ab)t2 + 2

√
2ab(a + b)t + 2ab

2t3(abt −
√

2ab(a + b))
. (3.5.7)

Since our condition is still symmetric, then without loss of generality we may
use notation (3.3.3). We observe that for t ≥

√
k + 4 there is the inequality:

((a − b)2 − 4ab)t2 + 2
√

2ab(a + b)t + 2ab

2t3(abt −
√

2ab(a + b))
≤ (a − b)2

2abt2 − 2
√

2ab(a + b)t
. (3.5.8)

If t ≥
√

R0 then (3.5.8) holds and

(a − b)2

2abt2 − 2
√

2ab(a + b)t
< 1.
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In this case it can happen that (3.5.7) has a solution, namely m = 0. Since D is
R-R expected, (3.5.1) holds and we obtain that only a fiber through one of the
points x1, . . . , xr comes into consideration. It is easy to see that the Seshadri
quotient given by the fiber is submaximal for at most 2k + 2− 2

b points, which
by Lemmas 3.3 and 3.4 gives a contradiction with our assumption t ≥

√
R0.

To complete the picture, we should find R-R expected submaximal curves
for r < R0 points. Before we begin, we make an obvious

Observation 3.6
Let (X, L) be a polarized surface. Let D ⊂ X be a curve which at r points

gives the Seshadri quotient at most

√

L2

r . If

√

L2

r is non-rational then D is

submaximal.

Proof. Let MD = (m1, . . . , mr) be a multiplicity vector for D. By assump-

tion L.D
∑

r
i=1

mi
≤

√

L2

r . Since the number on the left side is always rational, then

the equality can hold only in the case when
√

L2

r is rational.

It means only that in practice we will be looking for R-R expected curves

which at r points give a Seshadri quotient at most
√

L2

r .

Analyzing the value of the formula in (3.5.3), for r ≤ 2k + 5 we find R-R

expected curves which give Seshadri quotients at most
√

L2

r . We observe that

these curves depend on k and sometimes on j.

Proposition 3.7
Consider X = P

1 × P
1 with the (a, b) polarization. If r ≤ 2k + 5, then R-R

curves which give Seshadri quotients at most

√

L2

r arelike in the following ta-

bles:

(a) Table 1 in the case k = 1,

(b) Table 2 in the case k ≥ 2.

Proof. Since all curves from the tables fulfill the condition (3.5.1), they are
R-R expected. One can also check that for appropriate j we have

L.D
∑r

i=1 mi
≤

√

L2

r
.

As we observed, R-R expected submaximal curves depend sometimes on j.
We see also that only in one case it can happen that for some r ≤ 2k + 5 and
for some polarization we obtain two different types of submaximal curves.
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r Type of curve . . . ≤ j ≤ . . . m δ The Seshadri

quotient

√

L2

r

1 (1, 0) 0 b − 1 0 1 b
√

2(b + j)b

2 (1, 0) 0 b − 1 0 1 b
√

(b + j)b

3 (1, 1) 0 b − 1 1 0 2b+j
3

√

2(b+j)b
3

4 (1, 1) 0 b − 1 1 −1 2b+j
3

√

(b+j)b
2

5 (2, 1) 0 b − 1 1 0 3b+j
5

√

2(b+j)b
5

6 (2, 2) 0 1
3b 1 1 4b+2j

7

√

(b+j)b
3

(2, 1) 1
3b b − 1 1 −1 3b+j

5

7 (4, 4) 0 1
7b 2 1 8b+4j

15

√

2(b+j)b
7

(4, 3) 1
7b 5

9b 2 −1 7b+3j
13

(3, 1) (3 −
√

7)b b − 1 1 0 4b+j
7

Table 1

r Type of curve . . . ≤ j ≤ . . . m δ The Seshadri
quotient

√

L2

r

1 (1, 0) 0 b − 1 0 1 b
√

2(kb + j)b
. . . . . . . . . . . . . . . . . . . . . . . .

2k (1, 0) 0 b − 1 0 1 b

√

(kb+j)b
k

2k + 1 (k, 1) 0 b − 1 1 0 2kb+j
2k+1

√

2(kb+j)b
2k+1

2k + 2 (k, 1) 0 b − 1 1 −1 2kb+j
2k+1

√

(kb+j)b
k+1

2k + 3 (k + 1, 1) 0 b − 1 1 0 (2k+1)b+j
2k+3

√

2(kb+j)b
2k+3

2k + 4 (k2 + k, k + 1) 0 1
k+2 b k 1 (k+1)(2kb+j)

2k2+4k+1

√

(kb+j)b
k+2

(k + 1, 1) 1
k+2b b − 1 1 −1 (2k+1)b+j

2k+3

2k + 5 (k + 2, 1) 0 b − 1 1 0 2(k+1)b+j
2k+5

√

2(kb+j)b
2k+5

Table 2
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Remark 3.8
In the case k = 1, if we take b such that

(

(3 −
√

7)b, 5
9b

)

∩ N 6= ∅

then for r = 7 points and (3 −
√

7)b < j < 5
9b we have two types of R-R

expected submaximal curves coming from type (3, 1) and (4, 3). The number
of submaximal curves is altogether 14. Since we can have at most 8 reduced,
irreducible and submaximal, it means that at least one of them is reducible.
We see that the curve of type (3, 1) is a component of a curve of type (4, 3).
Moreover, we observe that if j ≤ 3

8b then 7b+3j
13 ≤ 4b+j

7 .

In all other cases, if different types of R-R expected curves give the same

Seshadri quotient, then this quotient is equal to
√

L2

r , but it means that it is

no longer submaximal.
Now we want to show that for r = 2k + 6 points there exist R-R expected

submaximal curves at least for (a, b) such that r0 = 2k + 6 (see Lemma 3.4).
We observe that R-R expected submaximal curves still depend on k and j and
in general case we can not write an explicit form, as we could for r ≤ 2k + 5
points.

We construct now a sequence of curves for which we compute their submaxi-

mality area, i.e., we estimate polarizations for which our curves are submaximal.

Proposition 3.9
Let l ∈ Z+ be a positive integer. Given the following sequences:

α1 := (l + 1)(l + 2), β1 := l + 2,

m1 := l + 1, δ1 := 1

and for n ≥ 2

αn+1 := (l + 1)αn − βn + 1, βn+1 := αn,

mn+1 :=
(2l + 4)αn − 2βn + 1 + δn

2l + 6
, δn+1 := −δn

we have:

(1) for every positive integer n ∈ Z+ we have αn

βn
> l;

(2) if r = 2l + 6 and Dn , with n ∈ Z+ , is a curve of type (αn, βn) with a

multiplicity vector MDn
= (mn, . . . , mn, mn + δn) at r points, then

h0(OP1×P1(αn, βn)) = l(MDn
) + 1. (3.9.1)

The condition (3.9.1) in particular means that the curve Dn is R-R expected.
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Proof. (1) Easy induction on n.
(2) One can check that for all positive integers n ∈ Z+ we have

2αn + 2βn − 2(l + 3)mn − δn − 1 = 0. (3.9.2)

Due to this equality we observe that for n ≥ 2 it holds:

αn+1 = βn + (l + 3)αn − (2l + 6)mn − δn

and

mn+1 = αn − mn .

Using the induction on n we can prove that for all n ∈ Z+ the condition (3.9.1)
is true.

Now we want to compute submaximality areas for curves {Dn}n∈Z+
from

Proposition 3.9. In order to do this, first we prove the following

Lemma 3.10
Let l, c, z ∈ Z+ be positive integers with z ∈ 〈0, c − 1〉. Let zn be the smaller

solution of the following equation in z

(lc + z)βn + cαn

(2l + 6)mn + δn
=

√

(lc + z)c

l + 3
(3.10.1)

with z as the indeterminate. Then the sequence {zn}n∈N ⊂ 〈0, c − 1〉 is strictly

decreasing and

lim
n→∞

zn =
1 +

√
l2 + 2l − 3 − l

2
c.

Proof. Let z̃1 and z̃2 be solutions of the equation

(lc + z)βn+1 + cαn+1

(2l + 6)mn+1 + δn+1
=

√

(lc + z)c

l + 3
(3.10.2)

with z as the indeterminate. We may assume without loss of generality that
z̃1 < z̃2 . By definition we have zn+1 = z̃1 . Using direct calculations we can
show that z̃2 = zn . Since z̃1 < z̃2 and n was arbitrary, then the sequence
{zn}n∈N is strongly decreasing.

On the other hand, for every positive integer n we have

zn + zn−1 =
(2l + 6)[−αnβn − lβ2

n + (2l + 6)m2
n + 2mnδn] + 1

(l + 3)β2
n

c.

Then from Proposition 3.9 (2) we obtain that

zn + zn−1

=
(2l + 6)[−αnβn − lβ2

n + 2αnβn + 2αn + 2βn − (2l + 6)mn − δn − 1] + 1

(l + 3)β2
n

c.
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By (3.9.2) it follows

zn + zn−1 =
(2l + 6)βn(αn − lβn) + 1

(l + 3)β2
n

c > 0,

where the inequality follows from Proposition 3.9 (1). Since {zn}n∈Z+
is

strongly decreasing, then for every n ∈ Z+ we have zn > 0. In particular
it means that the sequence {zn}n∈Z+

is convergent. If this is the case, then

lim
n→∞

zn =
1

2
lim

n→∞
(zn + zn−1) =

1

2
c lim

n→∞

(

2
αn

βn
− 2l +

1

(l + 3)β2
n

)

.

From Proposition 3.9 it follows that

lim
n→∞

βn = +∞ and lim
n→∞

αn

βn
≥ l ≥ 1. (3.10.3)

Since limn→∞
1

(l+3)β2
n

= 0 and limn→∞ zn exists, then also limn→∞
αn

βn
exists.

Let g := limn→∞
αn

βn
. We obtain that

g = lim
n→∞

αn+1

βn+1
= lim

n→∞

(l + 1)αn − βn + 1

αn

= lim
n→∞

(

(l + 1) − βn

αn
+

1

α

)

.

(3.10.4)

On the other hand by (3.10.3) we have g ≥ 1 and hence there exists

lim
n→∞

βn

αn
=

1

g
.

Combining this fact with (3.10.4) we obtain our assertion.

As a simple consequence of the previous lemma we obtain the following

Proposition 3.11
Let r = 2k + 6 be the number of points on (P1 × P

1, L) with the (a, b) polar-

ization L. Let {zn}n∈N and (αn, βn) with mn and δn be like in Lemma 3.10

and Proposition 3.9 respectively. If for some n0 there is zn0
< j < zn0−1 ,

then the curve Dn0
of type (αn0

, βn0
) with the multiplicity vector MDn0

=
(mn0

, . . . , mn0
, mn0

+ δn0
) is R-R expected submaximal at r points. If j = zn0

or j = zn0−1 then

√

L2

r is rational and Dn0
computes this quotient.

Proof. Since zn0
< j < zn0−1 , then by Lemma 3.10 we have

(kb + j)βn0
+ bαn0

(2k + 6)mn0
+ δn0

<

√

(kb + j)b

k + 3
.
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This inequality means that the curve Dn0

of type (αn0
, βn0

) with the multi-
plicity vector MDn0

= (mn0
, . . . , mn0

, mn0
+ δn0

) is submaximal. By Proposi-
tion 3.9 (2) the curve Dn0

is also R-R expected.
If j = zn0

or j = zn0−1 then

(kb + j)βn0
+ bαn0

(2k + 6)mn0
+ δn0

=

√

(kb + j)b

k + 3

and
√

(kb+j)b
k+3 =

√

L2

r must be rational. The previous equality also means that

the curve of type (αn0
, βn0

) computes the quotient
√

L2

r .

In this way we obtain the following:

Theorem 3.12
Consider the surface X = P

1 × P
1 with the (a, b) polarization. If r ≤ r0 (see

Definition 3.2 and Lemma 3.4) and

√

L2

r is non-rational, then there exist R-R

expected submaximal curves at r points.

Proof. If r0 ≤ 2k + 5 then expected curves are given in Proposition 3.7.
If r0 = 2k + 6 then by Lemma 3.4 it must be

j ∈
〈

1+
√

k2+2k−3−k
2 b, b − 1

〉

∩ N with k ≤ b − 1 + 1
b .

We observe that 1+
√

k2+2k−3−k
2 b is an integer only for k = 1. In this special

case the number
√

L2

r is rational.

We should also observe that the sequence from Lemma 3.10 is in fact a
partition of the interval

〈

1+
√

k2+2k−3−k
2 b, b − 1

〉

.

The rest of the proof follows from Proposition 3.11.

Assume that the number of points r is at least r0 + 1 but smaller than
R0. We observe that in this case the situation seems to be out of control. We
have conditions (3.5.5), (3.5.6) and (3.5.7) which should eliminate the most of
multiplicities m. On the other hand, for r from the neighborhood of r0 functions
on the right side can obtain very high values. We observe that sometimes for
r0 < r < R0 there are no R-R expected submaximal curves.

Example 3.13
Let L be (9, 5) polarization. In this case k = 1, b = 5, j = 4 and R0 =
68
15 + 28

45

√
53 ≈ 9.063. Analyzing conditions (3.5.5), (3.5.6) and (3.5.7) we obtain
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(1) m < 0, which is absurd, or (2) m = 1, for δ = 0. Since now r = 9, in the
last case we have only one possibility: α = 4 and β = 1. We see that this curve
gives the quotient

L.D
∑

mi
=

29

9
>

√
10 =

√

L2

r
,

which is not submaximal.

On the other hand we have:

Example 3.14
Let L be (3, 1) polarization. We have k = 3, b = 1, j = 0, R0 = 6 + 8

3

√
2 ≈

11.962 and hence r = 11. Analyzing the same conditions as in the Example
3.13 we obtain (1) m < 0, which is absurd, or (2) m ≤ 3, for δ = 0. We see
that curve D of type (5, 1) with m = 1 gives the quotient

L.D
∑11

i=1 mi

=
8

11
<

√

6

11
=

√

L2

r
,

which is submaximal.

These examples show that in general for r in the range between r0 and
R0 it is difficult to prove for which number of points there are R-R expected
submaximal curves. We can only generalized Example 3.14.

Proposition 3.15
Let L be the (a, b) polarization. Let r = 2k + 2n + 1 with non-negative integer

n. If (1 + n−
√

2k + 2n + 1)b ≤ j ≤ b − 1, then a curve of type (k + n, 1) with

m = 1 and δ = 0 gives the Seshadri quotient at most

√

L2

r .

Proof. By D we denote a curve of type (k + n, 1). D has the multiplicity
vector MD = (1, . . . , 1). Since h0(OP1×P1(k+n, 1)) = 2k+2n+2 = l(MD)−1,
then D is R-R expected. We compute that

L.D
∑r

i=1 mi
=

(2k + n)b + j

2k + 2n + 1
,

hence L.D
∑

r
i=1

mi
is at most

√

L2

r if and only if

(1 + n −
√

2k + 2n + 1)b ≤ j ≤ b − 1.

The Seshadri quotient given by D is submaximal for j 6= (1+n−
√

2k + 2n + 1)b.
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In this place we should note that

〈

(1 + n −
√

2k + 2n + 1)b, b − 1
〉

∩ N 6= ∅
only for

0 ≤ n <
b +

√

2(k + 1)b2 − 2b − 1

b
.

Now we are in a good position to formulate the following lemma.

Lemma 3.16
Let Dh be a R-R expected curve of type (h, 1) through r points in general po-

sition. If r ≥ 2h + 1 and the multiplicity vector MDh
= (1, . . . , 1) then Dh is

irreducible.

Proof. We prove this lemma by induction on h.
Step 1. For h = 1 we have that D1 is of type (1, 1) with the multiplicity

vector MD1
= (1, 1, 1). If D1 is reducible then D1 decomposes in the sum of

two fibers. Since points are in general position, then the sum of two fibers gives
the multiplicity vector (1, 1, 0) 6= MD1

, a contradiction.

Step 2. We assume our thesis for h < h0 . We want to show that a curve
Dh0

of type (h0, 1) through r ≥ 2h0 + 1 points with the multiplicity vector
MDh0

= (1, . . . , 1) is irreducible.
We assume to the contrary that Dh0

is reducible. Then we take the decom-
position on irreducible components. There are two possibilities:

(1) Dh0
is the sum of curves of type (1, 0) and (h, 1) with h < h0, or

(2) Dh0
is the sum of curves of type (1, 0) and (0, 1).

In the first case we have

Dh0
= (h0 − h) · (1, 0) + (h, 1).

Since points are in general position, then multiplicity vector for a curve (1, 0)
at r points is (0, . . . , 0, 1). Since (h, 1) is irreducible, then by the inductive
assumption we have that it goes through at least 2h + 1 points with multiplic-
ities 1. Finely we obtain that curves (h0 − h) · (1, 0) and (h, 1) go through at
least (h0 − h) + (2h + 1) = h0 + h + 1 points. Since h0 + h + 1 < 2h0 + 1, the
multiplicity vector of the sum of curves (h0 − h) · (1, 0) and (h, 1) is different
from MDh0

, a contradiction.
In the second case we have

Dh0
= h0 · (1, 0) + (0, 1).

Since points are in general position, a multiplicity vector of the sum h0 ·(1, 0)+
(0, 1) at r points is (1, . . . , 1

︸ ︷︷ ︸

h0+1

, 0, . . . , 0
︸ ︷︷ ︸

r−h0−1

) 6= Mh0
, a contradiction.
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According to this lemma we can say more about Seshadri constants on

P
1 × P

1. More precisely we have the following theorem.

Theorem 3.17
For (P1×P

1, L) with L of type (a, b) Seshadri constants are like in the following

tables

(1) Table 3 for k = 1,

(2) Table 4 for k ≥ 2.

r Type of curve
The submaximality

area
. . . ≤ j ≤ . . .

m δ ε(L; r)
√

L2

r

1 (1, 0) 0 b − 1 0 1 = b
√

2(b + j)b

2 (1, 0) 0 b − 1 0 1 = b
√

(b + j)b

3 (1, 1) 0 b − 1 1 0 = 2b+j
3

√

2(b+j)b
3

4 (1, 1) 0 b − 1 1 −1 = 2b+j
3

√

(b+j)b
2

5 (2, 1) 0 b − 1 1 0 = 3b+j
5

√

2(b+j)b
5

6 (2, 2) 0 1
3b 1 1 ≤ 4b+2j

7

√

(b+j)b
3

(2, 1) 1
3b b − 1 1 −1 = 3b+j

5

7 (4, 4) 0 1
7b 2 1 ≤ 8b+4j

15

√

2(b+j)b
7

(4, 3) 1
7b 3

8b 2 −1 ≤ 7b+3j
13

(3, 1) 3
8b b − 1 1 0 = 4b+j

7

8 . . . . . . . . . . . . . . . . . .
√

(b+j)b
4

(28, 21) 15
49b 13

36b 12 1 ≤ 49b+21j
97

(21, 15) 13
36b 11

25b 9 −1 ≤ 36b+15j
71

(15, 10) 11
25b 9

16b 6 1 ≤ 25b+10j
49

(10, 6) 9
16b 7

9b 4 −1 ≤ 16b+6j
31

(6, 3) 7
9b b − 1 2 1 ≤ 9b+3j

17

Table 3
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1

As an application of Theorem 3.5 we prove the following:

Theorem 3.18
Consider X = P

1 × P
1 with the (a, b) polarization L. For every N ≥ R0 the

polarized surface (X, L) admits full symplectic packing by N equal balls.

Proof. Fix r a number of points. Let D ⊂ X of type (α, β) be a R-R
expected submaximal curve. Let MD = (m, . . . , m, m+δ), where δ ∈ {−1, 0, 1}
and m ∈ Z, be its multiplicity vector. Since h0(OP1×P1(α, β)) = αβ +α+β +1
and D is R-R expected, and by Proposition 1.3 there is no continuous family
of submaximal curves, we must have

2αβ + 2α + 2β = rm2 + rm + 2mδ + δ2 + δ.

Rearranging terms on the right side we obtain that

rm2 + rm + 2mδ + δ2 + δ =
r

∑

i=1

m2
i +

r
∑

i=1

mi (3.18.1)

(by mi we mean the multiplicity D at xi). By Theorem 3.5 we have that for
r ≥ R0 points there are no R-R expected submaximal curves. In particular it
means that there are no curves such that (3.18.1) becomes true. If this is the
case, then the system of Diophantine equations in Theorem 3.1 does not have
solutions and by the same theorem for N ≥ R0 we have vN = 1.3.2. Conjeture

As we remarked before, Seshadri constants are known only in few examples
and in every such case, the computing curve was R-R expected. We observe
also that on P

1 × P
1 in that cases when there exists the full filling by N equal

balls, there is no R-R expected submaximal curves at N points. This facts give
us a reason to formulate the following conjecture.

Conjecture 3.19
In the case P

1 × P
1 the number N0 in the Nagata-Biran Conjecture can be

replaced by R0 .

Remark 3.20
For the (pa, pb) polarization the number N0, with respect to p, grows like a
quadratic function. For the constant R0 this is not the case. If we look at
the Definition 3.2 then we can see, that R0 is a rational function of a and b of
degree 0 so the value of R0 does not depend on p. In particular, it means that
the Biran number N0 can be optimally applied only for polarizations of type
(a, b) with a and b coprime.
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