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1 Introduction. The subject of the paper is the construction of the
periodic solution of the equation

n
Pu(x,;t) = O x = (xi,..Hx ), P=A- Dt A=T D)%, @
(I

in the domain

D= j(X0:X = (X;...x j e E, x >0, t € (coco),

17
satisfying the boundary condition
u(X,0,t) = h(X;t) for (X.t) e D( = |(X,t):X e En(;t e (-~<»00) %)

We shall prove that if h is periodic with respect to t, then
the solution u(x,t) is also periodic with respect to t.



In the monograph [3], p. 222, the similar problem for the
domain D = <(x,t):x 6 (Qoo), t e (-«,»)> was treated. The periodic
solution u is called the temperature wave. In the monograph [1],
pp.102-104, the similar problem for the domain D = {(x,t):xe(-a,a),
t e (-oo»)> was considered.

To the construction of the solution of the problem (1), (2),
we shall apply the convenient Green function G

2. Some example.

Let

The function u is the solution of the equation (1) and is periodic
with respect to t.
Indeed. Let

2 .
nyt = DX - Dt iU (x.t) = exp(axi)cos (t+axi), i=l,...,n,

n
w(x,t) = n urXj.ti,
i=i

Wl(X,t) = .2_ Ul(xl,t), Wn(X,t)



_h-1 n
_1[:11 qu 1), Wl(X,t) —kﬂ Uk(xk,t),

Ic*l

i=l....n

We have

P, U =0 isl..n,

Xl,t 1
Pw(x,t) = £ r(Dg - Dt)Ui(Xi’t)]!Wi(X't) =0

REMARK. For X = O we obtain the function

which is periodic with respect to t.

3. Green function.

Lety =(;, , ) Y = (WY
It is known that the function

G(x,ty,s) = GMX.tjy.s) - G2(x,ty,s),

where
G (x,tyy,s) = (t-s)_n/2exp(B(t,s)rAX,Y)) exp(B(t,;s)(X -y, )2,

Gz(x,t;y,s) = (t-3)"n/2exp(B(t,s)rAX)Y)) exp(B(t,s)(xn+yn)2),



r2XY) =V (x-yl/,

B(t,s) = (4(t-s))-1 for s <t,
and
G™x.tjy.s) = G2Ax,ty,s) =0 for s s t,

is the Green function for the equation (1), for the domain D, and
for Dirichlet boundary data.

4. Uniqueness theorem.

Denote by (U) the .class of all functions u 6 C’ (D), such
that I u Ids C C being a positive constant.

THEOREM 1 If the functions u, u2 e (U) are the solutions of
the (1), (2) problem, then u s u2 in D

Proof. Let

U(x,t) = u™x.t) - u2(xt)

We have
PU(xt) =0 for (x,t) e D, 3
Ux,t) =0 for (x,t) e 4

Let us consider the following Cauchy problem for the equation
(3), with the initial condition

10



U (X, t)|t=T = U(x,T) for x é E+ )

By [2], vol. I. p. 458, the solution of the problem (3), (5 is of
the form

Ut = A/ Uy TGxty dy =1 + 10
E

n
where

-n2+1
Mx.t) = AS S U(y.TKt-T)

x exp(B(t,T)rAX,Y))(t-T)V2 exp(B(t T)(x -y )2dYdy ,

— 4+
12(x,t) = -A S S U@y, T)(tT) 2
E

>
n-1 yn 0

exp(B(t, T)r2(XY)) (t-TfUzZexp(B(tT)(x +y )JdYdy ,
A = {ZVh)~n.

The solution of the problem (3), (5) is unique.
We have

| SAC S (t-T) ' 1exp(B(t,T)r XKY)dY  + 32)(

En-l

+ 1

g+ 1



where

J, - S (t-T)' VZexp(B(t.T)(x -y ndy ,
y >0

3, % -3 (t-T) U2exp(B(LT)(x +y, Idy .

Applying in the integrals J2 the change of the integral
variable

X -y, = 2VE-T z, X ty = 2Vt-T z

respectively we obtain

Xn (t-T) -1/2
u, * ji exp(-z )dz J3
Xn (t__D, 1/2
Since
N1 --1
S (t-T) 2 exp(B(t,T)r2(X,Y))dY = (2vir)2
n-1
and J =0 for T = thus

Uxt) 1 0 and «u inDE.g)={xt)xeE .,  vy>
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5. Green potential
Let us consider the Green potential

t
¥ S hYs)D G(xt,0,5)dYds =

» En-l yn

u(x,t)

t
AS S h(Ys)K(xtY,s)dYds, 6)
-0 E

1
where

K(xtY,s) = (t-s)"<n U/Zexp(B(t,s)rZ(X,Y)xn(t-s) 32
X exp(B(t,s)x2), for s <t,
K(x,t;Y,s) =0 for s ¥ t.

In the sequel we shall prove that the function u given by
formula (6) is the solution of the problem (1), (2).

6. Some denotations and lemmas

DEFINITION 2. Denote by (h) the class of all functions h e
C(D) and bounded in D
In the sequel by C we shall denote the convenient positive cons-
tants.
Let

Iﬂ(x ht,s) =X (t-s)'3/29xp(B(t,s)xrg)
and

t
I(x ,t) =/ t,s)ds.
%0 = 1K t)ds
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LEMMA 1 For every X > O, te(-®®)
I(xn,t) 1 2Wn

Proof. Applying In the integral | the change of the integral
variable

t/2
X <t-»)r
n

z —21 L Z€ (00) (7

we obtain
I(xn,t) 4 T exp(-zz)dz « 2Mn
0
Let

K2(X,,Y,5)

(t-s)"<¢" D/2exp(B(t,5)r2(XY)) for s <t
ana

KZ(X,t;Y,s) = for s ¥t

|
o

Let us consider the integral

JXH) =S KXLY,s)dY.

S
I_n-l

LEMVA 2. For every (Xt) € D] we have

IX,0) = @vimn 1 ®)
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Proof. By transformation
vj = 2 (t-s)"1/2(yi-xi), i=l....n-1,
we obtain (8).

By Lemmas 1,2 and by (6), (8) we obtain
LEMVA 3. For every (x,t) e D we have

t
Al S K(xtY,s)dYds = 1 )]

00 E
Let b and N(b) be the positive numbers and
H(Y:s) = h(Y,s) - h(X5tQ

and X = (X2,..., x;_l) be an arbitrary point belonging to En_l

toe (-00,00).
Let us consider the following sets

QR g N®) = (¥ Iyg - x3| < Neb),
i=l.....n-1, se(toN(b),th(b))>.
QX tgND) = L(Ys): Iyy -1 x 1+ NO),

i=l,....,n-I, s€(-o0,tgN(b))>,

Q<L N®) = {(Y.9): Iy-xI <N),

15



i=l....n-1, S€(-»,t JND))>.

Let

=u, +
u=u +u,

where

u,(x,t) = Y uj(x.t).

UKD = A F H(Y.9)K(xLY.s)dYds, i=1,2,3,
Q

u2(x,t) = h(XO,tO) As' S K(xtY,s)dYds
-0 E
n-1

and u is given by (6)

7. Properties of the potential (6)

LEMVA 4. If he(h), (x,t) € D, then the potential u defined by
(6) satisfies the following conditions

1 Pu(x,t) = 0 for (xt) 6 D 2° u(xgt) —» h(XOtd as
xX,t) —» (XO,'[O).

Proof. Ad 1 .By [1], p. 498, we obtain the assertion 1°

Ad 20. We have the identity

S ON(Ys) - h(Xt ) +
n-1

u(x,t) = AS
-00 £

h(XO,tO))K(x,t,Y,s)des = ul(x,t) ,tu (x,1).
By Lemma 3 we obtain
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u2(x,t) = h(XO,tO). (10)

Now we shall estimate By continuity of the function h at the
point (Xotd for every positive number b there exists the positive
number N(b) and the nieighbourhood such that for (Y,s) belonging
to 0, the inequality

IHYS)I T b

holds. Consequently by Lemma 3 we obtain

t
wi(x,t) T bAJ [ K(xtY,s)dYds = b for (x,t) € D (1)

00 E
n-1

Let t€ %10' 121 N(b), t, +gr N(b)|. For ui?_ we have the estimation

(1) 1S IHE Ax K(xtY,s)dYds
°2

tOfN(b)n_1 o

sc s n f@ts™”
D =140

X exp(B(t,s)(x -y ) )dy( K;(x ,t,s)ds

s C Sm Kl(xn,t,s)ds = N¥(x ).
Applying in the integral N the transformation (7) we obtain
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“1

NI(x,t) = c2 X exp(-z2)dz,
20

where z, 3 x_ i N(b)]. Consequently

u%(x,t) —>0 as (xn,t) — (O,t). (12

3 .
For ui we have the estimation

t -N(b)
u3(x.b)| £C, s K (x ts)ds = Nz(x ).

Applying in I\F the transformation (7) we obtain

2 =¢, 1 exp(-z2)dz, z, = 4 >gq£t_t0 +K N~
Consequently
ud(x,t) —>0 as (x ,t) -—»(0,t)). 13

Finally by (10) - (13), we obtain the assertion 2°.

8. Existence theorem

By Theorem 1and Lemmas 1-4 we obtain

THEOREM 2. If h e (h), then the function u defined by formula
(6) is the unique solution of the problem (1), (2).
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Proof. By maximum principle we have

[u(x,t)] s sup |h(x,t)] = Cfor (x,t) e D

D-
|

and
Hil s C
D
By Theorem 1 the solution of the problem (1), (2) is unique.

9. Periodic solution of the problem (1), (2)
THEOREM 3. If h e (h) and h is periodic with respect to t,
i.e. h(x,t+p) = h(x,t) for (x,t)eD, then: 1O the solution u of the
problem (1), (2) is periodic, 2 the derivatives u(x,t) are also
periodic, 3° the function Au(x,t) is periodic with respect to t.
Proof. Ad 1°. By theorems 12 there exists the unique solution
u(x,t) of the problem (1), (2) i.e.

Pu(x,t) = O for (x,t) e D, u(X;t) = h(X;t) for (Xit) €
Let U(x,t) = u(x,t+p). The function U satisfies the equation
PU(x,t) = Pu(x,t+p) = O for (x,t) € D

and the boundary condition

U(x,t) = h(x,t+p) = h(xt).
Thus
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U(x,t) = h(x,t) for (x,t) e D.

PU(x,t) = 0 for (x,t) e D

and

U(x.t) = h(x,t) for (x,t) e D,

By Theorem 1 we obtain

U(x,t) = u(x,t+p) = u(x,t) for (x,t) e D
Ad 2 . By1, for i=l, we have

Du(x,t) = lim K’huix.t+k) - u(x,t)l
k—0

lim k ri(x,t+p+k) - u(x,t+p)l
k—X)

D ulx,t+p) for (x,t) e D

Similarly we obtain
DMu(x,t) = DMu(x,t+p)

and by induction we obtain
DJu(x,t) = DJu(xt+p) for (x,t) e D.

Ad3 .Byl,2 and (1) we get
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Au(x,t+p) = DMuCx.t+p) = Dtu(x,t) = Au(x,t) for (x,t) e D.
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