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1. Introduction. The subject of the paper is the construction of the 

periodic solution of the equation

n
Pu(x,t) = O, x = (x ,...,x ), P = A - D ,A = T D2 , (1)

i n  t  xl l

in the domain

D = -j(X,t):X = (x ,...,x j e E , x > 0, t € (-co,co)i,
I 1 n-l n-1 n I

satisfying the boundary condition

u(X,0,t) = h(X,t) for (X.t) e D( = |(X,t):X e En (,t e (-<»,oo)|. (2)

We shall prove that if h is periodic with respect to t, then 

the solution u(x,t) is also periodic with respect to t.
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In the monograph [3], p. 222, the similar problem for the 

domain D = <(x,t):x 6 (O.oo), t e (-«,»)>, was treated. The periodic 

solution u is called the temperature wave. In the monograph [1], 

pp.102-104, the similar problem for the domain D = {(x,t):xe(-a,a), 

t  e (-oo,»)> was considered.

To the construction of the solution of the problem (1), (2), 

we shall apply the convenient Green function G.

2. Some example.

The function u is the solution of the equation (1) and is periodic 

with respect to t.

Indeed. Let

Let

2
P = D - D , U (x .t) = exp(ax )cos (t+ax ), i=l,...,n,

X , t  X t i l  i i

n
w(x,t) = n u^Xj.ti,

i=i

n
W (x,t) = n U (x ,t), w (x,t) 

1 . _ 1 1 n
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= n U (x ,t), w (x,t) = j] U (x ,t)," I l  1 11 k k
1=1 k=l

n-1 n

lc*l

i=l..... n.

We have

P U (x ,t) = O, i=l..... n,
X ,t  1 1

1

Pw(x,t) = £ f(D2 - D )U (x ,t)] w (x,t) = O. 
, l x , t  i i J i

REMARK. For x = O we obtain the function
n

which is periodic with respect to t.

3. Green function.

Let y = (y ), Y = (y....,y
i n  l n-i

It is known that the function

G(x,t;y,s) = G^x.tjy.s) - G2(x,t;y,s), 

where

G (x,t;y,s) = (t-s)_n/2exp(B(t,s)r2(X,Y)) exp(B(t,s)(x -y )2),
1 n n

G (x,t;y,s) = (t-s)"n/2exp(B(t,s)r2(X,Y)) exp(B(t,s)(x +y )2),
2 n n
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r2(X,Y) = V  ( x - y / ,
1

B(t,s) = (—4(t—s))-1 for s < t,

and

G^x.tjy.s) = G2(x,t;y,s) = 0 for s s t,

is the Green function for the equation (1), for the domain D, and 

for Dirichlet boundary data.

4. Uniqueness theorem.

Denote by (U) the .class of all functions u 6 C ’ (D), such 

that II u II d s C, C being a positive constant.

THEOREM 1. I f  the functions u , u2 e (U) are the solutions o f  

the (1), (2) problem, then u s u2 in D.

Proof. Let

U(x,t) = u^x.t) - u2(x,t) 

We have

PU(x,t) = 0 for (x,t) e D, (3)

U(x,t) = 0 for (x,t) e (4)

Let us consider the following Cauchy problem for the equation

(3), with the initial condition
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U(x,t)|t=T = U(x,T) (5)for x é E+.
n

By [2], vol. I. p. 458, the solution of the problem (3), (5) is of 

the form

U(x,t) = A / +U(y,T)G(x,t;y,T)dy = I + 1  ̂
E

n

where

-n/2+1
Mx.t) = A S S U(y.TKt-T)

x exp(B(t,T)rZ(X,Y))(t-T)'1/2 exp(B(t,T)(x -y )2)dYdy ,
n n n

— + i
I2(x,t) = -A s S U(y,T)(t-T) 2

E y >0 
n-1 n

exp(B(t,T)r2(X,Y)) (t-T f 1/Zexp(B(t,T)(x +y )Z)dYdy ,
n n n

A = {ZVn)~n.

The solution of the problem (3), (5) is unique. 

We have

+ 1
|I + I I1 2 SAC S

E
n-1

(t-T) exp(B(t,T)r (X,Y))dY + J2](
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where

J -  S (t-T)'1/Zexp(B(t,T)(x -y ńdy ,
1 n n n

y >0
n

J * - J (t-T)’1/2exp(B(t,T)(x +y J^dy .
2 n n n

Applying in the integrals J2 the change of the integral

variable

x - y = 2Vt-T z, x + y = 2Vt-T z
n n n n

respectively we obtain

x ( t -T)  
n

- 1 /2

u, * j2i exp(-z )dz

x ( t -T)  
n

- 1 /2

J
3

Since

^+1 --1 
S (t-T) 2 exp(B(t,T)r2(X,Y))dY = (2Vrr)2

n - 1

and J = 0 for T = thus

U(x,t) ■  0 and « u in D(t ,t ) = {(x,t):xeE
1 2  1 2  n - 1•« < v v >
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5. Green potential

Let us consider the Green potential

t
u(x,t) = J* S h(Y,s)D G(x,t;,0,s)dYds =

- »  E yn
n-1

t
= A s S h(Y,s)K(x,t;Y,s)dYds, (6)

-00 E
n-1

where

K(x,t;Y,s) = (t-s)"<n U/2exp(B(t,s)r2(X,Y)x (t-s) 3/2
n

x exp(B(t,s)x2), for s < t,

K(x,t;Y,s) = 0 for s ł t.

In the sequel we shall prove that the function u given by 

formula (6) is the solution of the problem (1), (2).

6. Some denotations and lemmas

DEFINITION 2. Denote by (h) the class of all functions h e 

C(D) and bounded in D.

In the sequel by C, we shall denote the convenient positive cons­

tants.

Let

K (x ,t,s) = x (t-s) '3/2exp(B(t,s)x2)
I n n  n

and

t
I(x ,t) = /  K (x ,t,s)ds.

n I n-oo
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LEMMA 1. For every x > O, te(-®,®)
n

I(x ,t) ■  2Vn.n

Proof. Applying In the integral I the change of the integral 

variable

. , r t/21 <t-») _ *
Z — ~ X , Z € (0, ®),

Z n

we obtain

l(x ,t)
n

4 f  exp(-zz)dz «= 2Vw. 
o

Let

(7)

K2(X,t,Y,s) = (t-s)"<r'"1)/2exp(B(t,s)r2(X,Y)) for s < t

ana

K (X,t;Y,s) = 0 for s ł t
2

Let us consider the integral

J(X,t) = S K (X,t;Y,s)dY.
L

n-1

LEMMA 2. For every (X,t) € D] we have

J(X,t) = (2Vrr)n_1. (8)
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Proof. By tra n sfo rm a tio n

vj = 2 (t -s)”1/2(yi-xi), i=l..... n-1,

we obtain (8).

By Lemmas 1,2 and by (6), (8) we obtain 

LEMMA 3. For every (x,t) e D we have

t
A /  S K(x,t;Y,s)dYds = 1. (9)

-oo E
n-1

Let b and N(b) be the positive numbers and 

H(Y,s) = h(Y,s) - h(X ,t )O O

and X = (x°,...,x° ) be an arbitrary point belonging to E
o 1 n-1 n-1

t e (-00,00).O
Let us consider the following sets

Q (X ,t ,N(b)) = {(Y,s): |yt - x°| < N(b),l o o  1 i

i=l..... n-1, se(t -N(b),t +N(b))>.O O

Q (X ,t ,N(b)) = {(Y,s): |y - x 1 ł N(b),2 o o 1 1

i=l,...,n-l, s€(-oo,t +N(b))>,O

Q (X ,t ,N(b)) = {(Y,s): ly -x l  < N(b),
3 o o 1 1
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i=l..... n-1, s€(-»,t -N(b))>.O

Let

u = u + u , 1 2

where

u,(x,t) = Y. uj(x.t).

Ul(x,t) = A J* H(Y,s)K(x,t,Y,s)dYds, i=l,2,3,

Q,

u (x,t) = h(X ,t ) A s '  S K(x,t,Y,s)dYds
2 o o

-oo E
n-1

and u is given by (6)

7. Properties of the potential (6)

LEMMA 4. I f  he(h), (x,t) € D, then the potential u defined by

(6) satisfies the following conditions

1° Pu(x,t) = 0 fo r  (x,t) 6 D, 2° u(x,t) — » h(X ,t ) asO O
(x,t) — » (X ,t ).

o o
Proof. Ad 1 .By [1], p. 498, we obtain the assertion 1°.

O
Ad 2 . We have the identity

u(x,t) = A S S Ch(Y,s) - h(X ,t ) +
_  o o-oo E

n-1

h(X ,t ))K(x,t,Y,s)dYds = u (x,t) + u (x,t).
o o 1 2

By Lemma 3 we obtain
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(10)u (x,t) = h(X ,t ).
2 o o

Now we shall estimate By continuity of the function h at the 

point (X ,t ) for every positive number b there exists the positiveO O
number N(b) and the nieighbourhood such that for (Y,s) belonging 

to 0 , the inequality

I H( Y,s) I ï  b

holds. Consequently by Lemma 3 we obtain

t
1 u1 (x,t) I ï  bA J /  K(x,t,Y,s)dYds = b for (x,t) € D. (11)

-oo E
n -1

Let t€ 11 - 4 N(b), t + 4 N(b)|. For u2 we have the estimation
1 o 2  o 2  i

1 u (x,t) I S II H II A x K(x,t,Y,s)dYds 

°2

t  fN(b) 
o n -1 oo

s c s n f (t-s)
-00 1 = 1 -00

- 1 /2

x exp(B(t,s)(x -y ) )dy( K;(x ,t,s)ds

s C S K (x ,t,s)ds = N*(x ,t).
i 1 n-00

Applying in the integral N the transformation (7) we obtain
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Nl(x,t) = c2 X exp(-z2)dz, 
2 o

z
1

where zi
J.
2 x

n
i  N(b)] . Consequently

u2(x,t) --- > 0 as (x ,t) — > (0,t ). (12)1 n o

3
For u we have the estimationi

t -N(b)
|u3(x,t)| £ C ° s K (x ,t,s)ds = Nz(x ,t).

1 3 l n  n
-00

2
Applying in N the transformation (7) we obtain

N2 = C J" exp(-z2)dz, z = 4 x ft_t + k N(b^4 2 2 n 1 o 20 v

Consequently

u3(x,t) --- > 0 as (x ,t) --- » (0,t ). (13)
1 n o

Finally by (10) - (13), we obtain the assertion 2°.

8. Existence theorem

By Theorem 1 and Lemmas 1-4 we obtain

THEOREM 2. I f  h e (h), then the function u defined by formula 

(6) is the unique solution o f  the problem (1), (2).
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Proof. By maximum principle we have

|u(x,t)| s  sup |h(x,t)| = C for (x,t) e D,
Di

and

Hull s C.
D

By Theorem 1 the solution of the problem (1), (2) is unique.

9. Periodic solution of the problem (1), (2)

THEOREM 3. I f  h e (h) and h is periodic with respect to t,
O

i.e. h(x,t+p) = h(x,t) fo r  (x,t)eD, then: 1 the solution u o f the 

problem (1), (2) is periodic, 2 the derivatives u(x,t) are also 

periodic, 3° the function Au(x,t) is periodic with respect to t.
O

Proof. Ad 1 . By theorems 1,2 there exists the unique solution 

u(x,t) of the problem (1), (2) i.e.

Pu(x,t) = O for (x,t) e D, u(X,t) = h(X,t) for (X,t) € 

Let U(x,t) = u(x,t+p). The function U satisfies the equation

PU(x,t) = Pu(x,t+p) = O for (x,t) € D

and the boundary condition

U(x,t) = h(x,t+p) = h(x,t).

Thus
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U (x,t) = h (x ,t)  fo r  (x ,t)  e D.

So

PU(x,t) = 0 for (x,t) e D

and

U(x.t) = h(x,t) for (x,t) e D,

By Theorem 1 we obtain

U(x,t) = u(x,t+p) = u(x,t) for (x,t) e D.

Ad 2 . By 1 , for i=l, we have

D u(x,t) = lim k’huix.t+k) - u(x,t)l 
k—>o

= lim k ri(x,t+p+k) - u(x,t+p)l
k —X)

= D ulx,t+p) for (x,t) e D.

Similarly we obtain

D^u(x,t) = D^u(x,t+p)

and by induction we obtain

D|u(x,t) = D|u(x,t+p) for (x,t) e D.

Ad 3 . By 1 , 2 and (1) we get
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fo r  (x ,t) e D.Au(x,t+p) = D^uCx.t+p) = Dtu (x ,t) = Au(x,t)
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