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Convex functions and some set classes

Dedicated to Professor Zenon Moszner with best wishes on his 

60-th birthday

Let X be a real linear space and let D c X be a nonempty con

vex set. A function f:D — » [-00,00) is called J-convex iff the ine

quality

r ( ^ ) .  f ( x l /  f < y )  a )

holds for every x,y e D. It is a well known reult that every 

J-convex function f:D — > [-»,<») satisfies the inequality

f(Ax + (1 - A)y) £ X f(x) + (1 - A)f(y) (2)

for all x,y e D and every rational X e (0,1). A function f:D ->

[-00,00) is convex iff (2) holds for all (x,y e D and) X e (0,1). Let 

us assume that X is endowed with a topology 17 such that the func

tion <p : R x X x X — » X given by the formula ^(A,x,y) = X x + y

is separately continuous with respect to each variable. Such a to

pology will be called semilinear. Some basic properties of semili- 

near topologies may be found in [3], [5] and [6). Note, that any 

linear topology in a real linear space is semilinear. We recall 

that a real linear space X endowed with a semi linear topology is a
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Baire space whenever every nonempty open subset of X is of the se

cond category.

Let (X,7) be a real linear space endowed with a semilinear 

topology In [3] (cf. also [4]) we introduced the following class 

of sets;

Ç(X) = (T c X; if D c X is a convex and open set such that 

T c D and f:D — » (-oo.tn) is a J-convex function which 

is lower semicontinuous at every point of T, then f is 

continuous in D}.

We agree that f is lower semicontinuous at every point x € D 

at which f(x) = -oo, and if f(x) = -oo, then f is continuous at x iff 

f = -oo in a neighbourhood of x. Also, following (31 (cf. also (1] 

and [4]), by iMX) we denote the family of all sets T c X with the 

property that if D c X is a convex open set such that T c D and

f:D -----> l-oo,oo) is a J-convex function such that the restriction

f | is continuous, then f is continuous in D.

The main result concerning these classes of sets presented in 

[3] (if X is a real linear space endowed with a semilinear Baire 

topology) states that

»* (x) c <(X). (3)

In this paper we shall use some facts presented in [3], [4] 

and [6] and therefore we shall give their full form. First we re

call the definition of the lower hull of a function f defined on a 

subset D of a topological space (X, 7) with values in [-00,00);

m,'X) * € ? lnf, « U ft /  X € D’
X

where 7^ denotes the family of all open subsets of X containing the 
point x.
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LEMMA 1 ([3, Theorem 4.4], also [4, Lemma 5]). Let X be a

topological space, let D c X be an open set and let f:D  » [-co.oo)

be a function. The function f is lower semicontinuous at a point 

x e D i f f  f(x) = mf(x).

LEMMA 2. ((3, Theorem 4.2], also [6 , Proposition 2]). Let X be

a real linear space endowed with a semilinear topology ÏÏ, let D c X

be an open and convex set, and let f:D — » t-oo,») be a J-convex

function. The lower hull mf o f  f is convex in D. I f  (X.ST) is a

Baire space then f is continuous.

Theorem 1 give some sufficient conditions for a set to belong

to the class d (X).c
THEOREM 1. Let X be a real linear space endowed with a 

semilinear topology and let T c X be a subset. I f  there exist a 

point z e T and a sequence (U , n e IN) (IN denotes the set o f  all
n

positive integers) o f  neighbourhoods o f  z such that

“ U = <z> and - [(T n U ) + (T n U )] a U (4)
n= 1 n 2 n n n

fo r  every positive integer n, then T belongs to ^(X).

Proof. Let D be an open and convex subset of X and assume that

T c D. Let f:D --- > ]-oo,oo) be an arbitrary J-convex function such

that f | T is continuous. Hence and by (4) we get f(t) s  M for all 

t e U n T, where M is a constant, and n is a positive integer. It
n

follows from the J-convexity of f and (4) that f is bounded above 

on a nonempty open set U . By a theorem of Bernstein-Doetsch ([3],
n

[5]) f is continuous and, therefore, T belongs to the class Ac(X).

COROLLARY 1. Let X be a real linear space endowed with a 

semilinear topology. Every set T containing a second category 

subset wit the Baire property belongs to the class ^(X).
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Proof. Let S = (G \  P) u R be a subset of T such that G is a

nonempty open set and P and R are of the first category. Let us fix

a z e G \  P and take an arbitrary sequence of neighbourhoods 

(U ;n € IN) of z such n U = (z) and U c G for every positive
n=l n n n

integer n. As in Lemma 3 [5], we can prove the second part of (4). 

The rest of the proof follows from Theorem 1.

In the case of a real linear topological space, Corollary 1 

may be found in (4). It is still an open problem whether the in

clusion in (3) is strict. However, we have the following.

THEOREM 2. Let X be a real linear space endowed with a

semilinear topology, let D be an open and convex subset o f  X. I f

T c D is a J-convex subest (i.e. c T) belonging to the class

C,(X) and T is dense in D, then T belongs to the class jMX).

Proof. It is enough to show that every J-convex function

f:D --- ) [-00,00) such that f | is continuous, is continuous in D. So,

let us consider such a function f. We define a function F:D --- >

[-00,00) by the formula

(5)

It is easily seen that F(x) s f(x) for every x € T. We shall show

that

F(x) = f(x) for every x 6 T (6)

Suppose that F(x) < f(x) for an x e T. It follows from (5) that 

there exists an c > 0 with the property
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for all neighbourhoods U e 7 . By the density of T in D there 

exists a sequence (t , n e IN) c T convergent to x and such that
n

fit ) < fix) - c (7)
n

for each positive integer n. Since f | T is continuous and x e T, the 

inequality (7) is false. This proves (6 ).

Let us fix an arbitrary x e D and e > 0. According to (5), 

there exists a neighbourhood U € 7 , U c D, such that
X

Fix) - c £ inf fit). (8 )
t e u n t

Let us take an arbitrary u 6  U. Then U e ÏÏ and hence also (cf.
U

<5)).

in r .  € U n  T f< t l  < f ( x )  -  c

inf
t 6 u n T

fit) s Fiu).

Inequalities (8 ) and (9) imply that

(9)

Fix) - c £ Fiu) for every u e U,

which shows that F is lower semicontinuous at x. Due to 

arbitrariness of x F is lower semicontinuous at every point x of D.

Let x,y be arbitrary points of D. Since T is dense in D there 

exist sequences (x , n e IN) and (y ,n € IN) of elements of T
n n

convergent to x and y, respectively. We may assume (see (5)) that

191



(10)f(x ) s  F(x) and f (y ) s F(y)
n n

X + y
for any positive integer n. Evidently z = —=----  is convergent to

n 6

and, moreover, by our assumption on T, z belongs to the set T.
2 n

By the lower semicontinuity of F at every point of D, given c > 0, 

there exist a positive integer m such that

( 11)

for each positive integer n ł m. On account of (6 ), by the 

J-convexity of f and by (10) we get

F(z ) = f(z ) = f 
n n

x + y
n n

f (x ) + f(y )
n n (12)

F(x) * F(y)
2

Inequalities (11) and (12) imply

F(x*y) .  c s F(x) + F W ,

and consequently F is J-convex function in D. Since F is lower 

semicontinuous at every point of T and T e <(X), F is continuous 
in D.

Let us put
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g(x) = m ax (f(x ), F (x )), x  e D. (13)

Of course, g:D --- > [-00,00) is a J-convex function. Moreover, by

the definitions (13) and of the lower hull

m (x) ł m (x) for each x e D. 
g f

On account of Lemma 1, m^tx) = F(x) for every x € D. Hence 

m (x) — F(x), x € D.
g

Suppose that for some x € D we have 

m (x) > F(x).
g

In virtue of the lower semicontinuity of m (cf. Lemma 2) and of
g

the continuity of F in D we infer that there exist an e > 0 and a 

neighbourhood U e ÏÏ such that
X

F(u) + e < m (x) - e £ m (u)
g g

for every u e U. Thus, for every u € U, we have

F(u) + e < g(u), (14)

in virtue of the inequality m £ g (cf. the definition of the lower
2

hull). By (13) and (14) we obtain
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g(u) = f(u) fo r  every u e U.

Thus

f(u) > F(u) + e, u e U. (15)

It follows from the continuity of F at x that there exists a 

neighbourhood V e 9 , V c U, such that

F(x) < F(v) + I

for all v e V, which together with (15) implies 

f (v) > F(x) + | ,  v € V.

The last inequality is false (see (5)) and, therefore,

m (x) = F(x) for every x € D. (16)
*

Relations (6 ), (13) and (16) imply that 

m (x) = g(x) for every x e T.
g

According to Lemma 1 g is lower semicontinuous at every point of T. 

Since T e Ç(X), g is continuous in D. Hence g is bounded above on a 

nonempty open subset W of D and since f s g, f is bounded above 

on W. Thus f is continuous, in virtue of a theorem of 

Bernstein-Doetsch ([5], [6 ]). This finishes the proof of Theorem 2.
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As we see, the sets of the class ^(X) cannot be "too small". 

In [2] we have proved that there exists a subset T of real line (R 

which does not belong to ^((R) and such that T + T = IR. Now we 

shall show that there exists a "large" family of sets T which does 

not belong to Ç(R) (and hence also to «^(R)) and such that T + T =

= (R.

Let jF be the family of all non-monotonic convex functions 

defined on the space IR. Take a discontinuous additive function

a:IR — » IR such that a(Q) = {0} (Q denotes here the set of all 

rationals). For an arbitrary f 6  ?  we define

T = <x € IR; a(x) s f(x)>. (17)

First we shall show that T + T = R. Consider an x e R. There 

exists a rational r  such that the points x + r and x - r belong to 

T (since otherwise f must be monotonie). Therefore

x = — r*X~r e (T + T) i . Hence T + T = R

Let us put

F(x) = max (a(x), f(x)), x e R. (18)

Note that F is a discontinuous J-convex function. It is not hard to 
check that

m (x) = f(x), x e R (19)

(cf. also Example 1 in [41). If x e T then a(x) £ f(x) and 

consequently F(x) = f(x), x e T. Hence and by (19)
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This means (by Lemma 1) that F is lower semicontinuous at every 

point of the set T. Since F is discontinuous T does not belong to 

Ç(R).

REMARK. If we put f(x) = 0 for all x € R in (17) we get an

T + Texample of a dense set T with the properties: — ^—  c T and T *

«MR) (the function F defined by (18) is J-convex and the 

restriction of F |t (= ^  *s continuous)- This shows that the 

assumption that T € Ç(X) is essential in Theorem 2.

nM x) = F(x) fo r  evry x € T.
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