ZYGFRYD KOMINEK

Convex functions and some set classes

Dedicated to Professor Zenon Moszner with best wishes on his 60-th birthday

Let X be a real linear space and let $D \subset X$ be a nonempty convex set. A function $f:D \longrightarrow [-\infty,\infty)$ is called J-convex iff the inequality

$$
f\left(\frac{x+y}{2}\right) \leq \frac{f(x) + f(y)}{2} \tag{1}
$$

holds for every $x, y \in D$. It is a well known reult that every J-convex function $f:D \longrightarrow [-\infty,\infty)$ satisfies the inequality

$$
f\left(\lambda x + (1 - \lambda)y\right) \leq \lambda f(x) + (1 - \lambda)f(y) \tag{2}
$$

for all $x, y \in D$ and every rational $\lambda \in (0,1)$. A function f: $D \longrightarrow$ $[-\infty,\infty)$ is convex iff (2) holds for all $(x,y \in D$ and) $\lambda \in (0,1)$. Let us assume that X is endowed with a topology $\mathcal I$ such that the function $\varphi : \mathbb{R} \times X \times X \longrightarrow X$ given by the formula $\varphi(\lambda, x, y) = \lambda x + y$ is separately continuous with respect to each variable. Such a topology will be called semilinear. Some basic properties of semilinear topologies may be found in [3], [5] and [6). Note, that any linear topology in a real linear space is semilinear. We recall that a real linear space X endowed with a semilinear topology is a Baire space whenever every nonempty open subset of X is of the second category.

Let (X,\mathcal{I}) be a real linear space endowed with a semilinear topology \mathcal{I} . In [3] (cf. also [4]) we introduced the following class of sets;

 $\zeta(X) = \langle T \subset X; \text{ if } D \subset X \text{ is a convex and open set such that }$ T c D and f: $D \longrightarrow [-\infty, \infty)$ is a J-convex function which is lower semicontinuous at every point of T, then f is continuous in D}.

We agree that f is lower semicontinuous at every point $x \in D$ at which $f(x) = -\infty$, and if $f(x) = -\infty$, then f is continuous at x iff $f = -\infty$ in a neighbourhood of x. Also, following $[3]$ (cf. also $[1]$ and [4]), by $\mathcal{A}(X)$ we denote the family of all sets T c X with the property that if $D \subset X$ is a convex open set such that $T \subset D$ and f: $D \longrightarrow [-\infty, \infty)$ is a J-convex function such that the restriction $f|$ is continuous, then f is continuous in D.

The main result concerning these classes of sets presented in [3] (if X is a real linear space endowed with a semilinear Baire topology) states that

$$
A_{\mu}(x) \subset \zeta(X). \tag{3}
$$

In this paper we shall use some facts presented in [3], [4] and [6] and therefore we shall give their full form. First we recall the definition of the lower hull of a function f defined on a subset D of a topological space (X, \mathcal{T}) with values in $[-\infty, \infty);$

$$
m_f(x) = \sup_{u \in \mathcal{I}_x} \inf_{t \in U \cap D} f(t), \ x \in D,
$$

where \mathcal{I} denotes the family of all open subsets of X containing the point x.

188

LEMMA 1 ([3, Theorem 4.4], also [4, Lemma 5]). *Let X be a topological space, let* $D \subset X$ *be an open set and let* $f:D \longrightarrow [-\infty,\infty)$ *be a function. The function* f *is lower semicontinuous at a point* $x \in D$ *iff* $f(x) = m(x)$.

LEMMA 2. ((3, Theorem 4.2], also [⁶ , Proposition 2]). *Let X be a real linear space endowed with a semilinear topology I, let* D \subset X *be an open and convex set, and let* $f:D \longrightarrow [-\infty,\infty)$ *be a J-convex function. The lower hull* m_e *of* f *is convex in* D. If (X, \mathcal{T}) *is a Baire space then* f *is continuous.*

Theorem 1 give some sufficient conditions for a set to belong to the class $\mathcal{A}_{\mathsf{C}}(\mathsf{X}).$

THEOREM 1. *Let X be a real linear space endowed with a semilinear topology and let* $T \subset X$ *be a subset. If there exist a point* $z \in T$ *and a sequence* $(U_n, n \in \mathbb{N})$ (N *denotes the set of all positive integers) of neighbourhoods of z such that*

$$
\bigcap_{n=1}^{\infty} U_n = \{z\} \text{ and } \frac{1}{2} [(\mathbf{T} \cap \mathbf{U}_n) + (\mathbf{T} \cap \mathbf{U}_n)] > \mathbf{U}_n \tag{4}
$$

for every positive integer n, *then* T *belongs to* $\mathcal{A}_c(X)$.

Proof. Let D be an open and convex subset of X and assume that T c D. Let $f: D \longrightarrow \{-\infty, \infty\}$ be an arbitrary J-convex function such that $f \rvert_{T}$ is continuous. Hence and by (4) we get $f(t) \leq M$ for all $t \in U_n \cap T$, where M is a constant, and n is a positive integer. It follows from the J-convexity of f and (4) that f is bounded above on a nonempty open set U_n. By a theorem of Bernstein-Doetsch ([3], [5]) f is continuous and, therefore, T belongs to the class $A_c(X)$.

COROLLARY 1. *Let X be a real linear space endowed with a semilinear topology. Every set* T *containing a second category* subset wit the Baire property belongs to the class $A_{\rho}(X)$.

Proof. Let $S = (G \setminus P)$ \cup R be a subset of T such that G is a nonempty open set and P and R are of the first category. Let us fix a $z \in G \setminus P$ and take an arbitrary sequence of neighbourhoods (U ;n \in N) of z such $\bigcap_{n=1}^{\infty}$ U = $\langle z \rangle$ and U c G for every positive integer n. As in Lemma 3 [5], we can prove the second part of (4). The rest of the proof follows from Theorem 1.

In the case of a real linear topological space, Corollary 1 may be found in (4). It is still an open problem whether the inclusion in (3) is strict. However, we have the following.

THEOREM 2. *Let X be a real linear space endowed with a semilinear topology, let* D be an open and convex subset of X. If $T \subset D$ *is a* J-convex subest (i.e. $\frac{T+T}{2} \subset T$) belonging to the class $\zeta(X)$ and T is dense in D, then T *belongs* to the class $\mathcal{A}_{\zeta}(X)$.

Proof. It is enough to show that every J-convex function f:D \longrightarrow $[-\infty,\infty)$ such that f is continuous, is continuous in D. So, let us consider such a function f. We define a function $F: D \longrightarrow$ $[-\infty, \infty)$ by the formula

$$
F(x) = \sup_{U \in \mathcal{T}_x, U \subset D} \inf_{t \in U \cap T} f(t), x \in D.
$$
 (5)

It is easily seen that $F(x) \le f(x)$ for every $x \in T$. We shall show that

$$
F(x) = f(x) \text{ for every } x \in T
$$
 (6)

Suppose that $F(x) < f(x)$ for an $x \in T$. It follows from (5) that there exists an $\varepsilon > 0$ with the property

$$
\inf_{t \in U \cap T} f(t) < f(x) - \varepsilon
$$

for all neighbourhoods $U \in \mathcal{I}$. By the density of T in D there exists a sequence $(t_n, n \in \mathbb{N}) \subset T$ convergent to x and such that

$$
f(t_n) < f(x) - \varepsilon \tag{7}
$$

for each positive integer n. Since $f \vert_{T}$ is continuous and $x \in T$, the inequality (7) is false. This proves (6).

Let us fix an arbitrary $x \in D$ and $\varepsilon > 0$. According to (5), there exists a neighbourhood $U \in \mathcal{I}_x$, $U \subset D$, such that

$$
F(x) - \varepsilon \le \inf_{t \in U \cap T} f(t). \tag{8}
$$

Let us take an arbitrary $u \in U$. Then $U \in \mathcal{I}$ and hence also (cf. *<5)).*

$$
\inf_{t \in U \cap T} f(t) \le F(u). \tag{9}
$$

Inequalities (8) and (9) imply that

 $F(x) - \varepsilon \leq F(u)$ for every $u \in U$,

which shows that F is lower semicontinuous at x. Due to arbitrariness of x F is lower semicontinuous at every point x of D.

Let x,y be arbitrary points of D. Since T is dense in D there exist sequences $(x_n, n \in \mathbb{N})$ and $(y_n, n \in \mathbb{N})$ of elements of T convergent to x and y, respectively. We may assume (see (5)) that

$$
f(x_n) \le F(x) \text{ and } f(y_n) \le F(y) \tag{10}
$$

X + y for any positive integer n. Evidently $z_n = \frac{n}{2}$ is convergent to $\frac{y}{2}$ and, moreover, by our assumption on T, z_n belongs to the set T. By the lower semicontinuity of F at every point of D, given $\varepsilon > 0$, there exist a positive integer m such that

$$
F\left(\frac{x+y}{2}\right) - \varepsilon \le F\left(\frac{x_n + y_n}{2}\right) = F(z_n)
$$
\n(11)

for each positive integer $n \ge m$. On account of (6), by the J-convexity of f and by (10) we get

$$
F(z_n) = f(z_n) = f\left(\frac{x_n + y_n}{2}\right) \le \frac{f(x_n) + f(y_n)}{2}
$$
 (12)

Inequalities (11) and (12) imply

$$
F\left(\frac{x+y}{2}\right) - \varepsilon \leq \frac{F(x) + F(y)}{2},
$$

2

and consequently F is J-convex function in D. Since F is lower semicontinuous at every point of T and T $\in \zeta(X)$, F is continuous in D.

Let us put

192

$$
g(x) = \max (f(x), F(x)), \quad x \in D.
$$
 (13)

Of course, $g: D \longrightarrow [-\infty, \infty)$ is a J-convex function. Moreover, by the definitions (13) and of the lower hull

 $m_{\epsilon}(x) \ge m_{\epsilon}(x)$ for each $x \in D$.

On account of Lemma 1, $m_r(x) = F(x)$ for every $x \in D$. Hence

```
m_{\varepsilon}(x) \geq F(x), x \in D.
```
Suppose that for some $x \in D$ we have

$$
\max_{\mathbf{g}}(\mathbf{x}) > \mathbf{F}(\mathbf{x}).
$$

In virtue of the lower semicontinuity of \lim_{ϵ} (cf. Lemma 2) and of the continuity of F in D we infer that there exist an $\varepsilon > 0$ and a neighbourhood $U \in \mathcal{I}_x$ such that

$$
F(u) + \varepsilon < m(x) - \varepsilon \leq m(u) \leq \varepsilon
$$

for every $u \in U$. Thus, for every $u \in U$, we have

$$
F(u) + \varepsilon < g(u), \tag{14}
$$

in virtue of the inequality $m_{\tilde{g}} \leq g$ (cf. the definition of the lower hull). By (13) and (14) we obtain

 $g(u) = f(u)$ for every $u \in U$.

Thus

$$
f(u) > F(u) + \varepsilon, \ u \in U.
$$
 (15)

It follows from the continuity of F at x that there exists a neighbourhood $V \in \mathcal{I}$, $V \subset U$, such that

$$
F(x) < F(v) + \frac{\varepsilon}{2}
$$

for all $v \in V$, which together with (15) implies

$$
f(v) > F(x) + \frac{\varepsilon}{2}, \ v \in V.
$$

The last inequality is false (see (5)) and, therefore,

$$
m(x) = F(x) \text{ for every } x \in D. \tag{16}
$$

Relations (6) , (13) and (16) imply that

 $m_{g}(x) = g(x)$ for every $x \in T$.

According to Lemma 1 g is lower semicontinuous at every point of T. Since $T \in \zeta(X)$, g is continuous in D. Hence g is bounded above on a nonempty open subset W of D and since $f \le g$, f is bounded above on W. Thus f is continuous, in virtue of a theorem of Bernstein-Doetsch ([5], [6]). This finishes the proof of Theorem 2.

194

As we see, the sets of the class $\mathcal{A}_{\rho}(X)$ cannot be "too small". In $[2]$ we have proved that there exists a subset T of real line $\mathbb R$ which does not belong to $A_n(\mathbb{R})$ and such that $T + T = \mathbb{R}$. Now we shall show that there exists a "large" family of sets T which does not belong to $\zeta(\mathbb{R})$ (and hence also to $\mathcal{A}_{\zeta}(\mathbb{R})$) and such that $T + T =$ $= R$.

Let $\mathcal F$ be the family of all non-monotonic convex functions defined on the space IR. Take a discontinuous additive function $a: \mathbb{R} \longrightarrow \mathbb{R}$ such that $a(Q) = \{0\}$ (Q denotes here the set of all rationals). For an arbitrary $f \in \mathcal{F}$ we define

$$
T = \{x \in \mathbb{R}; a(x) \le f(x)\}.
$$
 (17)

First we shall show that $T + T = R$. Consider an $x \in R$. There exists a rational r such that the points $x + r$ and $x - r$ belong to T (since otherwise f must be monotonie). Therefore

$$
x = \frac{x+r+x-r}{2} \in (T + T) \frac{1}{2}
$$
. Hence $T + T = R$

Let us put

$$
F(x) = \max \left(a(x), f(x) \right), x \in \mathbb{R}.
$$
 (18)

Note that F is a discontinuous J-convex function. It is not hard to check that

$$
m_x(x) = f(x), x \in \mathbb{R}
$$
 (19)

(cf. also Example 1 in [4]). If $x \in T$ then $a(x) \le f(x)$ and consequently $F(x) = f(x)$, $x \in T$. Hence and by (19)

 $m(x) = F(x)$ for evry $x \in T$.

This means (by Lemma 1) that F is lower semicontinuous at every point of the set T. Since F is discontinuous T does not belong to **Ç(R).**

REMARK. If we put $f(x) = 0$ for all $x \in \mathbb{R}$ in (17) we get an example of a dense set T with the properties: $\frac{T + T}{2}$ c T and T ϵ $\mathcal{A}(\mathbb{R})$ (the function F defined by (18) is J-convex and the restriction of $F_{\vert T} (= 0)$ is continuous). This shows that the assumption that $T \in \zeta(X)$ is essential in Theorem 2.

REFERENCES

- [1] Kominek B., Kominek Z., *On some set classes connected with the* continuity of additive and Q-convex functions, Prace Nauk. Uniw. Si. Nr 218, Prace Matematyczne 8 (1978) 60-63.
- [2] Kominek Z., On the continuity of Q-convex and additive *functions,* Aequationes Math. 23 (1981) 146-150.
- 13) Kominek Z., *Convex Functions in Linear Spaces,* Prace Nauk. Uniw. Si. w Katowicach, Nr 1087 (1989) 1-70.
- [4] Kominek Z. and Kuczma M., On the lower hull of convex *functions,* Aequationes. Math., 38 (1989) 192-210.
- [5] Kominek Z. and Kuczma M., Theorems of Bernstein-Doetsch, Piccard and Mehdi and semilinear topology, Arch. Math. 52 (1989) 595-602.
- [6] Kominek Z. and Kuczma M., Theorem of Bernstein-Doetsch in Baire *spaces* Annales. Math. Silesianae, 5(1991) 10-17.