
ROMAN GER

Superstability is not natural

Dedicated to Professor Zenon Moszner with best wishes on his 

60-th birthday

Let (S,+) be an arbitrary semigroup and let f map S into the 

field C of all complex numbers. Assume that there exists a nonnega

tive number e such that

Then f is either bounded or exponential (see J.A. Baker, J. Law

rence and F. Zorzitto [3], J.A. Baker [2] and M. Kuczma [8)). Such 

a behaviour of approximate homomorphisms (superstability phenome

non) may seem somewhat shocking all the more so as in the additive 

case inequality

admits pretty rich family of unbounded nonhomommorphic solutions;

|f(x+y) - f(x) f(y)|s e for x, y € S. (1)

|f(x+y) - f(x) - (y) I s e, x.y € S, (2 )

indeed, any function of the form f = a + r where a: S --- » C is a

nontrivial additive function

> 0) is quite arbitrary, yields a solution of (2).
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Our aim is to show that the superstability phenomenon is 

caused by the fact that problem (1) is ill-posed in a sense. Such 

an observation was made by M. Taylor (1987, oral communication; see 

also R. Ger [6]). Namely, contrary to (2), posing problem (1) one 

disregards the natural group structure in C which in this case 

should obviously be the multiplicative group (C*. • ) of all nonzero 

complex numbers. Since we are looking for functions which are near 

to exponential mappings after the example of (2) we should rather 

pose the problem in the following way:

, f ( x+y)
lf (x )f(y ) l| s c x,y € S, (3)

for functions f: S — > C*. This apparently diminishes the class of 

functions considered since we have eliminated their possible zero 

values. However such a restriction is inessential indeed as the 

following proposition shows.

PROPOSITION 1. Let (S,+) be a semigroup and let f: S --- » C be

an unbounded solution o f inequality (1) such that 0 e f(S). Then 

there exists a proper subsemigroup (Sq, • ) o f the semigroup (S,+) 

and a function g: S — » C* such that

(S + (S\Sq)) u ((S\Sq) + S) c S\Sq, 

|g(x+y) - g(x) g(y) I £ c , x,y e Sq,

and

g(x) for x e S 
f(x) = ■ °

0 for x e S\So

(4)

(5)
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Proof. Put Z := {x € S: f(x) = 0} and Sq:= S\Z. Since 0 € f(S) 

and f is unbounded we infer that both Z and Sq are nonempty. Fix a 

z € Z and take an s 6 S; then c a |f(s+z) - f(s) f(z)| = |f(s+z)| 

whence |T|g | -  e- Consequently, for any x e S and z € Z one has

c a |f(x+y+z) - f(x) f(y+z)| a | f(x) | • | f(y+z) | - |f(x+y+z)|

If(x)I • |f(y+z)| i  e + |f(x+y+z)|

for all x,y e S and z € Z. But f is unbounded; therefore f(y+z) = 0

for all y e S and z e Z. Thus S + (S\S ) = S + Z c Z = S\S . Analo-o o
gously we show that (S\Sq) + S c S\Sq.

To show that S + S c S assume the contrary, i.e. that there o o o
exist x,y e Sq such that x + y e S\Sq = Z. Then, in particular, 

f(x+y+u) = 0 for all u e S and

e a |f(x+y+u) - f(x) f(y+u)| = |f(x)| • |f(y+u)| 

for all u e S. Hence

and

for all u e S, i.e. f is bounded, a contradiction.

Ill

_ I f ( y ) f (u) I „  I f ( y )  f ( u )  -  f  (y+u) | + I f (y+u) |
i f (u) i - - - - 1 f  (y) i - - - - - - - - - - - - - - - n n yn
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To finish the proof it suffices to put g:= f | s  .
o

REMARK 1. If (S, +) is a group then every solution f: S --- > €

of inequality (1) such that 0 e f(S) has to be bounded. In fact,

let s € S be such that f(s ) = 0. Then |f(x+s )| i  c for all x e S o o 1 o 1
and consequently, replacing here x b y  x -  s q) we infer that |f(x )|^  

^ c for all x € S.

REMARK 2. Since e = 0 is admissible in (1) Proposition 1 

allows to determine all complex solutions f on a semigroup (S,+) of 

the equation

f (x+y) = f(x) f(y) , x,y e S, (6)

in terms of homomorphisms g: S — » €*. Namely, we have the fol

lowing

PROPOSITION 2. Let (S, +) be a semigroup and let f : S — » C be 

a solution o f (6). Then either f = 0 or f is a homomorphism from  

S into C* or 0 e f(S) * {0} and there exists a subsemigroup (Sq,+) 

of (S, +) and a homomorphism g: Sq — » C* such that inclusion (4) 

holds true and f is given by (5). Conversely, any function 

f : S — ) C of such form yields a solution to (6).

REMARK 3. (M. Sablik, oral communication). Let (IN, •) be the 

semigroup of all positive integers with the usual multiplication 

and let Sq:= (1,2,4,8,...). Then (S , • ) is a subsemigroup of (IN,-)

such that (4) is fulfilled with S = IN and the function f: IN --- > C

given by the formula

yields an unbounded solution of (6) with infinite number of zeros. 
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From now on we are going to deal with the stability question 

formulated like in (3). We shall see that in such a case supersta

bility phenomenon disappears and the stability behaviour of homo- 

morphisms with values in the group (C*, • ) is much the same like in 

the additive case.

THEOREM 1. Let (S, +) be an amenable semigroup and let 

c € (0,1) be a given number. Assume that f: S — > C* is such that 

relation (3) holds true. Then there exists exactly one pair o f

functions m: S -— (0,oo) and q: S  > |z  e C: 1 - c 5 |z | s F~c|

such that m(x+y) = m(x) m(y), x,y e S, and f(x) = q(x) m(x), x e S. 

In particular,

fo r  all x 6 S.

Proof. Put ¥>(x):= I f ( x) J, x e S. Then

for all x,y e S. Consequently
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and in view of L. Székelyhidi’s result [10], there exists a homo

morphism a from (S, + ) into the additive group (IR, + ) of all real 

numbers such that

I a(x) - ln#>(x)| i  ln x e S.

It remains to put m:= exp a and q:= f-exp (-a).

To prove the uniqueness, assume that we are given two pairs 

(m^q^ and (m^.q^ of suitable mappings such that such that

m
q m = f = q m . Then m:= -— is a positive exponential function 

1 1 m2
bounded away from 0 and co. Thus m = 1 whence m = mz and, conse

quently, q̂  = q̂ . This completes the proof.

REMARK 4. Professor Zenon Moszner ([9], Exemple 3) has proved 

the above result (existence) in the case where (S, + ) = (R,+) and 

f (1R) c 1R\{0>. He also proposes three essentially different defini

tions of stability of homomorphism. His definition 3 is the closest 

(but not equivalent) to this what we mean by Hyers-Ulam stability. 

G.L. Forti [4] introduces yet another notion of stability. In what 

follows we do not apply any formal definition of stability confi

ning ourselves to the statement that all the facts established here 

yield some stability properties.

REMARK 5. At first glance the restriction c < 1 in Theorem 1 

looks a bit artificial. The following example shows however that 

without this assumption the result is no longer valid. Take 

(S, + ) = (R, + ) and f: R --- > (0,œ) defined by the formula f(x): =

exp\/| x I, x e R. Then
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for all x € IR, in view of the fact that both: absolute value and 

the square root are subadditive functions. Suppose that there
f ( x )

exists an exponential mapping m: IR  » (0,co) such that —m~ x'̂  s c

< oo, x € IR. Then m = exp a where a: IR --- > IR is additive and

exp ( Æ  - a(x)j ï  c, x e F. Consequently, a possesses a measu

rable (even continuous) minorant on IR and hence is continuous (see 

J. Aczél [1] or M. Kuczma [8], for instance). Thus a(x) = a x, 

x e IR, for some a e IR, and J ^ \  s a x + In c, x e IR, a contradic

tion.

Note that the following three facts were essential in the 

proof of Theorem 1:

(i) with c e (0,1) the neighbourhood U = |l-e, of the

neutral element 1 of the multiplicative group ((0,co), •) is bounded;

(ii) the absolute value function | • | establishes a continuous 

homomorphism of the group (€*,•) onto its subgroup ((0,oo), • );

(iii) | - |  is a projection, i.e. | - |  « | - |  = | * j .

These observations lead to the following

THEOREM 2. Let (S,+) be an amenable semigroup and let (H, • > 

be a Hausdorf f  topological group with the neutral element e. Assume 

that there exists a uniquely two-divisible locally compact Abelian 

subgroup (H , •) o f  the group (H, •) with the following properties:
O
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(a) the dual , group (H*,+) o f all continuous real characters on
O

H separates the points o f  Hq;

(b) there exists a continuous homomorphism h o /H  onto H such
O

that h»h = h.
Let further U be a neighbourhood o f  e whose projection W : = 

e e

h(U ) onto H is symmetric and such that
e o

(c) W • W c w2 ;
e e e

(d) W is bounded, i.e. fo r any neighbourhood W c H o f  the
e o

n2
neutral element e there exists an n 6 IN such that W c W .

e

Then fo r  every function f: S H such that

(7)

there exists exactly one homomorphism m: S --- > H such that
O

f(x) e m(x) cl ((ker. h) • Wj , x e S.

Proof. Fix arbitrarily a map f: S -----> H fulfilling condition

(7) and put <p := h°f. Then we obviously have

<p(x+y) e <p(x)-*>(y)-We, x,y € S, (8)

and consequently, since (H , •) is commutative, an easy induction
O

shows that

holds true for any x 6 S and n e IN. Hence by means of (c)
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ip{2nx) e <p(x)2 • , x e S, n e (N,

i.e.

i_
n

<p (x) := <p(2nx)2 e >̂(x) • W , x € S, n e IN, (9)
n e

because of the unique two-divisibility of the group (H, *). WeO
shall show that for any x 6 S the sequence (<p(x)) is fundamen

tal. Indeed, in view of (9)

for all x e S and every n,m e IN (here y:= 2nx). Therefore, taking 

an arbitrary neighbourhood W c H of the element e and choosing anO
n

o2
n e IN such that W c W (see (d)) we infer that

o e

1_
n

<p (x) • <p (x) 1 € W2 ° c W, x e S,
n+m n e

k2
provided that n,m € IN, n £ n , because (c) implies that W c W

o e e
for all k e IN.

Being a projection h is an open mapping; thus W = h(U ) is a 

neighbourhood of e in H and on account of (d) the faunilyO
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1

|w 2 : n € 1N| forms a countable base of neighbourhoods of e in Ĥ .

This means that the topology of (H , • ) satisfies the firstO
countability axiom (actually (H , • ) being Hausdorff is thenO
metrizable). Consequently the local compactness of (H , • ) impliesO
its sequential completeness which enables us to define a map 

m: S --- » H by the formulaO

m(x) := lim <ç (x), x e S. (10)
oo n

To prove that m establishes a homomorphism on (S,+) we shall 

adapt an idea applied by Z. Gajda [5] (cf. also G.L. Forti [4]) in 

case of sequentially complete locally convex linear topological 

spaces. To this aim fix arbitrarily a continuous real character 

X e H* and put ip := x°<P- Then, for any x,y e S, one hasO

i//(x+y) - </»(x) - 0(y) = *(<p(x+y)¥>(x)'V(y) *) c x(WJ.

Observe that the set *(W ) is bounded in !R; in fact, let W c H be
e o

a neighbourhood of e such that cl W is compact. In view of the
H

o
n2

boundedness of W there exists an n € IN such that W c W . Hence
e e

n
*(We) c x (w2 ) = 2" a(W) c 2n *(cl W)

and the latter set is compact in R as the image of ą compact set 

under the continuous map 2n*. Consequently, there exists an M > 0 

such that

|^(x+y) - >/j{x) - </»(y)| ^ M for all x,y e S.
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Now, Székelyhidi’s theorem [10] states that exists a homomorphism

a : S --- > IR such that
X

10(x) - a (x)| i  M, X 6 S.

It is known (see Forti’s paper [4]) that a^ has to have the form

a (x) = lim — i/»(2nx), x 6 S. On the other hand the continuity of y X n-*oo 2 n

gives

*(m(x)) = lim x(<P (x)) = lim — ^(^(2nx))
v ' n-* »  v n ' n-1»  v '

= lim — i//(2nx) = a (x) 
n-»oo X

for all x e S, i.e. x 0 m = a .
X

Fix arbitrarily points x,y e S; then

*(m(x+y) o m(x) 1 » m(y) ’) = (*°m)(x+y) - (^m)(x) - (x«m)(y)

= a (x+y) - a (x) - a (y) = 0.
X X X

In virtue of the arbitrarness of the character x and the fact that 

(H*, •) separates points (see (a)) we get the equalityO

m(x+y)*m(x) '-mly) 1 = e, x,y e S,

which states that m is exponential.

Finally, relation (9) and definition (10) imply that

m(x) e a>(x) • cl W , x e S, 
H e 

o
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h(f(x)) = <p{x) e m(x)-cl W c m(x)-cl W , x e S.
H e  eO

But hi is the identity mapping and m(x) e H , x 6 S, whence ' H o
o

h(f(x)-m(x) ') e cl W , x 6 S. (11)

Note that for any z e H there exists a t(z) e ker h such that z = 

= t(z) • h(z); in fact, taking t(z):= z-h(z) 1 one has h(t(z)) = 

= h(z)-h(h(z)’1) = h(z)-h(h(z))~' = h(z)-h(z) 1 = e. Therefore, by

(11), for any x e S, we obtain

z := f(x)-m(x) 1 = t(z)-h(z) e t(z)-cl W
e

= cl(t(z) • W )
e

c cl [(ker h)-W ] =: Z
e

whence

f(x) e m(x)-Z, x e S, (12)

as claimed.

It remains to prove the uniqueness of the exponential mapping 

m: S — > H . To this aim, assume that (12) holds true andO
simultaneously f(x) e m(x)-Z, x e S, with exponential mappings m, 

m : S --- > H . ThenO

m (x) := m(x) 1 • m(x)O

= m(x) 1 • f(x) • f(x)’1 • m(x) e Z • Z’1

or, equivalently, since is sym m etric
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fo r  a ll x  6 S. Note th a t  m is exponential, too, and

m (x) = hfm (x)'J e hiZ-Z'1) = h(Z) • hlZ"1), x e S.
O V O J

Now, in view of the continuity of h,

h(Z) = h(cl[(ker h)-Wj) c cl h((ker h)-W ) 

c cl[h(ker h)*h(W )] = cl W .
e e

and by the symmetry of W

h(Z)"1 c (cl W f 1 = cl W'1 = cl W .
e e e

The continuity of the projection h implies easily that H is closed
O

in H whence, in particular, cl W = cl W . We have already remar-
© H ©

o
ked that cl W is compact. Consequently so is also the product 

H e 
o

C:= (cl W ) • (cl W ) as the continuous image of the compact set
e e

(cl W ) x (cl W ) c H x H . Thus the range m (H) of H under m is
e e o o o o

contained in the compact set C c H . Recalling that the group (H ,
O O

•) is uniquely two-divisible this forces the boundedness of m (H)
O

in the sense that for any neighbourhood W of e the set m (H) is
O

n
2

contained in W for some n e IN. Therefore the exponential mapping 

m has to be constant; m (x) = e, x e S, which means that m = m.
o o

This completes the proof.

REMARK 6. The assumptions of Theorem 2 imply that H can be 

split into a direct product H o H (with H := ker h) of two clo- 

sed subgroups (H , • ) and (H , • ) of the group (H, • ). The hypothesis 

of such a factorization might alternatively be assumed instead of 

the existence of a suitable projection h.
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REMARK 7. Separations of points in the dual group (H*,+) of 

continuous real characters is equivalent to any of the following two sta

tements:

(*) (H ,+) is connected;O
(**) the group (H , • ) itself is topologically isomorphic to aO

product of the form IRn x F where n e IN and (F, •) yields a discrete 

torsion free Abelian group (see Hewitt-Ross [7]).

REMARK 8. The target group (H, • ) of the map f need not be 

neither Abelian nor divisible. In the simplest case (H, • ) = (C , • )

(cf. Theorem 1) is divisible indeed but the division is not uni

quely performable.

REMARK 9. Replacing the amenability assumption of the domain 

semigroup (S,+) by the stronger requirement of commutativity of 

(S,+) allows one to weaken the hypotheses regarding the group 

(H , - ) and to simplify the proof considerably. Namely, assumptionO
(a) (or their equivalent forms mentioned in Remark 7) is not longer 

needed in such a case. The proof that m is an exponential mapping 

may then be carried out in the usual way, i.e. by setting 2nx and 

2ny in (7) instead of x and y, respectively and applying (9).
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