PIOTR JĘDRUSIAK

The stability of the functional equation

$$
f_{\circ}(x) + h(y) + \sum_{i=1}^{n+1} f_i(\varphi_i(x) + \psi_i(y)) = 0
$$

Dedicated to Professor Zenon Moszner with best wishes on his 60-th birthday

L. Szekelyhidi has proved in [6] the stability of the functional equation

$$
f(x) + \sum_{j=1}^{n+1} c_j f(\varphi_j(x) + \psi_j(y)) = 0,
$$

where f maps an Abelian group (G, +) into the field C of all complex numbers and $\varphi_{i^*} \psi_{i^*} : G \longrightarrow G$ are homomorphisms for $i = 1$, $2, \ldots, n + 1.$

Let Q be a field of rational numbers. Let H be a linear space over Q.

In the present paper we are going to prove the stability of the functional equation

$$
f_o(x) + h(y) + \sum_{i=1}^{n+1} f_i(\varphi_i(x) + \psi_i(y)) = 0,
$$

where φ_{\parallel} , ψ_{\parallel} are isomorphisms of H onto itself and

$$
f_{\parallel}: G \longrightarrow U, \qquad i = 0, 1, \ldots, n + 1,
$$

$$
h: G \longrightarrow U
$$

are unkown functions and $(U, \|\cdot\|)$ is a Banach space.

Theorem below may, in particular, be applied to the following functional equations:

$$
f_o(x) + h(y) = f_1(x + y)
$$
 (of Pexider),

$$
f_o(x) + h(y) = f\left(\frac{x + y}{2}\right)
$$
 (of Jensen-Pexider)

$$
f_o(x) + h(y) = f_1(x + y) + f_2(x - y)
$$

and

$$
f(x) + h(y) = f(a x + b y + c)
$$
 (of quadratic functionals
"pexiderized")

Therefore, among others, we obtain a joint generalization of several ealier stability results. Let us mention here some of them. The stability of the equation of quadratic functionals:

$$
2f(x) + 2f(y) = f(x + y) + f(x - y)
$$

has been proved by P. Cholewa in [2]. The stability of the Pexider functional equation

$$
f_o(x) + h(y) = f_1(x + y)
$$

was established by K. Nikodem in 15], whereas D.H. Hyers [3] showed the stability of the Jensen functional equation

$$
f\left(\frac{x+y}{2}\right) = \frac{f(x) + f(y)}{2}.
$$

For any function f mapping a group $(G, +)$ into a certain linear space we put;

$$
\Delta^1 f(x) := f(x + t) - f(x), \ x, \ t \in G,
$$

and

$$
\Delta_t^n f(x) := \Delta_t^{n-1} f(x + t) - \Delta_t^{n-1} f(x), x, t \in G.
$$

DEFINITION 1. Let $(G,+)$ be a group and let $(U, \|\cdot\|)$ be a nor*med linear space. A function* $f: G \longrightarrow U$ *is called polynomial of degree at most* n *iff*

$$
\Delta^{n+1} f(x) = 0 \quad \text{for all } x, \ t \in G.
$$

In the whole of the paper we assume that ε is a given nonnegative real number.

DEFINITION 2. Let $(G, +)$ be an Abelian group, let $(U, \|\cdot\|)$ be a *real normed linear space and let* n be a *nonnegative integer. A function* f: G \longrightarrow U *is called* ε - *approximately of degree at most* n *iff there exist functions* $f: G \longrightarrow U$, $i = 1, ..., n+1$, a *function* g: G x G \longrightarrow U *such that* $\|g(x, y)\| \leq \varepsilon$ and *homomorphisms* φ , $\psi_i: G \longrightarrow G$ *such that*

$$
\varphi_i(G) \subset \psi_i(G)
$$
 for $i = 1, 2, \ldots, n+1$

and the equation

$$
g(x,y) + f(x) + \sum_{i=1}^{n+1} f_i(\varphi_i(x) + \psi_i(y)) = 0
$$

holds for all x, y e G.

DEFINITION 3. Let $(G,+)$ be an Abelian group, let $(U, \|\cdot\|)$ be a *normed linear space, and let n be a nonnegative integer. A function* f: $G \longrightarrow U$ *is called* ε *- approximately polynomial of degree at most* n *iff there exist a function* $g: G \times G \longrightarrow U$ *such that* $\|g(x,y)\| \leq \varepsilon$ and the equation

 $g(x,y) + \Delta_y^{n+1} f(x) = 0$

holds for all $x, y \in G$.

LEMMA 1. *Let* (G, +) be a *linear space over* Q, *let* (U, II • II) be a *normed linear space, and let* n be a *nonnegative integer. I f a function* f: $G \longrightarrow U$ *is* ε - approximately of degree at most n, then f is 2^{n+1} ε - approximately polynomial of degree at most n. Conver*sely, if a function* $f: G \longrightarrow U$ *is* ε - approximately polynomial of *degree at most* n, *then* f *is* ε - approximately of degree at most n.

Proof. Let f be ε - approximately polynomial of degree at most n. Hence

$$
g(x, y) + \Delta_y^{n+1} f(x) = g(x, y)
$$

$$
+\sum_{i=0}^{n+1}(-1)^{i} \binom{n+1}{i} f(x + (n+1-i)y) = 0
$$

and

$$
g(x,y) + \sum_{i=0}^{n} (-1)^{i} {n+1 \choose i} f(x + (n+1-i)y)
$$

+ $(-1)^{n+1} f(x) = 0$,

whence

$$
f(x) + \sum_{i=0}^{n} (-1)^{n+1+i} \binom{n+i}{i} f(x + (n+1-i)y)
$$

+ $(-1)^{n+1} g(x, y) = 0.$

Conversely, let f be ε - approximately of degree at most n. We shall first show that for any ε - approximately of degree at most n function f, the function Δ f is 2ε - approximately of degree at most n - 1. Since φ_1 and ψ_1 are homomorphisms and Rg $\varphi_1 \subset Rg\psi_1$, for every $t \in G$ we can find an $s \in G$ such that

$$
\varphi_{n+1}(t) + \psi_{n+1}(s) = 0.
$$

Setting $x + t$ instead of x and $y + s$ instead of y we obtain that

$$
g(x + t, y + s) + f (x + t)
$$

$$
n+1
$$

+ $\sum_{i=1}^{n+1} f_i(\varphi_i(x+t) + \psi_i(y+s)) = 0,$

whence

$$
f(x+t) + \sum_{i=1}^{n} f_i(\varphi_i(x) + \psi_i(y) + \varphi_i(t) + \psi_i(s))
$$

+ $f_{n+1}(\varphi_{n+1}(x) + \psi_{n+1}(y)) + g(x+t, y+s) = 0.$

We add and subtract here the term $g(x,y) + \sum_{i=1}^{n} f_i(\varphi_i(x) + \psi_i(y))$

getting

$$
f(x+t) + \sum_{i=1}^{n} [f_i(\varphi_i(x) + \psi_i(y) + \varphi_i(t) + \psi_i(s))
$$

- $f_i(\varphi_i(x) + \psi_i(y))] + g(x+t, y+s) - g(x,y)$
+
$$
\sum_{i=1}^{n+1} f_i(\varphi_i(x) + \psi_i(y)) + g(x+y) = 0.
$$

Now, it follows that the function $\Delta_t f(x)$ is 2ε - approximately of degree at most n-1; in fact,

$$
\Delta_{t} f(x) + g(x+t, y+s) - g(x,y)
$$

+
$$
\sum_{i=1}^{n} [f(\varphi_{i}(x) + \psi_{i}(y) + \psi_{i}(y) + \psi_{i}(t) + \psi_{i}(s)) - f_{i}(\varphi_{i}(x) + \psi_{i}(y))] = 0
$$

for all $x, t, y \in G$. By induction, after n+1 steps, we get

$$
\|\Delta_+^{n+1} f(x)\| \leq 2^{n+1} \varepsilon,
$$

which completes the proof.

LEMMA 2. Let $(G,+)$ be a linear space over Q, let $(U, \|\cdot\|)$ be a normed linear space and let n be a nonnegative integer. Let further

 $\varphi_i, \psi_i : G \longrightarrow G, i = 1, ..., n+1,$

be isomorphisms such that

$$
Rg(\psi_j - \varphi_j \circ \varphi_1^{-1} \circ \psi_i) = G
$$

for all $j \neq i$; i, $j = 1, ..., n+1$. If functions $f_i : G \longrightarrow U$, $i = 0,1, ...$ n+1 satisfy the inequality

$$
\|f_{0}(x) + \sum_{i=1}^{n+1} f_{i}(\varphi_{i}(x) + \psi_{i}(y))\| \leq \varepsilon
$$
 (1)

for every x, y, then

$$
\|\Delta_t^{n+1} f_i(x)\| \leq 2^{n+1} \varepsilon
$$

for all $x, t \in G$ and $i = 0, 1, ..., n+1$.

Proof. Concerning f we use Lemma 1. To prove the assertion for the remaining $f_1(i = 1, 2, n+1)$ we set $x = \varphi_1^{-1}(u)$ - $-\varphi_1^{-1}\circ\psi_1(y)$ in (1).

Then we have

$$
||f_i(u) + f_o(\varphi_i^{-1}(u) - \varphi_i^{-1} \circ \psi_i(y))
$$

$$
\begin{aligned}\n &\textbf{n+1} \\
&+ \sum_{j=1}^{n+1} f_j \left[\varphi_j \circ \varphi_1^{-1}(u) + \left(\psi_j - \varphi_j \circ \varphi_1^{-1} \circ \psi_j \right) (y) \right] \parallel \leq \varepsilon \\
&\textbf{j+1}\n \end{aligned}
$$

which means that f_i is ε - approximately of degree at most n. Hence f_i is 2^{n+1} ε polynomial of degree at most n, i = 1, 2, ..., n+1, and the proof is completed.

LEMMA 3. *Let* (G, +) *be a linear space over* Q, *let* (U, II-II) be a *normed linear space and let* n be a *nonnegative integer. Let* φ , $\psi_i : G \longrightarrow G$, i=l,, n+1, be automorphisms such that

$$
Rg \ (\psi_j - \varphi_j \ o\varphi_1^{-1} \ o\psi_1) = G,
$$

\n
$$
i \neq j; \ i, \ j = 1, \ \ldots, \ n+1;
$$

assume that there exists a $c \in Q$ such that $c\varphi_1 + \psi_1$ is an automor*phism of* G *for* $i = 1, \ldots n+1$. *If* functions h, f : G \longrightarrow U (i = 0,1, n+1) *satisfy the*

inequality

$$
\ln(y) + f_0(x) + \sum_{i=1}^{n+1} f_i(\varphi_i(x) + \psi_i(y)) \parallel \le \varepsilon
$$
 (2)

for every $x, y \in G$, then

$$
\|\Delta_t^{n+1} f_i(x)\| \leq 2^{n+2} \varepsilon, \quad i = 0, 1, \quad \dots \quad n+1,
$$

and

$$
\|\Delta^{n+1}_t\|_1(x)\|\ \leq\ 2^{n+2}\varepsilon.
$$

Proof. Let $c \in Q$ and $c\varphi_1 + \psi_1$ be isomorphisms of G for $i = 1, 2, \ldots$ n+1. Substituting u+cy instead of x in (2), we obtain the following inequality

$$
\|\mathrm{h}(y) + \mathrm{f}_{\mathrm{o}}(u + \mathrm{c}y) + \sum_{i=1}^{n+1} \mathrm{f}_{i}(\varphi_{i}(u) + (\mathrm{c}\varphi_{i} + \psi_{i}) \ (y))\| \leq \varepsilon.
$$

We shall show, that the assumptions of Lemma 2 are satisfied in this case. In fact, for $i \neq j$ and $i, j = 1, \ldots, n+1$ we have

$$
Rg\left[c\varphi_j + \psi_j - \varphi_j \circ \varphi_1^{-1} \circ (c\varphi_1 + \psi_1)\right]
$$

= $Rg\left[\psi_j - \varphi_j \circ \varphi_1^{-1} \circ \psi_1 + c\varphi_j - \varphi_j \circ \varphi_1^{-1} \circ (c\varphi_1)\right]$
= $Rg(\psi_j - \varphi_j \circ \varphi_1^{-1} \circ \psi_1) = G$,

whereas for $j = 0$ and $i = 1, \ldots, n+1$ we have

$$
Rg(\varphi_{1} c + \psi_{1} - \varphi_{1} o c \text{ id}) = Rg\psi_{1} = G.
$$

COROLLARY 1. Let $(G,+)$ be a linear space over Q, let $(U, \|\cdot\|)$ be a *normed linear space, and let* n be a *nonnegative integer. Let* $p_i, q_i \in Q - \{0\}, i = 1, \ldots, n+1, be such that p_i \cdot q_i \neq p_i \cdot q_i$ for $i \neq j$ *and* $i, j = 1, ..., n+1$.

If functions h, $f_i : G \longrightarrow U; i = 1, ..., n+1$ *satisfy the inequality*

$$
\|\mathrm{h}(y)\ +\ \mathrm{f}_0(x)\ +\!\!\sum_{i=1}^{n+1}\!\!\mathrm{f}_i(\mathrm{p}_{i}\ x\ +\ \mathrm{q}_{i}\ y)\|\ \leq\ \varepsilon
$$

for every x, y e G *then*

$$
\|\Delta_t^{n+1} f_i(x)\| \le 2^{n+2}\varepsilon
$$

for $i = 0, 1, ..., n+1$ and

$$
\|\Delta^{n+1}_{\iota} h(\mathbf{x})\| \leq 2^{n+2} \varepsilon.
$$

THEOREM. *Let* (G,+) *be a linear space over* Q, *let* (U, II-11) *be a Banach space and let* n *be a nonnegative integer.*

If functions h, $f : G \longrightarrow U$ i = 0,1, n+1 *satisfy the inequality*

$$
\|\mathrm{h}(y) + \mathrm{f}_{\mathrm{o}}(x) + \sum_{i=1}^{n+1} \mathrm{f}_{i}(\varphi_{i}(x) + \psi_{i}(y))\| \leq \varepsilon
$$

for every $x, y \in G$, *where* φ_1 , $\psi_2 : G \longrightarrow G$ *are automorhisms* of G; $i = 1, \ldots$ n+1, *such that*

(i)
$$
Rg(\psi_j - \varphi_j \circ \varphi_1^{-1} \circ \psi_i) = G
$$

and

(ii) there exists $a \nc \in Q$ such that $c \varphi_1 + \psi_1$ are automor*phisms of* G *for* $j = 1, \ldots, n+1$, *then there exist polynomial functions* v, u_i ; i = 0, 1, n+1 *such that*

$$
\|v - h\| \le \frac{\varepsilon}{n+3} + 2^{n+4} \cdot \varepsilon / \max_{m} \binom{n}{m}
$$

and

$$
\|f_{1} - u_{1}\| \leq \frac{\varepsilon}{n+3} + 2^{n+4} \cdot \varepsilon / \max_{m} \binom{n}{m}
$$

for $i = 0,1, \ldots n+1$.

Moreover,

$$
v(y) + u_0(x) + \sum_{i=1}^{n+1} u_i(\varphi_i(x) + \psi_i(y)) = 0,
$$

for all
$$
x, y \in G
$$
.

Proof: From the paper [1] of M.A. Albert and J.A. Baker and from Lemma 3 we know that there exist polynomial functions w_0 , w_1 , $\ldots, \ w_{n+2}$ such that

$$
||f_1(x) - w_1(x)|| \le 2^{n+3} \cdot \varepsilon/m_m^2 x \binom{n}{m}
$$

i = 0, 1, ... n+1,

and

$$
\|h(x) - w_{n+2}(x)\| \le 2^{n+3} \cdot \varepsilon / \max_{m} \binom{n}{m}
$$

Let $\mu: = 2^{n+3} \cdot \varepsilon / \max_{m} \binom{n}{m}$. For all $x, y \in G$ we have

$$
(n+3)\mu \ge \sum_{i=1}^{n+1} \| f_i(\varphi_i(x) + \psi_i(y)) - w_i(\varphi_i(x) + \psi_i(y)) \|
$$

+ \| h(y) - w_{n+2}(y) \| + \| f_0(x) - w_0(x) \|

$$
\ge \| \sum_{i=1}^{n+1} \left[f_i(\varphi_i(x) + \psi_i(y)) - w_i(\varphi_i(x) + \psi_i(y)) \right]
$$

+ f_o(x) - w_o(x) + h(y) - w_{n+2}(y)||
= || h(y) + f_o(x) +
$$
\sum_{i=1}^{n+1} f_i (\varphi_i(x) + \psi_i(y))
$$

- $\sum_{i=1}^{n+1} w_i (\varphi_i(x) + \psi_i(y)) - w_o(x) - w_{n+2}(y) ||$.

and

$$
(n+3)\mu + \varepsilon \ge ||h(y) + f_0(x) + \sum_{i=1}^{n+1} f_i(\varphi_i(x) + \psi_i(y))
$$
 (3)

$$
-\sum_{i=1}^{n+1} w_i (\varphi_i(x) + \psi_i(y)) - w_o(x) - w_{n+2}(y) \|
$$

+
$$
|| - h(y) - f_o(x) - \sum_{i=1}^{n+1} f_i (\varphi_i(x) + \psi_i(y)) ||
$$

$$
\ge || \sum_{i=1}^{n+1} w_i (\varphi_i(x) + \psi_i(y)) + w_o(x) + w_{n+2}(y) ||.
$$

Fix a $y_0 \in G$. Then the function

$$
G \ni x \longrightarrow w_{n+2}(y_o) + w_o(x) + \sum_{i=1}^{n+1} w_i(\varphi_i(x) + \psi_i(y_o)) \in U
$$

is a polynomial function in x.

From (3) norm of this function is bounded. There exists an $F \in U$ such that

$$
F = w_{n+2}(y_o) + w_o(x) + \sum_{i=1}^{n+1} w_i(\varphi_i(x) + \psi_i(y_o))
$$

for every xeG, because every polynomial bounded function is a constant function (see Kuczma [4, Chapter XV], for instance; M. Kuczma considers the case of polynomial functions from \mathbb{R}^N into $\mathbb R$ only, but this restriction is inessential).

Now, fix an $x \in G$. Then the function

$$
G \ni y \longrightarrow w_{n+2}(y) + w_o(x_o) + \sum_{i=1}^{n+1} w_i (\varphi_i(x_o) + \psi_i(y)) \in U
$$

is a polynomial function in y. From (3) norm of this function is bounded. There exists $F_i \in U$ such that

$$
F_1 = w_{n+2}(y) + w_o(x_o) + \sum_{i=1}^{n+1} w_i (\varphi_i(x_o) + \psi_i(y))
$$

for every $y \in G$. Both of the functions defined are equal at $x = x$ and $y = y$. Therefore we have $F = F_1$. Hence, for every x, $y \in G$, we get

$$
w_o(x) + w_{n+2}(y) + \sum_{i=1}^{n+1} w_i \left(\varphi_i(x) + \psi_i(y) \right) = F.
$$

Obviously,

$$
\left(w_o(x) - \frac{F}{n+3}\right) + \left(w_{n+2}(y) - \frac{F}{n+3}\right)
$$

+
$$
\sum_{i=1}^{n+1} \left[w_i(\varphi_i(x) + \psi_i(y)) - \frac{F}{n+3}\right] = 0.
$$

The polynomial functions

$$
w_1'(x) = w_1(x) - \frac{F}{n+3}
$$
,
 i = 0, 1, ..., n+1,

satisfy the equation

$$
w'_{o}(x) + w'_{n+2}(y) + \sum_{i=1}^{n+1} w'_{i}(\varphi_{i}(x) + \psi_{i}(y)) = 0, \qquad x, y \in G,
$$

and since $\mathbb{If}(\mathbf{x}) - \mathbf{w}(\mathbf{x}) \parallel \leq \mu$, $\mathbf{x} \in G$, we obtain

$$
\|f_1(x) - w_i'(x)\| = \|f_1(x) - w_i(x) + \frac{F}{n+3}\|
$$

$$
\le \|f_1(x) - w_i(x)\| + \|\frac{F}{n+3}\|
$$

$$
\le \mu + \frac{(n+3)\mu + \varepsilon}{n+3} = 2\mu + \frac{\varepsilon}{n+3}.
$$

Thus for all $x \in G$ the theorem has been proved.

I would like express my gratitude to Prof. R. Ger for his help in writing of this paper.

REFERENCES

- ll] Albert M.A., Baker J.A., *Functions with bounded m-th differen ces,* Ann. Polon. Math. 43 (1983), 93-103.
- [2] Cholewa P.W., *Remarks on the stability of functional equations*, Aequationes Math. 27 (1984), 76-86.
- [3] Hyers D.K, *Transformations with bounded m-th differences,* Pacific J. Math. 11 (1961), 591-602.

- [4] Kuczma M., *Introduction to the Theory of Functional Equations and Inequality,* Polish Scientific Publishers, PWN, Warszawa, 1985.
- [5] Nikodem K., The Stability of the Pexider equation, Annales Ma*thematicae Silesianae.* 5 (1991), 91-93.
- [6] Szekelyhidi L., The stability of linear functional equations, C.R. Math. Rep. Acad. Sei. Canada. 3 (#2) (1981), 63-67.