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Introduction.

N. Cioranescu [3] considered the functional equations

f(XI  : - ; (y) = i  If’(x) + f ’(y)l, yx - x * y, (1)

and

[f(Xx " y(y)] = f,(x) f,(y)> x 56 y- (2)

Relations (1) and (2) reflect the following property of the curve l 

described by the equation z = f(t): For arbitrary points A * B on l 

the slope of the chord AB is the arithmetic or geometric mean, 

respectively, of the slopes of the tangents to l  at A and at B. It 

turned out that property (1) is characteristic of parabolas with 

vertical axis, while (2 ) characterizes hyperbolas with the

asymptotes parallel to the axes of the coordinate system.
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J. Sandor [6] (cf. also [4]) generalized equations (1) and (2)

to

f (x ) - f(y) 
x - y = <p(x) + <p(y), x * y, (3)

and

f (x ) - f(y) 
x - y

= y(x) <p(y), x * y

and supplemented equations (3) and (4) by the third one

(4)

f (x ) - f(y) 
x - y <p(x) + <p(y)’ x * y (5)

He solved equations (3) and (5) in the class of all functions f,

<p : R — » R (without any regularity assumptions). However, not all 

solutions found by him are defined in the whole of R.

Equations (3), (4), (5) have the general form

f (*v~~"v~y~' = T>Wx)» v(y)i. x * y> (6)x y

T) being the sum, the product or the reciprocal of the sum of its 

arguments, respectively. (These equations are essentially

equivalent to equations of similar form, but with rj being the

arithmetic, geometric or harmonic mean, respectively). Equation (6 ) 

has a counterpart in

f ( x ) - f(y) 
x - y 'p[T)(x,y)l, x * y (7)
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Equation (7), in turn, is closely related to

xf(y)
x y-f ( -X ]  = ¥>lC(x,y)l, x * y (8)

Equations (7) and (8 ), with 7) and Ç being the arithmetic, geometric 

and harmonic mean, were solved in [2 ] in the class of functions f,

<p : I --- > (R mapping a proper real interval I into the reals. In [1]

and [5] equations (7) and (8 ), with some 7) and Ç, where dealt with 

on (subsets of) commutative fields.

As equation (7) is a counterpart of (6 ), equation (8 ) is a 

counterpart of

- ~ -yf--X) = CMx), y(y)], x * y (9)x y

In the present paper we consider equations (6 ) and (9) on subsets 

of IR or of an arbitrary commutative field. Here 7} and Ç may be the 

sum, or the product, or reciprocal of the sum of its arguments. The 

general Idea of the proofs is similar to that in [6 ] and [2 ], but 

the details are different.

In the sequel F denotes a commutative field, A c F is a subset

of F containing at least two elements and

A = A \  (0>. o

1. The sum.

We consider equation (3) in the equivalent form

f(x) - f(y) = (x-y) (y(x) + <p(y)], x,y e A, (10)

which is valid also for x = y.
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F o f equation (10)

is given by

f(x) = ax2 + 2ßx + y, <p(x) = a x + ß, x e A, (11)

where a, ß, y are arbitrary constants from  F.

Proof. It is the matter of a straightforward verification to 

check that for arbitrary oc, ß, y e F functions (11) actually 

satisfy equation (10). Conversely, suppose that functions f, <p : 

A — » F satisfy equation (10). Fix a y 6  A and write

THEOREM 1. The general solution — »

b : = f(y), c : = <p(y). (12)

Putting y = y into (10) we obtain

f(x) = b + (x-y) (y(x) + c], x € A,

which inserted back into (1 0 ) yields

(x-y) (*>(x) + c) - (y-y) ($>(y) + c)

= ((x-y) - (y-y)] (<p(x) + <o(y)], x,y e A,

U3)

that is,

(y-y) Mx) - c] = (x-y) l̂ p(y) - c], x,y 6  A. (14)
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f ( t)  -  f (s) = ( t-s )  l(ę>(t) + y(s)), t , s  e A. (19)

By Theorem 1 the functions

f(t) = a t2 + 2 ßt + y, <p(t) = at + ß, t e Â,

yield the general solution of equation (19), whence it follows 

according to (18) that the functions

f(x) = ax 1 + 2/3 + yx, >̂(x) = ax 1 + ß, x e A, (20)

(with arbitrary constants a, ß, y e F) yield the general solution 

f, <p : A --- > F of equation (17).

Now suppose that 0 € A and that the set Aq contains at least 

two elements, say u, v e Aq, u * v. If functions f, <p : A — > F 

satisfy equation (17), then, by what we have already proved, there 

exist a, ß, y e F such that (20) holds for x € AQ.Thus putting into

(17) first x = u, y = O, and next x = v, y = 0, we obtain

au' 1 + ß + V(0 ) = f(0 ) = av' 1 + ß + »»(O), (2 1 )

whence a = 0  and consequently

f(x) = yx + 2ß, (p(v) = ß, x e Aq. (22)

Moreover, (21) with a = 0 implies that f (0) = <p(0) + ß, whence with

5 := (p(0)

f(0) » ß + 6 , V(0) = Ô. (23)
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On the other hand, it is clear that the functions f, ip : A — > F 

given by (22) and (23) (with arbitrary ß, y, 8 e F) actually 

satisfy equation (17). Thus we have obtained the following 

consequence of Theorem 1.

THEOREM 2. Suppose that the set Aq contains at least two

elements. The general solution f, <p : A --- > F o f equation (17) is

given by (20) when O t  A, and by (22), (23) when 0 e A, where a, 

ß, y, 8 are arbitrary constants from F.

2. The product.

In this section we are going to deal with the equation

f(x) - f(y) = (x-y) ¥>(*) v(y). x,y e A, (24)

which is an equivalent form of (4).

THEOREM 3. The general solution f , <p: A — » F of  equation (24) 

is given by the formulas

where yQ is an arbitrary point o f  A, whereas a, ß, y, 5, A, p are 

arbitrary constants from  IF such that -0/y i  A whenever y = 0, 

A: = a5 - ßy * 0 and the quadratic equation

c2 = A (27)
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has solutions c e F; finally, c € F is an arbitrary root o f  

equation (27).

Proof. Again it is clear that functions (25) as well as 

functions (26), with the parameters as specified, satisfy equation 

(24). In order to prove the converse assume that functions f, (p : 

A — > F satisfy equation (24). We distinguish two cases.

Case I. There exists a y € A such that <p(y) = 0. Then we get by

(24)

f(x) = f(y) =: A, x e A. (28)

that is, the first part of (25). Relations (24) and (28) imply now 

that

<p(x) <p(y) = 0 for all x,y € A, x * y. (29)

If there exists a yQ e A such that >̂(yQ) * 0, then by (29) <p is 

zero on A\(yQ) and we obtain the second part of (25) with p: = 

y(yQ). If #>(x) = 0 for all x € A, then the second part of (25) 

holds with p = 0 and an arbitrary yQ € A.

Case II. We have

<p(x) * 0, x 6  A. (30)

In this case the proof is similar to that of Theorem 1. We fix y, 

ÿ 6  A, y * ÿ, and with notation (12) we obtain by (24) in turn

f(x) = b + c(x-y) <p(x), x € A, (31)
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(32)

and (cf. (30))

(33)

Suppose that y * 0. Relation (33) can be written in the form (valid 

also for x = y)

where we have put

Relation (34) gives the second part of (26), which inserted into 

(31) yields

so that with (cf. (35))

we obtain the first part of (26).
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Since by (3) we have

c * O, (37)

relation (34) implies in particular that yx + ô * 0 for all x e A, 

which means that -ô/y <t A. Moreover, by (36) and (37),

A = a5 - ßy = (by5 + c2ô) - (bôy - c2 + c2ô) = c2 * 0

and thus c is a root of equation (27).

Now suppose that y given by (33) is zero. Then

¥>(x) = c for all x e A, (38)

which may be written in form (26) with y = 0 and 5 = 1. Inserting 

(38) into (31) we obtain

2 —f(x) = b + c (x-y), x e A, 

which again may be written in form (26)

a := c2, ß := b - c2y, y = 0, 6 = 1. (39)

We have by (39) and (37)

A = a<5 - ßy = a = c2 * 0 

and thus c is a roct of equation (27).
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Now we pass to the related equation

xf(y) - yf(x) = (x-y) <p(x) <p(y), x,y e A. (40)

THEOREM 4. Suppose that the set Aq contains at least two 

elements. The general solution f , <p : A  — > F o f equation (40) is 

given by the formulas

(41)

and

and, i f  O e A, also by

(42)

(43)

In (41)-(43) yQ denotes an arbitrary point o f  A, the parameters a, 

ß, y, <5, A, p are arbitrary constants from  F such that -y/<5 £ A 

whenever ô * 0; A * 0 and equation (27) has solutions c e F; and c 

€ F is an arbitrary root o f equation (27). Here A = a<5 - ßy in 

case o /  formula (42), while A = a in case o / formula (43).
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Proof. The functions f, <p given by (41) or (42) or (43)

actually satisfy equation (40) as may be verified by the

straightforward substitution. To prove the converse assume that 

functions f, <p : A — » F satisfy equation (40). If 0 « A, then we 

apply transformation (18) and by virtue of Theorem 3 we get either 

(41) or (42). Now suppose that 0 e A and put y = 0 into equation 

(4) to obtain

f(0) = <p(x) <p(0), x e Aq. (44)

We distinguish three cases.

Case I. We have

f(0) = <p( 0) = 0. (45)

Then (44) yields no further information and, as we have just seen,

on A the functions f, <p are given either by (41) (with a y  e A ) o o o
or by (42). In the former case (45) shows that formula (41) is 

valid in the whole of A. Also in the latter case (42) is valid in 

the whole of A provided that y * 0. Now we consider the case where 

f, <p are given by (42) on Aq and by (45) at 0 and y = 0. Moreover, 

we have by Theorem 3 (cf., in particular, relation (27))

aô = aô - ßy = cZ * 0 . (46)

Formula (42) now can be written as

f(x) = a’ + ß’x, <p{x) = c \  x € Aq, (47)
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where a ’ :=a/<5, ß’ :=ß/0, c’ :=c/5. (We must have 5 * 0  because of 

(46)). Relation (46) implies that a ’ * 0 and (c’)Z = c2/S2 = oc/S = 

= a’. Suppressing the primes in (47) and talcing (45) into account 

we obtain formula (43) with n = 0.

Case II. We have

f(0 ) = 0  * <p(0 ) =: p

Then (41) holds with y = 0 and X := f(ÿ)/ÿ, with a fixed y e A .o 0

Case III. We have 

f (0 ) * 0 , p : = <p(0 ) * 0

Then we obtain (43) with c := f(0 )/9 (0 ), a := c2(* 0), ß := (f(y) - 
2 -  —

- c )/y, with a fixed y € Aq. Equation (27) is a consequence of the 

definition of a.

3. The reciprocal of the sum.

In this section we take F = IR, the field of real numbers. The 

extension of the results obtained to the case of arbitrary fields 

of characteristic different from 2  presents no serious 

difficulties. We leave this task to the reader.

Suppose that functions f, <p : A — » F (where A c IR contains at 

least two elements) satisfy equation (5) in A. The right-hand side 

of (5) is never zero, which means that

f(x) * f(y) for x * y, x,y € A.

In other words, the function f is invertible in A. Let 

g : f(A) --- » A be its inverse and write i/» := p̂og. Putting into (5)
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X = g(u), y = g(v), (u,v e f (A)), taking the reciprocals of both 

sides and multiplying by u - v we obtain

g(u) - g(v) = (u - v)[i/»(u) + i//(v)l, u,v e f(A), (48)

originally for u * v, but for u = v (48) is trivial. Up to the 

notation, equation (48) is identical with (10). By virtue of 

Theorem 1 there exist real constants a, ß, y such that

g(u) = au2 + 2ßu + y, 0(u) = au + ß, u € f(A). (49)

If a = 0, then necessarily ß * 0 and we get from (49)

f(x) = (x-y)/2ß, <p(x) = ß, x 6 A. (50)

If a » 0, then there appear some conditions binding together a, ß, 

y and the set A. Relation (49) yields (for x e A)

. . .  -ß + e(x)V ß2 -  a(y-x) , . , , /T i  " 7 ,C1.f(x) = —------------- ^-------- ------, v>(x) = c(x)V ß - a(y-x), (51)

where e ; A — > (-1,1) is an arbitrary function on A with values ±1 

only. Moreover, in order for (51) to make sense we must have

a * 0 and ß2 - a(y-x) a 0, x e A, (52)

or, equivalently, either
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(53)a  > 0 and A c [(ay-ß  )/a,m [,

or

Thus we have established that functions f, <p : A — > R

satisfying equation (5) on A must be given either by (50) or by 

(51) (with the parameters fulfilling the corresponding conditions). 

Since the converse is evident, we have proved, in fact, the 

following result.

THEOREM 5. The general solution f, ip : A --- > R (A c R contains

at least two elements) o f equation (5) in A is given by formulas

(50) and (51), where c : A --- > (-1,1} is an arbitrary function on A

with values ±1 only and a, ß, y are arbitrary real constants 

ful f i l l ing the condition ß * O in case o f formula (50) and 

condition (52) (or, what ammounts to the same, (53) or (54)) in 

case o f  formula (51).

REMARK. Relations (53) and (54) show that if inf A = -o o  and 

sup A = oo (in particular, if A = R), then the general solution f,

<p : A  > R of equation (5) in A is given by formula (50) with

arbitrary real constants ß * 0 and j.

We state yet (without proof) the result concerning the related 

equation

(55)

The proof of Theorem 6 below is similar to that of Theorems 2 and 4 

and is left to the reader.
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THEOREM 6. Let A c R and suppose that the set Aq := A\\0> 

contains at least two elements. I f  O t  A, then the general solution 

f, <p : A --- > R o f equation (55) is given by the formulas

(56)

or

(57)

where c : A — » {-1,1) is an arbitrary function on A with values 

±1 only, and a, ß, y are arbitrary real constants fu lfillin g  the 

condition ß * O in case o f formula (56) and the condition

in case o f formula (57). I f  0 e A, then the general solution

f ,  <p : A — > R o f equation (55) is given by formula (56) fo r  x e A

and by f(0) = (ß+6 1), ^(0) = S at zero. Here ß, y, S are arbitrary

real constants such that ß * 0 and ß + 3 * 0.
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