On certain properties of invariant subsets in bioperands

Dedicated to Professor Zenon Moszner with best wishes on his 60-th birthday

In the present paper we deal with certain properties of invariant subsets in a bioperand over semigroups. According to [1] we quote the following definitions.

DEFINITION 1. A left operand $_{S}M$ over a semigroup S is said to be a non-empty set M endowed with a mapping S x M \ni (s, a) \longrightarrow sa \in M such that

 $\forall x \in M, \forall s_1, s_2 \in S : s_1(s_2x) = (s_1s_2)x.$

The definition of a right operand M_{T} over a semigroup T is analogous.

DEFINITION 2. A bioperand ${}_{S}M_{T}$ over semigroups S and T is called a non-empty set M which is both a left operand ${}_{S}M$ and a right operand M_T, and the following condition holds:

 $\forall x \in M, \forall s \in S, \forall t \in T : (sx)t = s(xt).$

The set M is called a fibre of the bioperand M_{T} (cf. [2]).

DEFINITION 3. A non-empty subset N \subset M is said to be a left [right] invariant subset of a left [right] operand $M[M_T]$ if SN \subset N [NT \subset N].

The definitions of left and right invariant subsets in a bioperand M are analogous.

As immediate consequences of these definitions we obtain the following properties of invariant subsets in a bioperand M_{\pm} :

1. The fibre M is an invariant subset in the bioperand M_{T} .

2. Let $(N_1 : i \in I)$ be any non-empty family of invariant subsets in the bioperand M_1 .

The union U (N : i \in I) is an invariant subset in the bioperand M.

The non-empty intersection \bigcap (N, : i \in I) is an invariant subset in the bioperand ${}_{e}M_{\pm}.$

Left and right invariant subsets in the bioperand $\underset{s}{M_{T}}$ have analogous properties.

Assume that D denotes the family of all invariant subsets in the bioperand M_{\pm} together with the empty set ϕ .

The family D has the following properties:

(i) $\phi \in D$ and $M \in D$,

(ii) if N, N \in D, then N \cup N \in D,

(iii) if $(N_i : i \in I)$ is any family of subsets belonging to D, then $\bigcap (N_i : i \in I) \in D$.

It follows immediately from properties (i) - (iii) that by means of the family D we can generate the topology in the set M. The family D is a family of closed subsets in the space M.

This topology we shall call a topology generated by the family of invariant subsets in the bioperand ${}_{c}M_{T}$.

Let D_1 [D] denote the family of all left (right) invariant subsets in the bioperand M_1 . Let the empty set ϕ belongs to $D_1[D_1]$.

Using the family D[D] we can generate the topology in the set M.

Let the topology in the bioperand ${}_{S}M_{T}$ be generated by the family D of invariant subsets. Let A be any subset of the fibre M in the bioperand ${}_{C}M_{T}$.

A closure A of the subset A we define as follows:

 $\overline{A} := \bigcap (N \in D : A \subset N).$

Analogously we define a closure $(\overline{A})_{I}$ $[(\overline{A})]_{I}$ of the subset A in the topological space M generated by the family D_{I} $[D_{I}]$.

For the sake of simplicity we introduce some convention. Let S be any semigroup and an element 1 is not in the set S. An operation in the semigroup S we extend to an operation in the set S U $\{1\}$ as follows:

 $1 \cdot 1 = 1$, $1 \cdot s = s \cdot 1 = s$,

for any $s \in S$.

The semigroup will be denote by S^{I} . In the bioperand $_{S^{I}} M \xrightarrow{1}$ we put

1 x = x 1 = x

for any $x \in M$.

Let A be a subset of the bioperand M_{T} , we put

 $SA := \{z \in M : z = s x, s \in S, x \in A\}.$

Analogously we define subsets AT, SAT.

Let us notice that $S^{1}A = SA\cup A$, $AT^{1} = AT\cup A$, $S^{1}A T^{1} = SAT \cup SA \cup AT \cup A$.

THEOREM 1. Let A be any subset of the fibre M of the bioperand ${}_{S}M_{T}$.

Then the sets $(\overline{A})_{I}$, $(\overline{A})_{I}$, \overline{A} have the following form:

- (a) $(\bar{A}) = S^{1}A$,
- (b) $(\bar{A})_{r} = AT^{1}$,
- (c) $\overline{A} = S^1 A T^1$.

Proof. (a) Let us notice that the set $S^{1}A$ is a left invariant subset in the bioperand ${}_{S}M_{T}$. Indeed, $S(S^{1}A) = (SS^{1})A \subset S^{1}A$. Since every left invariant subset in the bioperand ${}_{S}M_{T}$ containing A contains as well the subset $S^{1}A$, so $(\bar{A})_{1} = S^{1}A$.

Analogously we can prove equalities (b) and (c).

If A is a non-empty subset of the fibre M of the bioperand S^{M}_{T} , then $\overline{A}\left[\left(\overline{A}\right)_{I}, \left(\overline{A}\right)_{r}\right]$ is called a [left, right] invariant subset in the bioperand S^{M}_{T} generated by the subset A.

Introducing such notions as an interior of a set, a boundary of a set, a derived set and using well-known theorems of the topology we can obtain many properties of [left, right] invariant subsets in the bioperand M.

For example we shall consider the interior IntA of a set A, the boundary FrA of a set A, the derived set A^d in the bioperand ${}_{S}M_{T}$ with respect to the topology generated by the family D.

THEOREM 2. Let A be any subset of the fibre M of the bioperand ${}_{S}M_{T}$. Let the topology in the bioperand ${}_{S}M_{T}$ be generated by the family D.

Then the interior IntA and the boundary FrA are the following subsets:

(a) IntA =
$$\{x \in A : x \notin S(M \setminus A)\},\$$

(b)
$$\operatorname{FrA} = (A \cap S(M \setminus A)) \cup (SA \cap (M \setminus A)).$$

Proof. (a) From the definition of the interior of a set we have $IntA = M \setminus (\overline{M \setminus A})$. Since $(\overline{M \setminus A})_1 = S(M \setminus A) \cup (M \setminus A)$ the equity $IntA = M \setminus [S (M \setminus A) \cup (M \setminus A)]$ holds. Whence the equality (a) is satisfied.

(b) From the definition of the boundary of a set we have $FrA = (\overline{A})_1 \cap (\overline{M \setminus A})$. Hence $FrA = S^1A \cap S^1(M \setminus A) = (SA \cup A) \cap (S(M \setminus A) \cup (M \setminus A)) = (SA \cap S(M \setminus A)) \cup (A \cap S(M \setminus A)) \cup (SA \cap (M \setminus A))$. Let us notice that $SA \cap S(M \setminus A) \subset (A \cap S(M \setminus A)) \cup (SA \cap (M \setminus A))$. Indeed, if $x \in SA \cap S(M \setminus A)$, then $x \in SA$ and $x \in S(M \setminus A)$. In the case when $x \in A$ we obtain that $x \in A \cap S(M \setminus A)$. In the case when $x \notin A$ we obtain that $x \in M \setminus A$, so $x \in SA \cap (M \setminus A)$. Hence $FrA = (A \cap S(M \setminus A)) \cup (SA \cap (M \setminus A))$. $(M \setminus A)$.

Therefore the equality (a) is satisfied.

The definition of an accumulation point of a set implies the following corollary.

COROLLARY 1. Let A be any subset of the fibre M of the bioperand M_T . A point $x \in M$ is the accumulation point of the subset A if and only if x = s y for same elements $s \in S$ and $y \in A \setminus \{x\}$.

The derived set A^d is a set of all accumulation points of the subset A.

73

DEFINITION 4. A [left, right] invariant subset N in the bioperand ${}_{S}M_{T}$ is called minimal, if there is no proper subset of the set N being a [left, right] invariant subset in the bioperand ${}_{S}M_{T}$.

COROLLARY 2. A subset L is a minimal left invariant subset in the bioperand M_{τ} if and only if $(\{\bar{x}\})_{\tau} = L$ for any $x \in L$.

An analogous property we have for minimal [right] subsets in the bioperand $_{\rm r}M_{\rm r}$.

THEOREM 3. Let L be a minimal left invariant subset in the bioperand M_{τ} .

Then for any $t \in T$ the subset Lt is a minimal left invariant subset in the bioperand M_{τ} .

Proof. Let $z \in Lt$ then z = x t, $x \in L$. From Corollary 2 we have $S^{1}x = L$. Therefore $(\{z\})_{1} = S^{1}z = S^{1}(x t) = (S^{1}x)t = Lt$. Hence by Corollary 2 it follows that Lt is a minimal left invariant subset in the bioperand M_{\pm} .

THEOREM 4. Let $_{S}M_{T}$ be a bioperand, and N its minimal invariant subset containing at least one minimal left invariant subset in the bioperand $_{S}M_{T}$.

Then the subset N is a union of all minimal left invariant subsets in the bioperand M_{τ} contained in the subset N.

Proof. Let K be the union of all minimal left invariant subsets in the bioperand ${}_{S}M_{T}$ contained in the set N.

We shall prove that K = N. The subset K is evidently a left invariant subset in the bioperand ${}_{S}M_{T}$. We shall show that K is a right invariant subset in the bioperand ${}_{S}M_{T}$, i.e. KT \subset K. Let $z \in K$ T then z = x t, where $x \in K$, $t \in T$. By the definition of the subset K it follows that there exists a minimal left invariant subset L \subset N such that $x \in L$. From Theorem 3 it follows that Lt is a minimal left invariant subset in the bioperand M_{T} . Furthermore,

74

Lt c N and so Lt c K. Whence $z = x t \in K$. Therefore K is an invariant subset in the bioperand $\underset{S}{M}_{T}$ contained in the subset N, i.e. K = N.

REFERENCES

- [1] Clifford A., Preston G., The Algebraic Theory of Semigroups, vol. 2, Mir Publishers, Moscow, 1972 (Russian).
- [2] Tabor J., Algebraic objects over a small category, Diss. Math., 155 (1978).