On certain properties of invariant subsets in bioperands

Dedicated to Professor Zenon Moszner with best wishes on his 60-th birthday

In the present paper we deal with certain properties of invariant subsets in a bioperand over semigroups. According to [1] we quote the following definitions.

DEFINITION 1. *A left operand* M *over a semigroup* S *is said to be a non-empty set* M *endowed with a mapping* $S \times M \ni (s, a) \longrightarrow sa \in$ M *such that*

 \forall **x** \in **M**, \forall **s**₁, **s**₂ \in **S** : **s**₁(**s**₂**x**) = (**s**₁**s**₂)**x**.

The definition of a right operand M_{+} over a semigroup T is analogous.

DEFINITION 2. *A* bioperand $M_{\rm T}$ over semigroups S and T is *called a non-empty set* M *which is both a left operand and a* right operand M_{+} , and the following condition holds:

 \forall **x** \in **M**, \forall **s** \in **S**, \forall **t** \in **T** : (sx)**t** = **s**(xt).

The set M *is called a fibre of the bioperand* μ_{r} (cf. [2]).

DEFINITION 3. A non-empty subset N c M *is said to be a left* [right] invariant subset of a left [right] operand $[M - M]$ if SN c N $[NT \subset N]$.

The definitions of left and right invariant subsets in a bioperand $_{\rm e}M_{\rm x}$ are analogous.

As immediate consequences of these definitions we obtain the following properties of invariant subsets in a bioperand $_{\rm s}$ M_T:

1. The fibre M is an invariant subset in the bioperand $_{\rm g}M_{_{\rm T}}$.

2. Let $(N_i : i \in I)$ be any non-empty family of invariant subsets in the bioperand $_{c}M_{+}$.

The union $U(N_i : i \in I)$ is an invariant subset in the bioperand M_{+} .

The non-empty intersection \bigcap (N_i : i \in I) is an invariant subset in the bioperand $_{e}M_{+}$.

Left and right invariant subsets in the bioperand $_{\rm e}M_{\rm +}$ have analogous properties.

Assume that D denotes the family of all invariant subsets in the bioperand $_{\rm e}$ ^M_{$_{\rm T}$} together with the empty set ϕ .

The family D has the following properties:

(i) $\phi \in D$ and $M \in D$,

(ii) if N_1 , $N_2 \in D$, then $N_1 \cup N_2 \in D$,

(iii) if $(N_i : i \in I)$ is any family of subsets belonging to D, then \bigcap (N_i : i \in I) \in D.

It follows immediately from properties (i) - (iii) that by means of the family D we can generate the topology in the set M. The family D is a family of closed subsets in the space M.

This topology we shall call a topology generated by the family of invariant subsets in the bioperand M_{+} .

Let D_i $[D]$ denote the family of all left [right] invariant subsets in the bioperand \mathbb{M}_{τ} . Let the empty set ϕ belongs to D_{\parallel} $[D_{\parallel}]$.

Using the family $D_i[D_r]$ we can generate the topology in the set M.

Let the topology in the bioperand M_+ be generated by the family D of invariant subsets. Let A be any subset of the fibre M in the bioperand $_{\rm c}M^{\rm }_{\rm r}$.

A closure \bar{A} of the subset A we define as follows:

 $\overline{A} := \bigcap (N \in D : A \subset N).$

Analogously we define a closure (\overline{A}) $[(\overline{A})]$ of the subset A in the topological space M generated by the family D_{\parallel} [D].

For the sake of simplicity we introduce some convention. Let S be any semigroup and an element l is not in the set S. An operation in the semigroup S we extend to an operation in the set S \bigcup $\{1\}$ as follows:

 $1 + 1 = 1,$ $1 + s = s + 1 = s,$

for any $s \in S$. The semigroup will be denote by $S¹$. In the bioperand e^i M i we put

 $1 x = x 1 = x$

for any $x \in M$.

Let A be a subset of the bioperand $_{c}M_{T}$, we put

 $SA := \{z \in M : z = s \times s, s \in S, x \in A\}.$

Analogously we define subsets AT, SAT.

Let us notice that $S^1A = SA \cup A$, $AT^1 = AT \cup A$, $S^1A T^1 = SAT \cup SA \cup AT \cup A$ A.

THEOREM 1. Let A be any subset of the fibre M of the bioperand \mathbb{R}^M .

Then the sets $\overline{(\mathsf{A})}_{\mathsf{I}'}, \overline{(\mathsf{A})}_{\mathsf{r}}, \overline{\mathsf{A}}$ have the following form:

- (a) $(\bar{A}) = S^1 A$,
- (b) $(A)_{r} = AT^{4}$,
- (c) $\overline{A} = S^1 A T^1$.

Proof. (a) Let us notice that the set S^1A is a left invariant subset in the bioperand $_{S}M_{_{T}}$. Indeed, $S(S^{1}A) = (SS^{1})A \subset S^{1}A$. Since every left invariant subset in the bioperand $_{e}M_{_{T}}$ containing A contains as well the subset S^1A , so $(\bar{A})^1 = S^1A$.

Analogously we can prove equalities (b) and (c).

If A is a non-empty subset of the fibre M of the bioperand $_S^M$ then \bar{A} $\left[\tilde{(A)}_1, \tilde{(A)}_r\right]$ is called a [left, right] invariant subset in the bioperand $_{\mathsf{S}}\mathsf{M}_{_{\mathsf{T}}}$ generated by the subset A.

Introducing such notions as an interior of a set, a boundary of a set, a derived set and using well-known theorems of the topology we can obtain many properties of [left, right) invariant subsets in the bioperand M_{+} .

For example we shall consider the interior IntA of a set A, the boundary FrA of a set A, the derived set A^d in the bioperand $_{\rm e}M^{\rm }$ with respect to the topology generated by the family D_i .

THEOREM 2. Let A be any subset of the fibre M of the bioperand $s_{\rm T}^{\rm M}$. Let the topology in the bioperand $s_{\rm T}^{\rm M}$ be generated by the *family*

Then the interior IntA *and the boundary* FrA *are the following subsets:*

(a) IntA =
$$
(x \in A : x \notin S(M \setminus A)),
$$

(b)
$$
Fra = (A \cap S(M \setminus A)) \cup (SA \cap (M \setminus A)).
$$

Proof, (a) From the definition of the interior of a set we have IntA = $M\setminus \overline{M\setminus A}$. Since $(\overline{M\setminus A})$ = S(M\A) u (M\A) the eqality IntA = $M\backslash S$ ($M\backslash A$) u ($M\backslash A$)] holds. Whence the equality (a) is satisfied.

(b) From the definition of the boundary of a set we have $FrA =$ (\overline{A}) \wedge $(\overline{M\setminus A})$. Hence FrA = $S^1A \wedge S^1(M\setminus A)$ = $(SA\cup A) \wedge (S(M\setminus A) \cup$ (M\A)) = (SA **a** S (M\A)) **u** (A **a** S(M\A)) u (SA **A** (M\A)). Let us notice that SA **a** S(M\A) **c** (A **a** S(M\A)) **u** (SA **a** (M\A)). Indeed, if $x \in SA \cap S(M\setminus A)$, then $x \in SA$ and $x \in S(M\setminus A)$. In the case when $x \in A$ we obtain that $x \in A \cap S(M\setminus A)$. In the case when $x \notin A$ we obtain that $x \in M \setminus A$, so $x \in SA \cap (M \setminus A)$. Hence $FrA = (A \cap S(M \setminus A)) \cup (SA \cap A)$ $(M\setminus A)$.

Therefore the equality (a) is satisfied.

The definition of an accumulation point of a set implies the following corollary.

COROLLARY 1. Let A be any subset of the fibre M of the *bioperand* M_{+} *A point* $x \in M$ *is the accumulation point of the subset* A *if and only if* $x = s$ *y for same elements* $s \in S$ *and* $y \in S$ $A\setminus\{x\}.$

The derived set A^d is a set of all accumulation points of the subset A.

73

DEFINITION 4. *A [left, right] invariant subset* N *in* the *bioperand* $_{c}$ M_T is called minimal, if there is no proper subset of *the set* N *being a [left, right] invariant subset in the bioperand* ϵ^{M} .

COROLLARY 2. *A subset* L is a *minimal le ft invariant subset in the bioperand* $_{\rm e}M_{\rm r}$ *if and only if* $({\bf x})$ ¹ = L *for any* $x \in L$.

An analogous property we have for minimal [right] subsets in the bioperand M_{+} .

THEOREM 3. *Let* L *be a minimal left invariant subset in the bioperand* $_{\rm c}M_{\rm T}$.

Then for any $t \in T$ *the subset Lt is a minimal left invariant subset* in the bioperand M_{+} .

Proof. Let $z \in L$ t then $z = x$ t, $x \in L$. From Corollary 2 we have $S^1x = L$. Therefore $(\overline{z})_1 = S^1z = S^1(x, t) = (S^1x)t = Lt$. Hence by Corollary 2 it follows that Lt is a minimal left invariant subset in the bioperand M.

THEOREM 4. *Let* ^M^ *be a bioperand, and N its minimal invariant subset containing at least one minimal le ft invariant subset in the bioperand* $_{\rm c}$ M_r.

Then the subset N is a union of all minimal left invariant subsets *in the bioperand* $_{\rm e}$ ^M_{*r}* contained in the subset N.</sub>

Proof. Let K be the union of all minimal left invariant subsets in the bioperand $_{c}M_{T}$ contained in the set N.

We shall prove that $K = N$. The subset K is evidently a left invariant subset in the bioperand $_{\rm c}M^{\rm }_{\rm r}$. We shall show that K is a right invariant subset in the bioperand $_{S}M_{T}$, i.e. KT c K. Let $z \in K$ T then $z = x$ t, where $x \in K$, $t \in T$. By the definition of the subset K it follows that there exists a minimal left invariant subset L c N such that $x \in L$. From Theorem 3 it follows that Lt is a minimal left invariant subset in the bioperand M_{+} . Furthermore,

74

Lt c N and so Lt c K. Whence $z = x$ t \in K. Therefore K is an invariant subset in the bioperand c_M contained in the subset N, i.e. $K = N$.

REFERENCES

- [1] Clifford A., Preston G., The Algebraic Theory of Semigroups, voi. 2, Mir Publishers, Moscow, 1972 (Russian).
- [2] Tabor J., *Algebraic objects over a small category,* Dîss. Math., 155 (1978).