ZYGFRYD KOMINEK

Convex functions and some set classes

Dedicated to Professor Zenon Moszner with best wishes on his 60-th birthday

Let X be a real linear space and let D c X be a nonempty convex set. A function f:D \longrightarrow $[-\infty,\infty)$ is called J-convex iff the inequality

$$f\left(\frac{x+y}{2}\right) \leq \frac{f(x) + f(y)}{2}$$
(1)

holds for every $x, y \in D$. It is a well known reult that every J-convex function f:D $\longrightarrow [-\infty,\infty)$ satisfies the inequality

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$
(2)

for all $x, y \in D$ and every rational $\lambda \in (0,1)$. A function f:D \longrightarrow $[-\infty,\infty)$ is convex iff (2) holds for all $(x, y \in D \text{ and}) \lambda \in (0,1)$. Let us assume that X is endowed with a topology \mathcal{T} such that the function $\varphi : \mathbb{R} \times X \times X \longrightarrow X$ given by the formula $\varphi(\lambda, x, y) = \lambda x + y$ is separately continuous with respect to each variable. Such a topology will be called semilinear. Some basic properties of semilinear topologies may be found in [3], [5] and [6]. Note, that any linear topology in a real linear space is semilinear. We recall that a real linear space X endowed with a semilinear topology is a Baire space whenever every nonempty open subset of X is of the second category.

Let (X,\mathcal{T}) be a real linear space endowed with a semilinear topology \mathcal{T} . In [3] (cf. also [4]) we introduced the following class of sets;

 $\zeta(X) = \{T \in X; \text{ if } D \in X \text{ is a convex and open set such that}$ $T \in D \text{ and } f:D \longrightarrow [-\infty,\infty) \text{ is a J-convex function which}$ is lower semicontinuous at every point of T, then f is continuous in D}.

We agree that f is lower semicontinuous at every point $x \in D$ at which $f(x) = -\infty$, and if $f(x) = -\infty$, then f is continuous at x iff $f = -\infty$ in a neighbourhood of x. Also, following [3] (cf. also [1] and [4]), by $\mathcal{A}(X)$ we denote the family of all sets T c X with the property that if $D \subset X$ is a convex open set such that $T \subset D$ and $f:D \longrightarrow [-\infty,\infty)$ is a J-convex function such that the restriction f[] is continuous, then f is continuous in D.

The main result concerning these classes of sets presented in [3] (if X is a real linear space endowed with a semilinear Baire topology) states that

$$\mathcal{A}_{\zeta}(\mathbf{X}) \subset \zeta(\mathbf{X}). \tag{3}$$

In this paper we shall use some facts presented in [3], [4] and [6] and therefore we shall give their full form. First we recall the definition of the lower hull of a function f defined on a subset D of a topological space (X, \mathcal{T}) with values in $[-\infty,\infty)$;

$$m_{f}(x) = \sup_{U \in \mathcal{T}_{x}} \inf_{t \in U \cap D} f(t), x \in D,$$

where $\mathcal{T}_{\mathbf{x}}$ denotes the family of all open subsets of X containing the point \mathbf{x} .

188

LEMMA 1 ([3, Theorem 4.4], also [4, Lemma 5]). Let X be a topological space, let D \subset X be an open set and let $f:D \longrightarrow [-\infty,\infty)$ be a function. The function f is lower semicontinuous at a point $x \in D$ iff $f(x) = m_{e}(x)$.

LEMMA 2. ([3, Theorem 4.2], also [6, Proposition 2]). Let X be a real linear space endowed with a semilinear topology \mathcal{T} , let D \subset X be an open and convex set, and let f:D $\longrightarrow [-\infty,\infty)$ be a J-convex function. The lower hull m_f of f is convex in D. If (X, \mathcal{T}) is a Baire space then f is continuous.

Theorem 1 give some sufficient conditions for a set to belong to the class $\mathcal{A}_{r}(X)$.

THEOREM 1. Let X be a real linear space endowed with a semilinear topology and let T \subset X be a subset. If there exist a point $z \in T$ and a sequence $(U_n, n \in \mathbb{N})$ (\mathbb{N} denotes the set of all positive integers) of neighbourhoods of z such that

$$\bigcap_{n=1}^{\infty} U_{n} = \{z\} \text{ and } \frac{1}{2} \left[(T \cap U_{n}) + (T \cap U_{n}) \right] > U_{n}$$
(4)

for every positive integer n, then T belongs to $A_{r}(X)$.

Proof. Let D be an open and convex subset of X and assume that $T \in D$. Let $f:D \longrightarrow [-\infty,\infty)$ be an arbitrary J-convex function such that $f|_T$ is continuous. Hence and by (4) we get $f(t) \leq M$ for all $t \in U_n \cap T$, where M is a constant, and n is a positive integer. It follows from the J-convexity of f and (4) that f is bounded above on a nonempty open set U_n . By a theorem of Bernstein-Doetsch ([3], [5]) f is continuous and, therefore, T belongs to the class $A_r(X)$.

COROLLARY 1. Let X be a real linear space endowed with a semilinear topology. Every set T containing a second category subset wit the Baire property belongs to the class $\mathcal{A}_{c}(X)$.

Proof. Let $S = (G \setminus P) \cup R$ be a subset of T such that G is a nonempty open set and P and R are of the first category. Let us fix a $z \in G \setminus P$ and take an arbitrary sequence of neighbourhoods $(U; n \in \mathbb{N})$ of z such $\bigcap_{n=1}^{\infty} U_n = \langle z \rangle$ and $U_n \subset G_n$ for every positive integer n. As in Lemma 3 [5], we can prove the second part of (4). The rest of the proof follows from Theorem 1.

In the case of a real linear topological space, Corollary 1 may be found in [4]. It is still an open problem whether the inclusion in (3) is strict. However, we have the following.

THEOREM 2. Let X be a real linear space endowed with a semilinear topology, let D be an open and convex subset of X. If T c D is a J-convex subset (i.e. $\frac{T+T}{2}$ c T) belonging to the class $\zeta(X)$ and T is dense in D, then T belongs to the class $A_c(X)$.

Proof. It is enough to show that every J-convex function $f:D \longrightarrow [-\infty,\infty)$ such that $f|_T$ is continuous, is continuous in D. So, let us consider such a function f. We define a function F:D \longrightarrow $[-\infty,\infty)$ by the formula

$$F(x) = \sup_{U \in \mathcal{I}_{x}} u \subset D \inf_{t \in U \cap T} f(t), x \in D.$$
 (5)

It is easily seen that $F(x) \leq f(x)$ for every $x \in T$. We shall show that

$$F(x) = f(x)$$
 for every $x \in T$ (6)

Suppose that F(x) < f(x) for an $x \in T$. It follows from (5) that there exists an $\varepsilon > 0$ with the property

$$\inf_{t \in U \cap T} f(t) < f(x) - \varepsilon$$

for all neighbourhoods $U \in \mathcal{T}_x$. By the density of T in D there exists a sequence $(t, n \in \mathbb{N}) \subset T$ convergent to x and such that

$$f(t_{-}) < f(x) - \varepsilon \tag{7}$$

for each positive integer n. Since $f|_T$ is continuous and $x \in T$, the inequality (7) is false. This proves (6).

Let us fix an arbitrary $x \in D$ and $\varepsilon > 0$. According to (5), there exists a neighbourhood $U \in \mathcal{T}_{v}$, $U \subset D$, such that

$$F(x) - \varepsilon \le \inf_{t \in [0, \infty]} f(t).$$
(8)

Let us take an arbitrary $u \in U$. Then $U \in \mathcal{T}_u$ and hence also (cf. (5)).

$$\inf_{t \in [U, 0, T]} f(t) \le F(u).$$
(9)

Inequalities (8) and (9) imply that

 $F(x) - \varepsilon \leq F(u)$ for every $u \in U$,

which shows that F is lower semicontinuous at x. Due to arbitrariness of x F is lower semicontinuous at every point x of D.

Let x,y be arbitrary points of D. Since T is dense in D there exist sequences $(x_n, n \in \mathbb{N})$ and $(y_n, n \in \mathbb{N})$ of elements of T convergent to x and y, respectively. We may assume (see (5)) that

$$f(x_n) \leq F(x) \text{ and } f(y_n) \leq F(y)$$
 (10)

for any positive integer n. Evidently $z_n = \frac{x + y_n}{2}$ is convergent to $\frac{x+y}{2}$ and, moreover, by our assumption on T, z_n belongs to the set T. By the lower semicontinuity of F at every point of D, given $\varepsilon > 0$, there exist a positive integer m such that

$$F\left(\frac{x+y}{2}\right) - \varepsilon \le F\left(\frac{x+y}{2}\right) = F(z_n)$$
(11)

for each positive integer $n \ge m$. On account of (6), by the J-convexity of f and by (10) we get

$$F(z_n) = f(z_n) = f\left(\frac{x_n + y_n}{2}\right) \le \frac{f(x_n) + f(y_n)}{2}$$
 (12)

$$\leq \frac{F(x) + F(y)}{2}$$

Inequalities (11) and (12) imply

$$F\left(\frac{x+y}{2}\right) - \varepsilon \leq \frac{F(x) + F(y)}{2},$$

and consequently F is J-convex function in D. Since F is lower semicontinuous at every point of T and T $\in \zeta(X)$, F is continuous in D.

Let us put

192

$$g(x) = \max (f(x), F(x)), \quad x \in D.$$
(13)

Of course, $g:D \longrightarrow [-\infty,\infty)$ is a J-convex function. Moreover, by the definitions (13) and of the lower hull

 $m_{e}(x) \ge m_{F}(x)$ for each $x \in D$.

On account of Lemma 1, $m_{F}(x) = F(x)$ for every $x \in D$. Hence

$$m(x) \ge F(x), x \in D.$$

Suppose that for some $x \in D$ we have

$$m_{g}(x) > F(x).$$

In virtue of the lower semicontinuity of m (cf. Lemma 2) and of the continuity of F in D we infer that there exist an $\varepsilon > 0$ and a neighbourhood $U \in \mathcal{T}_{\varphi}$ such that

$$F(u) + \varepsilon < m_g(x) - \varepsilon \le m_g(u)$$

for every $u \in U$. Thus, for every $u \in U$, we have

$$F(u) + \varepsilon < g(u), \tag{14}$$

in virtue of the inequality $m \leq g$ (cf. the definition of the lower hull). By (13) and (14) we obtain

g(u) = f(u) for every $u \in U$.

Thus

$$f(u) > F(u) + \varepsilon, \ u \in U.$$
⁽¹⁵⁾

It follows from the continuity of F at x that there exists a neighbourhood V $\in \mathcal{T}$, V \subset U, such that

$$F(x) < F(v) + \frac{\varepsilon}{2}$$

for all $v \in V$, which together with (15) implies

$$f(v) > F(x) + \frac{\varepsilon}{2}, v \in V.$$

The last inequality is false (see (5)) and, therefore,

$$m_{g}(x) = F(x) \text{ for every } x \in D.$$
(16)

Relations (6), (13) and (16) imply that

 $m_{e}(x) = g(x)$ for every $x \in T$.

According to Lemma 1 g is lower semicontinuous at every point of T. Since $T \in \zeta(X)$, g is continuous in D. Hence g is bounded above on a nonempty open subset W of D and since $f \leq g$, f is bounded above on W. Thus f is continuous, in virtue of a theorem of Bernstein-Doetsch ([5], [6]). This finishes the proof of Theorem 2.

194

As we see, the sets of the class $\mathscr{A}_{C}(X)$ cannot be "too small". In [2] we have proved that there exists a subset T of real line \mathbb{R} which does not belong to $\mathscr{A}_{C}(\mathbb{R})$ and such that $T + T = \mathbb{R}$. Now we shall show that there exists a "large" family of sets T which does not belong to $\zeta(\mathbb{R})$ (and hence also to $\mathscr{A}_{C}(\mathbb{R})$) and such that $T + T = \mathbb{R}$.

Let \mathcal{F} be the family of all non-monotonic convex functions defined on the space \mathbb{R} . Take a discontinuous additive function $a:\mathbb{R} \longrightarrow \mathbb{R}$ such that $a(Q) = \{0\}$ (Q denotes here the set of all rationals). For an arbitrary $f \in \mathcal{F}$ we define

$$T = \{x \in \mathbb{R}; a(x) \le f(x)\}.$$
(17)

First we shall show that $T + T = \mathbb{R}$. Consider an $x \in \mathbb{R}$. There exists a rational r such that the points x + r and x - r belong to T (since otherwise f must be monotonic). Therefore

$$x = \frac{x+r+x-r}{2} \in (T + T) \frac{1}{2}$$
. Hence $T + T = \mathbb{R}$

Let us put

$$F(x) = \max (a(x), f(x)), x \in \mathbb{R}.$$
(18)

Note that F is a discontinuous J-convex function. It is not hard to check that

$$\mathbf{m}_{\mathbf{r}}(\mathbf{x}) = \mathbf{f}(\mathbf{x}), \ \mathbf{x} \in \mathbb{R}$$
(19)

(cf. also Example 1 in [4]). If $x \in T$ then $a(x) \leq f(x)$ and consequently F(x) = f(x), $x \in T$. Hence and by (19)

 $m_x(x) = F(x)$ for evry $x \in T$.

This means (by Lemma 1) that F is lower semicontinuous at every point of the set T. Since F is discontinuous T does not belong to $\zeta(\mathbb{R})$.

REMARK. If we put f(x) = 0 for all $x \in \mathbb{R}$ in (17) we get an example of a dense set T with the properties: $\frac{T+T}{2} \subset T$ and $T \notin \mathcal{A}_{C}(\mathbb{R})$ (the function F defined by (18) is J-convex and the restriction of $F|_{T}(=0)$ is continuous). This shows that the assumption that $T \in \zeta(X)$ is essential in Theorem 2.

REFERENCES

- Kominek B., Kominek Z., On some set classes connected with the continuity of additive and Q-convex functions, Prace Nauk. Uniw. Sl. Nr 218, Prace Matematyczne 8 (1978) 60-63.
- [2] Kominek Z., On the continuity of Q-convex and additive functions, Aequationes Math. 23 (1981) 146-150.
- [3] Kominek Z., Convex Functions in Linear Spaces, Prace Nauk. Uniw. Śl. w Katowicach, Nr 1087 (1989) 1-70.
- [4] Kominek Z. and Kuczma M., On the lower hull of convex functions, Aequationes. Math., 38 (1989) 192-210.
- Kominek Z. and Kuczma M., Theorems of Bernstein-Doetsch, Piccard and Mehdi and semilinear topology, Arch. Math. 52 (1989) 595-602.
- [6] Kominek Z. and Kuczma M., Theorem of Bernstein-Doetsch in Baire spaces Annales. Math. Silesianae, 5(1991) 10-17.