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Quasi-isometries

Dedicated to Professor Zenon Moszner with best with best 

wishes on his 60-th birthday

1. Preliminaries

Let (X, p ), (Y, p ) be metric spaces and let e ł 0. D.H. Hy- 

ers and S.M. Ulam [3] consider the following inequality

IP2 (f(p),f (q)) - p^p.q) I s e for p,q e X, (1)

where f : X --- » Y. A mapping f : X — > Y satisfying this condition is

called an e -isometry [3]. Having in mind possible applications it 

seems interesting to consider specified below modification of the 

above inequality. (1) means that replacing distance between p and q 

by the distance of their images we are making small absolute 

errors. Instead of (1) we shall assume that f : X — > Y is such a

i) [3] dealt with the Hilbert spaces only.
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mapping that replacing distance between p and q by the distance of 

their images or conversely we are making small relative errors. 

More precisely, for a given 0 s e < 1, we shall be considering a 

conjunction of the following conditions:

J p2 (f (p), f (q) - Pjlp.q) I * cPj(p»q)) (2)

for p,q e X

and

IP2 (f(p),f(q) - P[(p,q) I * ep2(f(p),f(q)) (3)

for p,q € X.

This conjunction can be written as
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Proof. Equivalence of (2) and (5) is evident. If (3) holds

then

(l-e)p^(f(p),f(q)) s p^p.q)

and

pj(p.q) 5 (1+e) P2 (f(p).f(q))

whence we get

Pj(p,q)  ̂ p2(f(p),f(q)) — y ^  P1(p.q)'.

Conversely if (6) holds then

- CP2(f(p).f(q)) * p2(f(p),f(q)) - Pjip.q)

5 EP2(f(p).f(q))

i.e. (3) is valid.

Condition (4) is equivalent to the conjunction of (2) and (3) 

hence to the conjunction of (5) and (6).

Since 1 - c ^ -r̂ — and 1 + c s - i— (4) is equivalent to (7). Condi- 

tion (7) implies directly that f is Lipschitzian and injective.

PROPOSITION 2. Condition (7) is equivalent to the following

one

y ^  p (p,q) s  p rf _1(p),f_1(q)  ̂ * (1+e) p (p,q)

fo r  p,q € f (X).

(8)
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Proof. Assume (7) and consider p,q e f(X). Then we have

whence (8), follows directly, Converse implication can be proved 

similarly.

2. Quasi-isometries in normed spaces

From now on we assume that X and Y are normed spaces.

THEOREM 1. Let f: X — > Y be a differentiable solution o f  (4).

Then

where

(12)
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Making use of (10) and (11) we obtain

whence (9) follows immediately.

THEOREM 2. Let X, Y be algebraically isomorphic normed spaces, 

let f be differentiable bijection satisfying  (9) such that f ’(x) is 

invertible fo r  a II x e X, and f’1 is continuous. Then f satisfies  

(4).

Proof. By the mean-value theorem [1] we have

(13)

(14)
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n ( r ( x ) ) ' ‘ ii s i  + c for  x  e X

and hence in view of (14)

cf. Proposition 1.
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i.e. (since f is onto) Il (f ')’(y) Il s 1 + c for  y € Y.

Making again use of the mean-value theorem we obtain

Theorem Z gives sufficient condition for condition (4). For C1 

mappings of Banach spaces we can weaken its assumptions using the 

following Theorem of J.T. Schwartz [41.



THEOREM 3. Let X and Y be Banach spaces and f : X — » Y a C 1 

mapping and suppose f ’(x) is invertible at every x e X, and

moreover that II (f’(x)) 1 II < K < to uniformly in X. Then f: X --> Y

is a homeomorphism o f  X into Y.

Proof. [4] p. 16.

COROLLARY 1. I f  X and Y are finitedimensional and isomorphic 

then for  c ' - mappings conditions (9) and (4) are equivalent.

Proof. From Theorem 1 we have (4) => (9).

If (9) holds, since X and Y are finite dimensional, from the left 

hand side inequality follows that f ’(x) is invertible. By Theorem 3

f : X --- > Y is a homeomorphism. Finally Theorem 2 gives condition

(4).
2

REMARK 1. For the Hilbert space 1 of 2-summable sequences the 

shift operator

S : (Ç , 6 ,  ...) (0, Ç , Ç , ...)O 1 O 1

gives an example that condition (9) is not sufficient for the 

invertibility of differential.

3. Quasi-isometries in Euclidean space

We consider now the case X = Y = Rn, where II • II is given by
£

II (x ,...,x )ll = (x2 + ...+ x2)2. We begin with n = 1.
1 n 1 n

REMARK 2. A function f: R ---» R satisfies  (4) i f  and only i f

either

1 s f ix )  - fly) s f  € R, x * y (15)
1+e x - y
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or

Proof. From (15) and (16) we get immediately

(17)

Conversely it follows from (17) that f is continuous and injective 

and hence strictly monotonie.

Monotonicity of f and (17) implies (15) or (16).

REMARK 3.

Let now X = Y = Rn. Write f: Rn — > Rn in the form 

f = (f ,...,f ) where f : Rn -----» R. Assume that f is C1, then
i n l
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Denoting by I the Jacobi matrix of f (18) can be in matrix form, 

written as

where ( )* denotes matrix transposition.
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