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Dedicated to Professor Zenon Moszner with best wishes on his 

60-th birthday

Summary. An axiom system is presented that characterizes some 
class of metric spaces in which the concept of a line (not 
necessarily continuous) can be defined.

O. Introduction

O.O. It is well known that in some metric spaces one can

define the notion of a (straight-) line by means of the distance.

In particular if a metric space is complete, convex and externally

convex, then through each pair of points there passes at least one

line i.e. a set of points congruent with the one-dimensional

Euclidean metric space1. The uniqueness of the line passing through

two distinct points results from a supplementary condition, the
2

so called "two-triple property" .

Similarly, in another important class of metric spaces - 

called elliptic spaces, one defines (in another way) closed-lines
3

having analogical properties .

'll) p. 56 (th.21.1 and df.21.1); cf also [6] p.7. 

2[1] p.56-57 (df.21.2, th.21.3).

3[1] p.219-221.
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The purpose of this paper is to propose a still more general 

concept of the line in metric spaces.

I describe heree (Df.0.1) a class of spaces with such a 

distance function which permits to define the set of (straight-) 

lines.

At first 1 explain the meaning of the notions of the distance 

and of the (straight-) line.

0.1. By the distance function I understand a function with
4

values which need not be real numbers but belong to an 

arbitrary ordered group. Specifying, I assume that the distance 

function p in the space E satisfies the following condition

(MO) p:E" --- » M, where M £ G*, and G* is the nonnegative part

of a fixed totally ordered abelian group G=(G,+,0,ł).

Furthermore the function p must have all properties of the 

metric, i.e. the following theorem should be valid:

THEOREM 0.1. The distance function p satisfies condition (MO) and 

the five  following conditions:

(Ml) VxeE p(X,X) = 0,

(M2) V p(X,Y) i  0,X,Y€E r
(M3) VX,Y€E P(X*Y) = P<Y,X)’
(M4) VX,Y,Z€E P(X>Y) + P(Y*Z) Ł P{X*Z)*
(M5) VXY€E [P(X.Y)=0 = >  X=Y],

4Cf [6) p.30; [1) p.32.
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0.2. Lines are meant here as sets of points i.e. the set L of 

all (straight-) lines satisfies the condition

0.°) VX6L X S E.

Moreover, the line is understood, in conformity with the

Theory of Incidence Structures, as a block5 * * * 9 characterized by the
6 7common properties of closed and open lines, e.g. properties (1), 

(2), (3), (16) and either (18) or (20) from the l.§ of [7] (see 

also [6] p.8, and [ 1 ] th.21.1 on p.56, th.83.2 on p.221).

Therefore 1 require, that the following theorem should hold: 

THEOREM 0.2. The set o f lines L satisfies condition (LO) and
g

the three following conditions

(LI) V. 3 (X * Y a X,Y g A),AgL X,Y
(L2) V (X * Y =» 3"1 X,Y e A),X.YGE AGL
(L3) 3 (X G A).Agl xge

0.3. According to the suggestion of K. Menger, who proposed to
9

use the distance as the only primitive notion one usually defines

S12] p.l.

b[2] p.24; (7] p.7.

\ l ]  p.10.
We use here the usual logical symbols. The symbol 3  ̂ means 

that there exists exactly one x.

9See [1] p.33.
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open and closed lines by means of the distance function (using two 

different definitions). I combine both these notions of lines (Df. 

4.1, see also Df.2.1), taking as a point of departure their common 

metrical properties described in the following two theorems:

THEOREM 0.3. For each A e L and X.Y € A, such that X * Y, we

have

(Bl) V [p(X,Y) + p(Y,Z) = p(X,Z) —* Z 6 A],

(B2) V [p(X,Z) + p(Z,Y) = p(X,Y) — * Z € A],

(B3) 3 [p(X,Z) + p(Z,Y) =  p(X,Y) A X *  Z * Y].

+
THEOREM 0.4. There exists a set M~SG such that fo r  each AeL 

and AeA there exists a function <p such that

+■
(CO) <p is a bijection o f A onto M“,

(Cl) y>( A) = 0,

(C2) VX .X Ẑ€M~ '» 'V  - ‘  2 -  * '* ' >•1 2

+
In the case of open lines we have M =G, and for closed lines 

we have M~ = ]-m,m], where 0 < m < ». The set M from condition 

(MO), in both these cases, is equal to G+ and [0,m], respectively.

0.4. Theorems 0.1-0.4 are valid in the affine space as well as 

in the projective space; they are valid in the Euclidean geometry 

and in the non-Euclidean geometries (hyperbolic and elliptic), and 

in the Minkowski space i.e., in the affine space with Minkowski’s 
metric.
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For all these metric spaces one assumes usually that G is the 

additive group of real numbers and p is continuous function. This 

last condition is called "completeness" of metric space10. In this 

paper I replace this condition by another, weaker, condition, which 

I propose to call "semi-completeness" of space E and which is 

expressed in the following11

THEOREM 0.5. For every X,Y e E and x,y e M, i f  the inequali

ties

I x — y I — p(X, Y) s x + y 

hold, then there exists a point Z such that

p(X,Z) = x and p(Y,Z) = y.

This theorem excludes one-dimensional spaces from our 

considerations.

0.5. I shall define the distance-line space as a structure 

(E,p) which satisfies the axioms of the metric space i.e. Theorem 

0.1, and which satisfies also the "semi-completeness" condition 

(i.e. Theorem 0.5) and some other coditions that permit to define 

the notion of the line verifying Theorems 0.2-04.

DEFINITION 0.1. For a nonempty set E, the structure (E,p) is 

said to be a distance-line space (DL-space) i f f  there exists an 

abelian totally ordered group

G = (G, +,0,ł),

10ll] def.10.1 on p.28.

UCf [3] p.653 (A2 and A3).
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(DLO) p:E2 --- ¥ M, where M = [0,m] and either 0 * m e G+ =

{xeG:xLO> or m = oo i.e. M =G+. The set M =  ]0,m[ * 0.O

(DL1) Let12 13 14

X,Y € E, (0.1)

x,y 6 M. (0.2)

13There exists a Z such that

XZ = x and YZ = y (0.3)

i f f  I x - y I i  XY s x + y.

(DL2) I f  (0.1) and (0.2) hold X * Y, XY + x = y,

then there exists at most one Z satisfying condition 

(0.3).

(DL3) For each points X,Y,Z,U i f  Y * Z, XY = ZU, YU > |XY - XU| 

and XY + YZ = XZ & M , then the following equivalenceO
holds: (XU = YZ <==* YU * M ).o

1. Consequences of (DLO) and (DL1)

We shall show that from the single axiom (DL1) and conditions 

(DLO), it results

THEOREM 1.0. The structure (E,p) with (DL0)-(DL3) is a pseudo-

14-metric space i.e. it sa tisfies axioms (M1)-(M4).

and a subset M o f  G such that the following axioms hold:

12Compare [4] Ax.la) on p.283.

13Instead of p(X,Y), we write XY.

14[5] p. 169.
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Proof. (M2) results directly from (DLO).

Let XX=x and hence x^O. Therefore, we have | x-01sXX^x+O, and 

hence, by (DL1), there exists a point Z such that XZ=x and XZ=0, 

which implies x=0 i.e. axiom (Ml).

Now let YX=y. Putting Z=X, we obtain from (DL1):

I XX-y 1 sXY=sXX+y. Thus, by (M2) and (Ml), we have y=sXY=>y i.e. 

XY=y=YX, and hence (M3) holds too.

Finally, (M4) results directly from (DL1) and (M3).«

THEOREM 1.1. |XZ - YZ| s XY.

This theorem results directly from (DL1).«

THEOREM 1.2. V V 3 XY = z.X€E Z6M y€E
To prove this, we put in (DL1) Y=X and we obtain | z-z | sXXsz+z,

what implies the existence of Y.«

We define the betweenness relation of three points as follows:

DEFINITION 1.1. We said that the point Y lies between the 

points X and Z and we write /3(X,Y,Z) or X|Y|Z i f f  XY+YZ = XZ. 

Directly from this definition we obtain 

THEOREM 1.3. X|Y|Z <=* Z|Y|X,

THEOREM 1.4. X|X|Y.

It is easy to prove

THEOREM 1.5. I f  XY =s x e M, then there exists a Z such that 

XIYIZ and XZ = x.

Proof. We put y=x-XY and we obtain Osx-y=XY^x+y, and hence the 

existence of Z results from (DL1).«

Similarly we prove

THEOREM 1.6. I f  O * x s XY, then there exists a Z such that

XIZ IY and XZ = x.

Proof. We put y=XY-x and we obtain | x-y I sXY=x+y, and hence the 

existence of Z results from (DL1).«
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To prove some other properties of ß it is useful to define a 

relation characterizing the order of 4 points on a line:

DEFINITION 1.2. X|Y|Z|U w ,  XY + YZ + ZU = XU.

Directly from this definition we get:

THEOREM 1.7. X|Y|Z|U =* U|Z|Y|X,

THEOREM 1.8. X|Y|Z a  X|Z|U => X|Y|Z|U.

The implication converse to the latter is also true:

THEOREM 1.9. X|Y|Z|U => X|Y|Z A X|Z|U.

Proof. From the hypothesis we obtain (1)) XY + YZ + ZU = XU, 

and from (M4) the inequalities: (2) XZ+ZÛ XU and (3) XY+YZlXZ. From 

(3) and (1) we obtain XU=(XY+YZ)+ZUï XZ+ZU, and hence, by (2), the 

equality (4) XZ+ZU=XU. From (4) and (1) we infer that (5) XZ=XY+YZ. 

Equalities (4) and (5) give us the thesis.«

Now we shall define two different notions of the half-line 

(which coincide in the case m = oo). To define the second one it is 

more convenient to use the set

M =  M u <0>.i p

DEFINITION 1.3. I f

XY € M , (1.1)
o

then

a) the set XŸ* =  <Z 6 E : X|Z|Y v X|Y|Z> is called a closed 
half-line XY,

b) the seet XYC =  (Z e XY > : XZ € M̂) is called an open ha lf- 
-line XY.

Directly from this definition we have
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THEOREM 1.10. I f  (1.1) holds, then

a) X,Y e XŸ^S XŸ*.

b) Z e XŸ* «-=» |XZ - XY| = YZ.

Using (DL2) we shall prove, in section 2, two theorems (Th.2.3 

and Th.2.8), which can be proved without (DL2) but only in the fol

lowing restricted form:

THEOREM 1.11. (Cf Th.2.3) I f  (1.1) holds and x e M, then there 

exists at least one Z e XY > such that XZ = x.

Proof. For two cases: x^XY and x<XY, it suffices to use 

Theorems 1.5 and 1.6 respectively.«

THEOREM 1.12. (Cf Th.2.8) V 3 y > x.
X€M y6M

o * 1

Proof. For m finite we can put y=m, for m=», y=x+x.«

THEOREM 1.13. 3 x+x € M.
X6M

o
Proof. The existence of yeM results from (DLO). If 2ygM, thenO

M=[0,m], where m<oo, and in this case it suffices to put x=m-y.«

2. Consequences of (DLO)-(DL2)

K. Menger has stressed the importance of the so called 

"two-triple property"15 in the construction of an Euclidean line in 

distance geometries, observing that this property excludes the 

existence of a "fourchette" [M7]. We adopt here a certain form of 

the two-triple property as a new axiom: (DL2). This axiom together 

with (DL1) implies not only the two-triple property (Th.2.7) but

1S[6] p.8; [1] p.56.
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also Menger's16 "absence de lentilles" (Th.2.2), and the unicity of 

point on a half-line (Th.2.3).
Furthermore axiom (DL2) permits us to show that the set Mq has 

neither maximal nor minimal elements (Th.2.8) and permits also to 

prove that DL-space is a metric space (Th.2.0).

A direct corollary from (DL2) is 

COROLLARY 2.1. I f

X * Y, (2.1)

XZ = XZ , (2.2)
1 2

XIYIZ fo r  k=l,2, (2.3)
k

then Z = Z .I 2
THEOREM 2.0. The DL-space is a metric space.

Proof. In consequence of Th. 1.0, only condition (M5) is to be 

checked. Let (1) XY=0 and (2) xeM . By Th.1.2. there is a Z suchO 1
that (3) XZ =x. Thus |x-x|<XZ<x+x and hence, by (DL1), there

exists a Z such that (4) XZ =x and (5) Z Z =x.
2 2 1 2

From (DL1) it follows that |YX-Z X| ï YZ sYX+Z X for k=l,2, and
k k k

hence, by (1), (3), (4), we obtain x^YZ sx, and finally (6) YZ =x.
k k

From (1) we have XY+x=x, and hence from Cor.2.1 it results that if 

X*Y, then there exists at most one Z such that XZ =YZ =x. There-
k k k

fore, from (3), (4), (6), we obtain Z =Z .̂ But from (2),(5) we get 

Z*Z^, and hence the supposition X*Y is false.«

Theorem 2.0 implies

THEOREM 2.1. / /  X|Y|X, then X = Y.

l bl 6]  p. 7 - 8 .

86



Proof. By the definition we obtain XY+YX=XX, i.e. 2.XY=0. 

Since G is an ordered group, it has no cyclic elements17, and we 

obtain the equality XY=0, i.e., by (M5), X=Y.«

THEOREM 2.2. I f  (2.2) holds,

XY e Mj, (2.4)

X|Z IY fo r  k=l,2, (2.5)Ir

then Z = Z .l 2

Proof. By Th.1.12 there is a ueM such that u>XY. By Th.1.5,

there exists a point U such that XU=u and X | Y | U, and hence

X|Z IYIU. Therefore, UZ =u-XZ =u-XZ =UZ , and also U|Y|Z for k 1 1 2  2 k
k=l,2. Finally, by Cor.2.1, we obtain Z =Z .«

THEOREM 2.3. I f

XY e M , (2.6)O

then fo r  every x e M there exists exactly one point Z such that 

Z e XY* and

XZ = x, (2.7)

Proof. We get the existence of Z from Th.1.11. The uniqueness, 

for the cases x<XY and x^XY, results from Th.2.2 and Cor. 2.1, re

spectively.«

Directly from this theorem we obtain

17Cf [8] th.7.4.1 on p.130.
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exists exactly one point Z such that (2.7) and Z € XY hold. 

THEOREM 2.4. I f  (2.6) holds,

XZ £ XZ,  (2.8)
1 2

Z e XY* /o r  k=l,2, (2.9)
k

then either X|Y|ZJZ2 or X|ZJY|Z2 or XIZJZ^Y and hence always

X|Z IZ .
1 2

To prove this theorem, we can use two following lemmas:

LEMMA 2.1. Relations (2.1), (2.3), (2.8), imply XIYIZJZ .

LEMMA 2.2. Relations (2.4), (2.5), (2.8), imply X|Z |Z |Y.

Proof o f  Lem.2.1. From Th.1.6 it results, that there exists

such a Z , that Y|Z |Z and YZ =YZ =XZ-XY. Therefore we have
o o 2 o i l

XIYIZ IZ , and hence X | Y | Z . On the other hand XZ =XY+YZ =XY+YZ =
o 2 o o o 1

=XZ , and hence, by Cor. 2.1, we obtain Z =Z , and finally
1 o i

XIYIZ |Z .■1 2
Proof o f Lem.2.2. From Th.1.6 it results, that there exists

such a Z , that X | Z | Z and XZ =XZ . Therefore we have X | Z | Z | Y,
0 o 2 o 1 o 2

and hence X|Z |Y. Thus, by Th.2.2, we obtain Z =Z , and finally
O o '

X|Z IZ IY.«
1 2

Proof o f  Th.2.4. If XŶ XẐ , we obtain the thesis by Lem.2.1.

If XZ^XYsXZ , then, by Th.1.8, X|Z |Y|Z , and hence X|Z |Z .
1 2 1 2  1 2

If XZ^XY, then the thesis results from Lem.2.2.«

Directly from Lem.2.1 we obtain

COROLLARY 2.3. I f  (2.1), (2.3) and Y*Z hold, then Z eYZ^
1 2 1

THEOREM 2.5. I f

XY, e M fo r  k=l,2, (2.10)
k o

y2 € XŸ ,̂ (2.11)

then XY* = XY*
1 2

COROLLARY 2.2. I f  (2.6) holds, then for every x € there
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Proof. From (2.10) we infer that Y^XTT «—» IX|Y |Y vX|YJY ]

«==» Y eXY \  Therefore it suffices to prove that XY >SXY >. 
i 2 ____  K 1 2

In fact, if ZeXY*, then from (2.11) and Th.2.4, we have

either X|Z|Y or X|Y |Z, and hence ZeXŸ^.m 
2 2 2

COROLLARY 2.4. From XY e M and Y *X it results also that1 o 2

XŸC=XŸC.
X 2

THEOREM 2.6. I f  (2.6) and (2.9) hold, then ZZ =|XZ -XZ |.
1 2  1 2

Proof. Omitting the trivial cases: X=Zj, X=Z2> Z=Z^, we can 

assume that one from distances XẐ , for example XZ^ belongs to M . 

Therefore, by Th.2.5 we obtain XY *=XZ> and hence the thesis results 

from Th.l.lOb).«

THEOREM 2.7. I f  X|Y|Z, Y|Z|U, Y*Z and XZ+ZU e M, then X|Y|Z|U. 

Proof. From Th.1.5, it results the existence of U’ such that 

X|Z|U’ and XU’=XZ+ZU. Thus ZU’=ZU and X|Y|Z|U’. Therefore Y|Z|U’ 

i.e. YU’=YZ+ZU’ and hence YU’=YU. Finally, by Cor. 2.1, we obtain 

U=U\ i.e. XIYIZIU.«

Now we shall prove

THEOREM 2.8. The set M has neither the minimal element, norO
the maximal element.

To prove it we need the following lemmas:

LEMMA 2.3. I f

x € M (2.12)
o

and

2x e M , (2.13)i

then

3 0 < y < x. (2.14)
y

LEMMA 2.4. I f  2a = m, then there exists an x e M \{a).O
LEMMA 2.5. Hypothesis (2.12) implies (2.14).
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Proof o f Lem.2.3. By Th.1.2 and Th.1.6 there are points 

X,Y,Z such that XZ=2x, X|Y|Z and XY=x. Thus, we have YZ=x and 

|x-x|<XY<x+x. The existence of a point U such that (Fig.l)

u

(1) XU = YU = x results from (DL1), and from (M4) we obtain

UZsUY+YZ=2x. Therefore it is easy to see that (2) UZ < 2x, because 

the equality UZ=2x implies Z|Y|U and hence, by Cor.2.1, X=U, 

contrary to (1). The supposition UZ=x leads to a contradiction too, 

because in this case we obtain X|U|Z, and by Th.2.2, U=Y, contrary 

to (1). Thus (3) UX*x. Let us suppos® that (2.14) does not hold.

Therefore UZ^x, and from (2). (3) we obtain x<UZ<2x. In this case, 

putting y=UZ-x we obtain 0<y<x, and hence (2.14) holds.»

Proof o f Lem.2.4. Suppose the lemma is false i.e. M ={a>, andO
hence (1) M={0,a,2a>. The existence of X,Y such that (2) XY=a re

sults from Th.1.2. Therefore we have |a-a|<XY<a+a and 

12a-2a I <XY<2a+2a, and hence there exist Z and U such that 

(3) XZ=YZ=a, (4) XU=YU=2a. By Th.1.6 there exists a V such, that

(5) UIVIY and (6) UV=a, and hence (7) YV=a (Fig. 2). From (4) and

(6) , we obtain (8) V*X.
y

Fig. 2 

x

Now we shall prove successively that:

(9) XV=2a, (10) VIYIX, (11) Z*U,V, (12) ZV=a, (13) ZU=a.
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In fact, the supposition XV*2a implies, by (1) and (8), that 

XV=a and hence U|V|X, what implies (by (5) and Cor. 2.1) the 

equality X=Y, contrary to (2). Thus (9) holds.

From (9), (7) and (2) we obtain (10), and from (9), (3) and

(4) we obtain (11).

The supposition ZV*a implies, by (1) and (11), that ZV=2a, and 

hence V|Y|Z, what, together with (10), implies (by Cor.2.1) the 

equality X=Z, contrary to (3). Thus (12) holds.

Finally, the supposition ZU*a implies, by (1) and (11), that 

ZU=2a, and hence U|V|Z, what implies (by (5) and Cor.2.1) the 

equality Z=Y, contrary to (3). Thus (13) holds.

From (3), (4), (13) we infer that U|Z|X and U|Z|Y, and hence 

(by Cor.2.1) X=Y, contrary to (2).»

Proof o f Lem.2.5.

a) If 2x€M , then the thesis results from Lem.2.3.i
b) If 2xéM, i.e. 2x>m, it suffices to put y=m-x to obtain 

(2.14).

c) Assume now that 2x=m. From Lem.2.2 it results that there

exists zeM such that z*x. If z<x, we put y=z, if z>x, we putO
y=m-z.B

Proof o f Th.2.8.

a) From Lem.2.5 it results that M has not any minimalO
element.

b) If M=G+, then, G being a totally ordered group, M has not 

any maximal element.

If M*G+ i.e. M=[0,ml where 0<m<co, then for every x belonging 

to M we put x’=m-x. By Lem.2.5 there is a y’eM such that 0<y’<x\O O
Putting y=m-y’ we obtain x<y<m, and hence the maximal element of 

does not exist.«

Directly from Th. 2.8 and Th.1.6 we obtain
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COROLLARY 2.5. I f  X * Y, then there exists such a Z, that 

X|Z|Y and X * Z * Y.

Let us assume now that the following three conditions hold

(Fig.3):

A

7T*

Fig. 3

AIBIC, (2.15)

AC e M ,i (2.16)

B * C. (2.17)

If we restrict ourselves to the case m=oo (in which the lines 

are open), then conditions (2.15)-(2.17) imply that the half-line 

AC ’ is equal to the set of points X which satisfy the condition

A IX I B v X e BC*. (2.18)

In the general case, this equality does not hold and we have

only

THEOREM 2.9. I f  (2.15)-(2.17), then for every X such that X e 

AC > we have (2.18).

Proof. Neglecting the trivial case, we can assume that A*B. In 

this case AC *=AB* (by Th.2.5). Therefore each point belonging to 

AC* satisfies one from the following relations either (a) A|X|B or 

(b) A I BIX.

It is obvious that for (a) the thesis holds, and for (b), by 

Lem.2.1, we obtain either B|C1X or B|X|C and finally XeBC \ b
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Now we shall study the concept of line. In the case m=oo, the 

line by two different points B,C can be defined as the unior>

BÖT* u CB~*. (2.19)

In the general case however, there exist points on the line passing 

by B and C, which do not belong to the set (2.19). One can prove 

only the following

THEOREM 2.10. I f  (2.15M2.17) hold and A*B (Fig.3), then 

BC~\j CB*. (2.20)

Proof. Let XeAB \  From Th.2.5 and Th.2.9 we obtain (2.18), and 

if A|X|B, then A | X 1 B|C, and hence XeCB \ b

COROLLARY 2.6. I f  (2.17), ABeM and CeAB  ̂ then (2.20) holds.O
In the general case we can define lines as follows 

DEFINITION 2.1. I f  A * B, then

1 ( A, B ) =  {X e E: 3JA|Y|B A a * Y * B A x c  ŸXC u Y^l ) .

Directly form this definition we obtain 

THEOREM 2.11. I f  A * B, then

a) 1 ( A, B ) = 1(B,A).

b) A,B e 1(A,B),

c) i f  AI XI B, then X e 1(A,B).

Basing on Cor. 2.5 and Th. 2.9 one proves 

THEOREM 2.12. I f  AB e M , then ÄB^S 1(A,B).O
One can also prove that hypotheses (2.15)-(2.17) imply the 

inclusion 1(A,B) S 1(A,C), but not the converse one. To obtain the 

latter we must add a new axiom, e.g. (DL3).
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3. Consequences of (DLO)-(DL3)

The last axiom of the DL-space: (DL3) is superfluous if m = to 

i.e. if M = G+, because its hypotheses are never satisfied. In 

other words, all the theorems below can be proved only under axioms 

(DLI), (DL2) and

(DLO’) p:E2 --- > M = G+ = {x e G:x ł 0} and M = G+\<0>.

1(B,C) can be defined as the set (2.19).

However, if we assume that m can be finite, then we need the 

supplementary axiom: (DL3).

Directly from this axiom we obtain (Fig. 4).

O

In this case the notions: ÀB and AB are equivalent, and the line

Fig. 4

COROLLARY 3.1. I f

XZ = m (i.e. XZ t  M ), (3.1)

(3.2)Y * Z,
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XIYI Z, (3.3)

XY = ZU, (3.4)

Y|Z|U, (3.5)

then

XU = YZ (3.6)

and

X|U|Z. (3.7)

Proof. Omitting the trivial case (Fig. 4b) we can assume that 

(1) X * Y (Fig.4a). From (3.3M3.5) we obtain (2) XZ = YU, and 

hence (by (3.1)), (3) YU = m i  M . On the other hand, from (3.1)-O
-(3.3) and (1) we obtain 0 * XY * m and hence (4) YU = m > |XY - 

XU|. From (3.1)—(3.4), (3) and (4) we get, by (DL3), thesis (3.6). 

From (2), (3.6) and (3.5) we obtain (3.7).«

COROLLARY 3.2. I f  (3.1M3.4), and (3.6), then either X|U|Y or 

YIUIZ or Y|Z|U.

Proof. From (3.1), (3.3), (3.4) and (3.6) we have 

(1) YZ + ZU = m. By (DL3) we obtain from hypotheses the disjunc

tion: either (a) YU i  M or (b) YU s |XY-XU|.

In the case (a) (Fig.5a), omitting the trivial case: Y = U, we 

obtain YU = m and hence, from (1), the thesis Y|Z|U.

In the case (b) (Fig.5b), Th.1.1 yields YU = |XY-XU|. Omitting

the trivial case: X = Y i.e. Z = U, we obtain from Th.l.lOb the 

condition U e XY* Taking into account (3.3) and (3.1), we arrive by
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Fig. 5

Th.2.4, at the following disjunction: either X|Y|U|Z or X|U|Y|Z or 

X|U|Z|Y, which implies the thesis: either X|U|Y or Y|U|Z.«

THEOREM 3.1. Conditions (3.1M3.3) and (3.5) imply (3.7).

Proof. The existence of a point V such that Y|U|V and YV = m 

results from Th.1.5 (Fig.6). Therefore we have (1) Y|Z|U|V, and 

hence Y|Z|V and ZV = m - YZ = XZ - YZ = XY. Finally, by Cor.3.1, we 

have X|.V|Z, and hence (3.7) results from (1). ■

THEOREM 3.2. I f  (3.2), (3.3) and (3.5) hold, then there exists  

such a V that (Fig.7)
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x|z|v, (3.8)

Z|V|U, (3.9)

V|U|X. (3.10)

Proof. If X|Z|U holds (Fig.7a), then it suffices to put V = U. 

Let us assume now that X|Z|U does not hold (Fig.7b), and hence, by 

Th.2.7, XZ + ZU M i.e. we have (1) m < XZ + ZU. From (1) we see 

that m < œ and hence there exists such a V that we have (3.8) and 

(2) XV = m. Therefore X|Y|Z|V, and hence (3) Y|Z|V and (4) X|Y|V 

hold.

On the other hand (1), (3,3) and (3.5) imply XY + YU > m, and 

hence YU > m - XY = XV - XY = YV. Therefore (2) and (3.5) imply, by 

Lem. 2.1, Y|Z|V|U, and hence (5) Y|V|U, (6) Y * V and (3.9) hold.

Finally, by Th. 3.1, we obtain from (2),, (4)-(6), thesis

(3.10). ■

We shall prove yet

x

Fig. 7
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THEOREM 3.3. I f  AjB|A2 and * B for k=1,2, then

1(A ,A ) = BT* v BÄ*.
1 2  1 2
To prove it we need the following lemmas:

LEMMA 3.1. I f  (Fig.8)

AJBJBJA^ (3.11)

A * B, for k=1,2, (3.12)k k

X e FÄ^, (3.13)

then X e B A * u B A >.
2 1 2 2

Fig. 8

LEMMA 3.2. I f  (Fig.9)

A,Az « M] (i.e. A}Az = m), (3.14)

then

X e 1(At,A2) (3.15)
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i f  and only i f

A IXIA . (3.16)11 1 2

LEMMA 3.3. I f  (3.14), (3.16) hold ana

A |C|A , (3.17)1 1 *2

A * C fo r  k=1,2, (3.18)k

then

X 6 CÄT* u CÄ*. (3.19)l 2

Proof o f  Lem.3.1. Let us assume that X £ E^A  ̂ (Fig.8). Therefore 

from (3.13) we obtain * B , and hence, by (3.11), neither

B IB |X (1)2' l 1

nor
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A I XIB hold.i 1 1 l
(2 )

From (3.13) and (2) we infer that (3) BjAjX. From (3.11), (3.12)

and (3) we infer by means of Th.3.2 (Fig.8 and Fig.7b), that there

exists such a Y that (4) XlBjY, (5) BjY|B2 and (6) Y |BjX hold.

From (4) and (1) we obtain (7) Y * B , and (3.11) and (5) yield

Y|B IA what, by (6), (7), (3.12) and Cor.2.3, implies the thesis
'  2 '  2

X e B- ^  £ B T*»
2 2 2 2

Proof o f  Lem.3.2. The assumption (3.16) implies (3.15), by

Th.2.11c. Let us assume that (3.15) holds, and hence (by the

definition) there exists such a Y that (1) A IYIA , (2) Y * A for
i 1 1 2 k

k=l,2 and either X 6 YA > or X € YA \
1 2

It suffices to study only one of these cases. Let us assume

that X e YA ,̂ i.e. either Y|X|A2 or Y|A2|X. In the first case (Fig. 

9a) from Th.1.8 we obtain A IYIXIA and hence (3.16) holds. In thei 1 1 1 2
other (Fig.9b) thesis (3.16) results from (1), (2) and (3.14) by

Th.3.1.«

Proof o f Lem 3.3. Omitting the trivial case we assume that

X * A for k=l,2, and hence there exists a D such that (1) A D=A C

and D e Â X-* (Fig. 10). On the other hand, from (3.16) we obtain

A^e A2X* and hence, by Th.2.4, taking into account (3.14), we have

either (2a) A2|X |d (Ai or (2b) A |D|X|A and finally (3) A2|D|Af

From (3), (1) and (3.17) we obtain (4) A D = A C. In the case (2a)
l 2

we put A = A , B = A , and in the case (2b) we put A = A , B = A .
2 1 1 2

In both cases we obtain (5) A J X | D | B. Conditions (3.14), (3.18),

(3.17), (1), (4), give us the hypotheses of Cor.3.2: AB = m, C * A, 

A|C|B, AC = BD. AD = BC (Fig.lOa,b,c), and hence we get either (6a) 

B|D|C or (6b) C|D|A or (6c) C|A|D. Taking into account condition

(5), we obtain the following results:
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In the case (6a) from Lem. 2.1 it results that either B | C | X | A or 

BIXICI A, and hence (7) [C| X | A v C|X|B].

Fig. 10

In the case (6b) from Th.1.8 it results that C | D j X | A and hence

C|X| A ( 8 )

In the case (6c) from Th.1.8 it results that C|A|X|D and hence

C j AIX (9)

Each of conditions (7)—(9) implies thesis (3.19).«

Proof o f  Th.3.3. The inclusion BA* u BA  ̂ £ KA^A^ results

directly from Df.2.1.

Let us assume that (1) X e 1(A A ).1 2
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If (3.14) holds, then by Lem.3.2 we obtain (3.16), and Lem.3.3 

implies (2) X e BÂ  u BA2*
Let us assume now that (3.14) does not hold, i.e. Â A2 € M̂. 

From Df .2.1 it results, that there exists such a C that 

(3.17)—(3.19) hold, and Lem.2.2 implies either

(a) AjB|C|A2 or (b) AjC|B|A2.

In the case (a) if X e BA>, then (2) results from Lem.3.1; if

X e BA \  then (2) results from Th. 2.9.
2

In a similar manner we obtain (2) in the case (b).«

To prove that there is the unique line passing through two

distinct points, we need the two lemmas:

LEMMA 3.4. I f  (3.17) and A * C, then 1(A ,A ) = 1(A ,C).1 1 2  1
Proof. Let D be such a point that AjD|C|A2 and A; * D * C. From 

Th.3.3 1(A ,A ) = DA"* u DÄ"* and 1(A ,C) = DÄ"* u DC*. Taking into
1 2 i___  2___ i  1

account the equality DAj = DC, we obtain the thesis. ■

LEMMA 3.5. I f  B * A * C and C e 1(A,B), then 1{A,B) = 1(A,C). 

Proof. By Definition 2.1, there exists such a Y that (1) A|Y|B,

(2) A * Y * B, (3) C € YA ) v Yb ? From Lem.3.4 we obtain (4) 

1(A,B) = 1(A,Y).

If A|C|B, then the thesis results from Lem.3.4; otherwise (1) 

and (3) imply that either Y|A|C or Y|B|C holds.

In the case where Y|A|C we have from Lem.3.4 that 

K A, Y) = 1(Y,C) = 1(A,C) and the thesis results from (4).

In the case where Y|B|C it results from (1) and Th.3.2 that 

there exists such a point D that A|B|D and D|C|A, and hence, by 

Lem.3.4, 1(A,B) = 1(A,D) = 1(A,C).»

THEOREM 3.4. I f  A * B, C * D and C,D e 1(A,B), then 1(C,D) = 

1(A,B).
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Proof. If D = A, then the thesis results directly from Lem.3.5. 

If D * A, then from Lem.3.5 we obtain successively 1(A,B) = 1(A,D) 

= 1(C,D). ■

4.Properties of lines in DL-space

We have started this paper with the description of properties 

which should be satisfied by a distance and lines in the DL-space 

i.e. with Theorems 0.1-0.5. Now we shall prove that all these theo

rems actually result from our system of axioms.

It is obvious that Th.0.5, results directly from axiom (DL.l). 

Theorem 0.1 was proved in section 2, as Theorem 2.0.

The set of lines L is defined as follows

DEFINITION 4.1. L =  t t  S E: ]  [A * B A A = 1(A,B)]>.
A, B€E

Condition (LI) (from Th.0.2) results directly from this

definition and from Th.2.11b.

Condition (L2) results from Definitions 2.1, 4.1 and from

Th.2.11b and Th. 3.4.

To prove (L3) it suffices to use 

LEMMA 4.1. I f  (Fig. 11)

B

B B = a, o 1

AB = a e Mk 0 fo r  A=0,l,2, (4.1)

(4.2)
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B IAIB ,l 1 1 2
(4.3)

then.

B « 1(B ,B ) .  (4.4)0 1 2

Proof. To prove that the assumption Bq € KB̂ .B̂ ) leads to a 

contradiction, it suffices (by Th.3.3) to investigate the two cases:

a) Bq e AB \  Then (by Th.2.3), Bq = B  ̂ contrary to (4.2).

b) B € AB \  Then (by Th. 2.3), B = B . Therefore from (4.1)
0 2 0 2

and (4.3) it results B ^  = 2a, contrary to (4.2). ■

Proof o f (L3). Let X e L. Th.1.13 yields the existence of an 

a € M such that

a * 0 and 2a € M. (4.5)

We fix on X two points: B , B such that B B = 2a and also two 

other points A, Bq which satisfy the hypotheses of Lem. 4.1, and 

hence we obtain (4.4).«

To prove Th. 0.3 it suffices to see that (Bl) results directly 

from Th.2.12, (B2) - from Th.2.11c, and (B3) - from Cor. 2.5 and 

from Th. 2.11c.

To prove Th.0.4, we need two lemmas.

LEMMA 4.2. I f  (4.3) holds,

A * Bk fo r  k=l,2, (4.6)

X e ÄB*k k fo r k=1,2, (4.7)
AX + AX 1 2 e M, (4.8)

then X IAIX . 11 1 2
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Proof. Omitting trivial cases we can assume that for k=1,2

A * X , and hence AX € M . Thus there exist: (1) z € M such that k k o o
(2) z s AX^ (3) z 3 AB^ (4) z + AXz e M, and a point Z such that

(5) Z € AB * and (6) AZ= z. From (3), (5) and (4.3) we obtain

B jZ |A |B 2> and hence (7) Z|A|Bz.

One the other hand, from (4.7) we obtain two possibilities:

either (a) A|X |B or (b) A|B |X . In the case (a) from (7) we 

obtain (8) Z|A|X , by Th.1.8. In the case (b) from (7), (4), (6) 

and (4.6), we obtain (8), by Th. 2.7.

From (5) and (4.7) we infer successively that AZ *= AB *, Xt e Kz] 

and finally, by (2), XjZ|A. Therefore, from (4.8) and (8) we 

obtain, by Th.2.7, the thesis. ■

LEMMA 4.3. I f  (4.3) and (4.1) hold for  k=l,2 and I f

X e AB"* fo r  k=1,2, (4.9)k

then AX «5 M .o
Proof, a) Let AX =s a. Therefore from (4.9) we obtain for k=l,2:

A|X|B , hence X|A|X, and finally, by Th.2.1. X = A i.e. AX.É Mq.

b) Now let AX > a. In this case from (4.9) we obtain for

k=l,2: A|Bk|X, since, by (4.1) and (4.3), B^nd are distinct,

the thesis results from (4.3) and Th.2.2. ■
+

Now let us define M as follows

DEFINITION 4.2. M1 — <x € G: x € M v - x e M >.o
Proof o f  Th.0.4. On a fixed line \  we fix apart from A, a point

B , such that AB = a, where (4.5) holds. Next we fix a new point1 i
B , such that AB * a and (4.3) holds.

2 2
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It is easy to see that

X = 1(Bi ,B2) = ÄB^ u ÄB^,

+
Now we define the function <p:A --- > M as follows

(4.10)

*>(X) —
AX, if X € ÄB^ 

-AX, if X « XËT*i

(4.11)

From (4.10) and (4.11) conditions (CO) and (Cl) result by Th.2.3

and Lem.4.3.

To prove (C2) we must examinate the two cases:

a) If X , X belong both to the same half-line AB), then1 2 s k
|y(X )-ç>(X2)| = |AX[ - AX2| , and hence the thesis results directly

from Th.2.6.

b) If X 6 AB* and X € AB * (where i*k), then |^(X )-̂ >(X )| =i i k 2 1 l 2 1
^(X() - ?>(Xk) = AXt + AX2> and if this value belongs to M, then (by

Lem.4.2) we obtain AX + AX = XX , i.e. condition (C2) holds too.»1 2 12
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