ANDRZEJ MACH

On solutions of the translation equation commuting with some function

Dedicated to Professor Zenon Moszner with best wishes on his 60-th birthday

ABSTRACT. In this paper the general construction of solutions of the translation equation (1) such that $F(f(\alpha),\chi) = f(F(\alpha,\chi))$, when $f \in \Gamma^{\Gamma}$ and $f^{3} = f$, is presented.

Let Γ be an arbitrary set and let (G, \cdot, e) be an arbitrary group. By $F:\Gamma_xG \longrightarrow \Gamma$ we denote an arbitrary solution of the translation equation

$$F\left(F(\alpha,\chi),y\right) = F(\alpha,\chi\cdot y)$$
(1)

The general solution of the translation equation has been given by Z. Moszner [2] in the following Construction C1:

1° The function $q:\Gamma \longrightarrow \Gamma$ is such that $q \circ q = q$.

 $2^{\circ} q(\Gamma) = \bigcup_{k \in K} \Gamma_{k}$ is a disjoint union of non-empty sets (fibres)

 Γ_k such that for every $k \in K$ there exists a subgroup $G_k \leq G$ and a bijection $g_k:G/G_k \longrightarrow \Gamma_k$, where G/G_k is the set of right cosets of the group G with respect to subgroup G_k .

3° Then $F(\alpha, \chi) = g_k(g_k^{-1}(q(\alpha)) \cdot \chi)$ when $q(\alpha) \in \Gamma_k$.

In this paper we will formulate and solve the problem which is essential in considerations of solutions of the translation equation on 3-adic groups (see [1]). By the results of this paper we can also describe all solutions of certain functional equation (see Remark 5).

The function $f: \Gamma \longrightarrow \Gamma$ satisfying equation

$$f^{3} = f$$
 (2)

is fixed in the sequal.

Let $F \colon \Gamma \ x \ G \longrightarrow \Gamma$ be a solution of the translation equation (1) such that

$$F(\alpha, e) = f^{2}(\alpha).$$
(3)

$$F(f(\alpha),\chi) = f(F(\alpha,\chi)), \text{ for } \alpha \in \Gamma \text{ and } \chi \in G.$$
(4)

The condition (4) means that every function $F(\cdot,\chi)$, for $\chi \in G$, commuts with the fixed function f.

The aim of this paper is the characterization of all solutions $F:\Gamma \times G \longrightarrow \Gamma$ of the translation equation (1) satisfying (3) and (4).

Let us denote:

$$A_{f} := \{ \alpha \in \Gamma: f(\alpha) = f^{2}(\alpha) \}, B_{f} := \Gamma \setminus A_{f} = \{ \alpha \in \Gamma: f(\alpha) \neq f^{2}(\alpha) \}.$$

LEMMA 1. The following inclusions are true:

- (i) $F(A_f \times G) \subseteq A_f$
- (ii) $F(B_{f} \times G) \subseteq B_{f}$.

Proof. (i). Let $\alpha \in A_f$, $\chi \in G$ and $F(\alpha, \chi) =: \beta$. We have $f(\beta) = f(F(\alpha, \chi)) = F(f(\alpha), \chi) = F(f^2(\alpha), \chi) = F(\alpha, \chi) = \beta$, and hence $f^2(\beta) = f(\beta)$, therefore $\beta \in A_f$.

(ii). Let $\beta \in B_{f}, \chi \in G$ and $F(\beta, \chi) =: \alpha$. It is not possible that $\alpha \in A_{f}$ because the equality $f(\alpha) = f^{2}(\alpha)$ implies $F(\alpha, \chi^{-1}) = F(F(\beta, \chi), \chi^{-1}) = F(\beta, e) = f^{2}(\beta)$ and

$$F(\alpha, \chi^{-1}) = F(f^{2}(\alpha), \chi^{-1}) = F(f(\alpha), \chi^{-1}) = f(F(\alpha, \chi^{-1}))$$
$$= f(F(F(\beta, \chi), \chi^{-1})) = f(F(\beta, e)) = f(f^{2}(\beta))$$
$$= f^{3}(\beta) = f(\beta),$$

and this contradiction.

REMARK 1. It is visible that if $A_f = \Gamma$ then every F of the translation equation (1) such that $F(\alpha, e) = f^2(\alpha)$ satisfies (4). Indeed: $F(f(\alpha), \chi) = F(f^2(\alpha), \chi) = F(\alpha, \chi) = f^2(F(\alpha, \chi)) = f(F(\alpha, \chi))$.

REMARK 2. It is easy to prove that $f(B_f) \subseteq B_f$ and $f^2(B_f) = f(B_f)$.

By Remark 1 it follows that in the case $A_f = \Gamma$ the condition (4) is not essential. By virtue of Lemma 1 and Remark 1 we can consider the case $B_f = \Gamma$ only.

Let us denote:

 $E_{\gamma}(\beta) := \{\chi \in G : F(\alpha, \chi) = \beta\}, \text{ for } \alpha, \beta \in \Gamma$

and

$$G_{\alpha} := E_{\alpha}(\alpha)$$

Lemma 2. For every $\alpha \in f^2(\Gamma)$ the set G_{α} is a subgroup of the group G and the equalities

$$G_{\alpha} = G_{f(\alpha)}, \tag{5}$$

$$E_{f(\alpha)}(\alpha) = E_{\alpha}(f(\alpha)) = G_{\alpha} \cdot \chi_{0}, \text{ where } \chi_{0} \in E_{\alpha}(f(\alpha))$$
(6)

are satisfied.

Proof. Because $\alpha \in f^2(\Gamma)$ then $\alpha = f^2(\beta)$, for certain $\beta \in \Gamma$. Therefore: $F(\alpha, e) = F(f^2(\beta), e) = F(F(\beta, e), e) = F(\beta, e) = f^2(\beta) = \alpha$.

By construction of solutions of the translation equation in [2] there results that G_{α} is a subgroup of group G. The equality (5) can be verified as follows:

$$\begin{split} \chi \in G_{\alpha} \Rightarrow F(\alpha, \chi) &= \alpha \Rightarrow F\left(f(\alpha), \chi\right) = f\left(F(\alpha, \chi)\right) = f(\alpha) \Rightarrow \chi \in G_{f(\alpha)}, \\ \chi \in G_{f(\alpha)} \Rightarrow F\left(f(\alpha), \chi\right) = f(\alpha) \Rightarrow f\left(F(\alpha, \chi)\right) = F\left(f(\alpha), \chi\right) = \\ f(\alpha) \Rightarrow f^{2}\left(F(\alpha, \chi)\right) = f^{2}(\alpha) \Rightarrow F(\alpha, \chi) = \alpha \Rightarrow \chi \in G_{\alpha}. \end{split}$$

We will prove (6). Let $\chi \in E_{f(\alpha)}(\alpha)$. We have $F(f(\alpha),\chi) = \alpha \Rightarrow f(F(\alpha,\chi)) = \alpha \Rightarrow f^{2}(F(\alpha,\chi)) = f(\alpha) \Rightarrow F(\alpha,\chi) = f(\alpha)$, then $\chi \in E_{\alpha}(f(\alpha))$. Hence $E_{f(\alpha)}(\alpha) \leq E_{\alpha}(f(\alpha))$. Similarly. $E_{\alpha}(f(\alpha)) \leq E_{f(\alpha)}(\alpha)$.

Now let $\chi, \chi_0 \in E_{\alpha}(f(\alpha))$. We have $\chi = \chi \cdot \chi_0^{-1} \cdot \chi_0$ and because $F(\alpha, \chi \cdot \chi_0^{-1}) = F(F(\alpha, \chi), \chi_0^{-1}) = F(f(\alpha), \chi_0^{-1})) = F(F(\alpha, \chi_0), \chi_0^{-1}) = F(\alpha, e)$ $= \alpha$, then $\chi \cdot \chi_0^{-1} \in G_{\alpha}$, whence $\chi \in G_{\alpha} \cdot \chi_0$. Therefore, $E_{\alpha}(f(\alpha)) \subseteq G_{\alpha} \cdot \chi_0$. Since for every $\chi \in G$ and $\chi_0 \in E_{\alpha}(f(\alpha))$ we have $\chi \in G_{\alpha} \cdot \chi_{0} \Rightarrow \chi = a \cdot \chi_{0}, \text{ where } a \in G_{\alpha} \Rightarrow F(\alpha, \chi) = F(\alpha, a \cdot \chi_{0}) = F(F(\alpha, a), \chi_{0}) = F(\alpha, \chi_{0}) = f(\alpha) \Rightarrow \chi \in E_{\alpha}(f(\alpha)), \text{ then } G_{\alpha} \cdot \chi_{0} \subseteq E_{\alpha}(f(\alpha)).$

The proof of Lemma 2 is finished.

According to the point 2° of Construction Cl let us denote the family of fibres of the solution F by $\{\Gamma_i\}_{i=1}^{\infty}$.

LEMMA 3. For every fibre $\Gamma_{\bf k}$ one of the following equalities is true:

$$f(\Gamma_{k}) = \Gamma_{k}$$
(6)

or

$$\exists l \in K : l \neq k \text{ and } f(\Gamma_k) = \Gamma_l$$
 (7)

Proof. Let us choose $\alpha \in \Gamma_k$ and let us consider two possibilities:

- a) $f(\alpha_0) \in \Gamma_{\mu}$,
- b) $f(\alpha_0) \in \Gamma_1$ and $l \neq k$.

Ad a). We will prove (6). Let $\alpha \in \Gamma_k$. Hence $F(\alpha_0, \chi) = \alpha$, for a certain $\chi \in G$. We have $F(f(\alpha_0), \chi) = f(F(\alpha_0, \chi)) = f(\alpha)$ and by the condition a): $f(\alpha) \in \Gamma_k$. Therefore, $f(\Gamma_k) \leq \Gamma_k$. Since

$$\forall \alpha \in \Gamma_k : f^2(\alpha) = F(\alpha, e) = \alpha$$

then

$$\Gamma_{k} = f^{2}(\Gamma_{k}) = f(f(\Gamma_{k})) \subset f(\Gamma_{k}) \subset \Gamma_{k}$$

whence $f(\Gamma_k) = \Gamma_k$.

Ad b). We will prove (7). For evry $\alpha \in \Gamma_{L}$ there exists $\chi \in G$ such that $F(\alpha_0, \chi) = \alpha$, hence $F(f(\alpha_0), \chi) = f(F(\alpha_0, \chi)) = f(\alpha)$, whence by b) : $f(\alpha) \in \Gamma$. Therefore, $f(\Gamma_{\nu}) \leq \Gamma$. Using the equality $f(f(\alpha_0)) = \alpha_0$ we obtain similarly the converse inclusion.

LEMMA 4. If the fibre Γ_k satisfies (6) and $\alpha \in \Gamma_{\nu}$ and $F(\alpha,\chi_0) = f(\alpha) \text{ then } G_{\alpha}^\circ := G_{\alpha} \cup G_{\alpha}^\circ \cdot \chi_0 \text{ is a subgroup of } G.$ Proff. Since $G_{\alpha} \subseteq G_{\alpha}^\circ$ then $e \in G_{\alpha}^\circ$. Let $\chi, \psi \in G_{\alpha}^\circ$. We will show

that:

(i)
$$\chi, \psi \in G_{\alpha} \Rightarrow \chi \cdot \psi^{-1} \in G_{\alpha} \subset G_{\alpha}^{\circ}$$
,
(ii) $\chi \in G_{\alpha}, \psi \in G_{\alpha} \cdot \chi_{0} \Rightarrow \chi \cdot \psi^{-1} \in G_{\alpha} \cdot \chi_{0} \subset G_{\alpha}^{\circ}$,
(iii) $\chi \in G_{\alpha} \cdot \chi_{0}, \psi \in G_{\alpha} \Rightarrow \chi \cdot \psi^{-1} \in G_{\alpha} \cdot \chi_{0} \subset G_{\alpha}^{\circ}$,
(iv) $\chi, \psi \in G_{\alpha} \cdot \chi_{0} \Rightarrow \chi \cdot \psi^{-1} \in G_{\alpha} \subset G_{\alpha}^{\circ}$.
Ad (i). It is evident by Lemma 2.
Ad (ii). Let $\psi = a \cdot \chi_{0}$, where $a \in G_{\alpha}$. We have

$$F(f(\alpha), \chi \cdot \psi^{-1}) = F(F(f(\alpha), \chi), \psi^{-1}) = F(f(\alpha), \psi^{-1})$$
$$= F(f(\alpha), \chi_0^{-1} \cdot \bar{a}^1) = F(F(\alpha, \chi_0), \chi_0^{-1} \cdot \bar{a}^1) = F(\alpha, a^{-1}) = \alpha$$

whence by Lemma 2

$$\chi \cdot \psi^{-1} \in E_{f(\alpha)}(\alpha) = G_{\alpha} \cdot \chi_{0}.$$

Ad (iii). Similarly, if $\chi = a \cdot \chi$, where $a \in G$, then:

$$F(\alpha, \chi \cdot \psi^{-1}) = F(F(\alpha, \alpha), \chi_0 \cdot \overline{\psi}^1) = F(\alpha, \chi_0 \cdot \psi^{-1})$$
$$= F(F(\alpha, \chi_0), \psi^{-1}) = F(f(\alpha), y^{-1}) = f(\alpha),$$

whence $\chi \cdot \psi^{-1} \in E_{\alpha}(f(\alpha)) = G_{\alpha} \cdot \chi_{0}$.

Ad (iv). Let
$$\chi = a_1 \cdot \chi_0$$
, $\psi = a_2 \cdot \chi_0$, where $a_1, a_2 \in G_0$.

We have:

$$\chi \cdot \psi^{-1} = a_1 \cdot \chi_0 \chi_0^{-1} \cdot a_2^{-1} = a_1 \cdot a_2^{-1} \in G_{\alpha}^{\circ} \subset G_{\alpha}.$$

We have shown Lemma 4.

The subgroup G_{α} is evidently invariant subgroup of G_{α}° , as the subgroup of index 2. Therefore,

if
$$W = G_{\alpha} \cdot a \in G/G_{\alpha}$$
 and $\chi_0 \in G_{\alpha}^{\circ} \setminus G_{\alpha}$ then $\chi_0 \cdot W = \chi_0 \cdot G_{\alpha} \cdot a = G_{\alpha} \cdot \chi_0 \cdot a \in G/G_{\alpha}$.

REMARK 3. If the fibre Γ_k satisfies (6) and $\alpha \in \Gamma_k$ then the function $h_{\alpha} : G/G_{\alpha} \longrightarrow \Gamma_k$ defined as follows

$$h_{\alpha}(W) := F(\alpha, W)$$

satisfies equality

$$h_{\alpha}(\chi_{0} \cdot W) = f(h_{\alpha}(W)), \text{ for every } W \in G/G_{\alpha},$$

where χ_0 is a fixed element of the set $G_{\alpha}^{\circ} \backslash G_{\alpha}$. *Proof.* For arbitrary $W \in G/G_{\alpha}$ we have:

$$f(h_{\alpha}(W)) = f(F(\alpha, W)) = F(f(\alpha), W) = F(F(\alpha, \chi_0), W)$$
$$= F(\alpha, \chi_0 \cdot W) = h_{\alpha}(\chi_0 \cdot W).$$

REMARK 4. If the fibre Γ_k satisfies (7) and $\alpha \in \Gamma_k$, $f(\alpha) \in \Gamma_1$ and the functions $h_{\alpha} : G/G_{\alpha} \longrightarrow \Gamma_k$, $h_{f(\alpha)} : G/G_{\alpha} \longrightarrow \Gamma$ are defined as follows $h_{\alpha}(W) = F(\alpha_0, W)$ and $h_{f(\alpha)}(W) = F(f(\alpha), W)$ then

$$h_{f(\alpha)}^{(W)} = f(h_{\alpha}^{(W)}), \quad \text{for every } W \in G/G_{\alpha}.$$

Indeed:

$$h_{f(\alpha)}(W) = F(f(\alpha), W) = f(F(\alpha, W)) = f(h_{\alpha}(W)).$$

DEFINITION. The solution $F \Gamma_x G \rightarrow \Gamma$ of the translation equation (1) satisfying (3), (4) is called f-compatible (respectively not f-compatible) if all its fibres satisfy condition (6) (respectively (7)).

First we will characterize solutions which are f-compatible.

THEOREM 1. Let (G, \cdot, e) be a group, Γ an arbitrary set and a function $f \in \Gamma^{\Gamma}$ satisfies equalities: $f^{3} = f$ and $A_{f} = \emptyset$. All f-compatible solutions $F : \Gamma_{x}G \longrightarrow \Gamma$ of the translation equation (1) satisfying (3), (4) and only such we obtain by the presented below.

CONSTRUCTION C2

1° Let us denote $B_{\Gamma}^{\circ} := \left\{ (f(\alpha), f^{2}(\alpha)) : \alpha \in \Gamma \right\}$. We decompose $B_{\Gamma}^{\circ} = \bigcup_{k \in K} \Gamma_{k}^{\circ}$ in a disjoint union of non-empty sets such that

a) $\forall k \in K \exists G_k^o \leq G : \text{card } \Gamma_k^o = \text{card } G/G_k^o$. b) $\forall k \in K \exists G_k \leq G : ((G_k^o : G_k) = 2)$.

2° For every k belonging to K let us denote by Γ_k^1 a selection of the set Γ_k^0 and let us denote by S_k a selection of the set $\{ \langle W, \chi_k \cdot W \rangle : W \in G/G_k \}$, where χ_k is a fixed element of the set $G_k^0 \backslash G_k$. 3° Let $\Gamma_k := \Gamma_k^1 \cup f(\Gamma_k^1)$ and let us define the bijection $g_k : G/G_k \longrightarrow \Gamma_k$ in the following way

$$g_{k}(W) := \begin{cases} g_{k}^{*}(W) : W \in S_{k}, \\ f(g_{k}^{*}(\chi_{k} \cdot W)) : W \notin S_{k}, \end{cases}$$
(8)

where $g_k^* : S_k \longrightarrow \Gamma_k^1$ is an arbitrary bijection. 4° The function $F : \Gamma_x G \longrightarrow \Gamma$ is defined as follows:

$$F(\alpha,\chi) := g_k(g_k^{-1}(f^2(\alpha)) \cdot \chi), \text{ when } f^2(\alpha) \in \Gamma_k, \chi \in G.$$
(9)

Proof. It is visible by (2) and by Construction C1 that every function $F : \Gamma_x G \longrightarrow \Gamma$ obtained by Construction C2 satisfies the translation equation and the condition (3). Because for every k from K we have

$$f(\Gamma_{k}) = f(\Gamma_{k}^{1}) \cup f^{2}(\Gamma_{k}^{1}) = f(\Gamma_{k}^{1}) \cup \Gamma_{k}^{1} = \Gamma_{k}$$

then the solution F is f-compatible.

We will show the condition (4). Let $\alpha \in \Gamma, \chi \in G, f(\alpha), f^2(\alpha) \in \Gamma_{\nu}$. We have:

$$F(f(\alpha),\chi) = g_k(g_k^{-1}(f^3(\alpha)) \cdot \chi) = g_k(g_k^{-1}(f(\alpha)) \cdot \chi)$$

and

$$f(F(\alpha,\chi)) = f(g_k(g_k^{-1}(f^2(\alpha)) \cdot \chi)).$$

In virtue of (8) : if $W \in G/G_k$ and $g_k(W) = f(\alpha)$ then $g_k(\chi_k \cdot W) = f^2(\alpha)$. Indeed: if $W \in S_k$ then $\chi_k \cdot W \notin S_k$ and $g_k(\chi_k \cdot W) = f(g_k^{\bullet}(\chi_k^2 \cdot W)) = f(g_k^{\bullet}(W)) = f^2(\alpha)$. (Similarly in the case : $W \notin S_k$). From the above

$$F(f(\alpha),\chi) = g_{\nu}(W \cdot \chi)$$

and

$$f(F(\alpha, \chi)) = f(g_k(\chi_k \cdot W \cdot \chi))$$

If $W \cdot \chi \in S_k$ then $\chi_k \cdot W \cdot \chi \notin S_k$ and we have

$$F(f(\alpha),\chi) = g_k(W \cdot \chi) = g_k^* (W \cdot \chi)$$

and

$$\begin{split} f\left(F(\alpha,\chi)\right) &= f\left(g_{k}(\chi_{k} \cdot W \cdot \chi)\right) = f\left(f(g_{k}^{*}(\chi_{k}^{2} \cdot W \cdot \chi))\right) \\ &= f^{2}\left(g_{k}^{*}(W \cdot \chi)\right) = g_{k}^{*}(W \cdot \chi), \end{split}$$

therefore

$$F(f(\alpha),\chi) = f(F(\alpha,\chi)).$$

The second case $\mathbb{W} \cdot \chi \notin S_k$ implies $\chi_k \cdot \mathbb{W} \cdot \chi \in S_k$ and

$$F(f(\alpha),\chi) = g_k(W \cdot \chi) = f(g_k^*(\chi_k \cdot W \cdot \chi))$$

and

$$f(F(\alpha,\chi)) = f(g_k(\chi_k \cdot W \cdot \chi)) = f(g_k^*(\chi_k \cdot W \cdot \chi)),$$

therefore

 $F(f(\alpha),\chi) = f(F(\alpha,\chi)).$

This ends one part of the proof of Theorem 1.

Assume now that $F:\Gamma_{\mathbf{x}}G \longrightarrow \Gamma$ is a solution of the translation equation (1) satisfying (3), (4) and f-compatible. By the general Construction Cl of solutions of the translation equation we have the following parameters: the family $\{\Gamma_k\}_{k \in K}$ of fibres such that $f^2(\Gamma) = \bigcup \Gamma_k$; the family of subgroups $\{G_k\}_{k \in K}$ and the family of $\substack{k \in K}$ $\stackrel{K}{}$ bijections $g_k: G/G_k \longrightarrow \Gamma_k$ such that the condition (9) is satisfied. It is visible that

$$\forall k \in K : G_{\alpha_k} = G_k$$
, where $\alpha_k := g_k(G_k)$.

By virtue of Lemma 4 : $G_k^{\circ} := G_{\alpha_k} \cup G_{\alpha} \cdot \chi_k$, where χ_k is an arbitrary element of G satisfying equality $F(\alpha_k, \chi_k) = f(\alpha_k)$, is a subgroup of G and obviously $(G_k^{\circ} : G_k) = 2$.

If we define

$$B_{f}^{o} := \bigcup_{k \in K} \Gamma_{k}^{o}, \qquad \text{where } \Gamma_{k}^{o} := \bigcup_{\alpha \in \Gamma_{k}} \{f(\alpha), f^{2}(\alpha)\}$$

then

card
$$\Gamma_{k}^{o} = \text{card } G_{k}^{o}$$
, for $k \in K$.

Therefore, the point 1° of construction C2 is fulfilled.

Let S_k be a selection of the set $\{(W, \chi_k \cdot W) \in G/G_k\}$ such that $G_k \in S_k$. We define the function g_k^* as follows

$$g_{\nu}^{\bullet}(W) := F(\alpha_{\nu}, W), \text{ for } W \in S_{\nu}$$

Let $\Gamma_k^1 := \{\overline{g}_k(W): W \in S_k\}$. It is visible by Remark 3 that the condition (8) is fulfilled because $g_k(W) = F(\alpha_k, W) = h_{\alpha_k}(W)$, $W \in G/G_k$.

The proof of Theorem 1 is finished.

Now, we will characterize all solutions which are not f-compatible.

THEOREM 2. Let (G, \cdot, e) be a group, Γ an arbitrary non-empty set and a function $f \in \Gamma^{\Gamma}$ satisfies equalities: $f^{3} = f$ and $A_{f} = \emptyset$. All not f-compatible solutions $F:\Gamma xG \longrightarrow \Gamma$ of the translation equation (1) satisfying (3), (4) and only such we obtain by presented below CONSTRUCTION C3

1° Let us denote $B_{f}^{\circ} := \left\{ \{f(\alpha), f^{2}(\alpha)\}: \alpha \in \Gamma \right\}$. We decompose the set B_{f}° in a disjoint union $\bigcup_{t \in T} \Gamma_{t}^{\circ}$ of non-empty sets such that

 $\forall t \in T \exists G_t \leq G : card \Gamma_t^\circ = card G/G_t.$

2° For $t \in T$ we take a selection Γ_t of the set Γ_t° and we define $\overline{\Gamma}_t := f(\Gamma_t)$ (By (2) $\overline{\Gamma}_t$ is a selection of Γ_t° and $\Gamma_t \cap \overline{\Gamma}_t = \emptyset$ by (7)).

3° For t \in T we take a bijection g:G/G \longrightarrow Γ , put $\bar{G}_{t} := G_{t}$ and we define the bijection $\bar{g}_{t} : G/\bar{G}_{t} \longrightarrow \bar{\Gamma}_{t}$ as follows

$$\bar{g}_{t}(W) = f(g_{t}(W)).$$
⁽¹⁰⁾

4° The family of sets $\langle \Gamma_{t} \rangle_{t \in T} \cup \langle \overline{\Gamma}_{t} \rangle_{t \in T}$ we denote by $\langle \Gamma_{k} \rangle_{k \in K}$ The family of subgroups $\{G_t\}_{t \in T} \cup \{\overline{G}_t\}$ we denote respectively by $\{G_k\}_{k \in K}$. The family of bijections $\{g_t\}_{t \in T} \cup \{g_t\}_{t \in T}$ we denote by (g,) respectively. 5° We put

$$F(\alpha,\chi):=g_{k}\left(g_{k}^{-1}(f^{2}(\alpha)) \cdot \chi\right), \text{ when } f^{2}(\alpha) \in \Gamma_{k}.$$

Proof. It is visible that the function $F:\Gamma_x G \longrightarrow \Gamma$ obtained by Construction C3 satisfies the translation equation and conditions (3) and (7). We will show the condition (4) only. Let $\alpha \in \Gamma$, $\chi \in G$, $f^{2}(\alpha) \in \Gamma_{t}, f(\alpha) \in \Gamma_{t}$. There exists $t \in T$ such that $\Gamma_{k} = \Gamma_{t}$ and $\Gamma = \tilde{\Gamma}$. We have

$$f(F(\alpha,\chi)) = f(g_k(g_k^{-1}(f^2(\alpha)) \cdot \chi) = fg_t(g_t^{-1}(f^2(\alpha)) \cdot \chi)$$

and

$$F(f(\alpha),\chi) = g_1(g_1^{-1}(f(\alpha)) \cdot \chi) = \overline{g}_t(\overline{g}_t^{-1}(f(\alpha)) \cdot \chi)$$

If $W \in G/G_t$ and $g_t(W) = f^2(\alpha)$ then by (10) $\overline{g}_t(W) = f(\alpha)$. From the above

$$f(F(\alpha,\chi)) = f(g_{+}(W \cdot \chi))$$

and

$$F(f(\alpha),\chi) = \overline{g}(W \cdot \chi)$$

and using (10) we obtain

$$f(F(\alpha,\chi)) = F(f(\alpha),\chi).$$

This ends the one part of the proof.

Now let $f^3 = f$ and $A_f = \emptyset$ and let us suppose that $F:\Gamma_x G \longrightarrow \Gamma$ is not compatible with f solution of the translation equation (1) satisfying (3), (4). By the general Construction Cl of solutions of the translation equation we have: the family $\{\Gamma_k\}_{k \in K}$ of fibres such that $f^2(\Gamma_k) = \bigcup_{k \in K} \Gamma_k$, the family $\{G_k\}_{k \in K}$ of subgroups of group G such that card $\Gamma_k = \text{card } G/G_k$ and the family $\{g_k\}_{k \in K}$ of bijections $g_k: G/G_k \longrightarrow \Gamma_k$.

Let $\{\Gamma_t : t \in T\}$ denote the selection of the set $\{\{\Gamma_k, f(\Gamma_k)\}: k \in K\}$. Let $\{g_t\}_{t \in T}$ denote the family of bijections adequate to $\{\Gamma_t\}_{t \in T}$. For every $t \in T$ we put:

$$\begin{split} \bar{\Gamma}_{t} &:= f(\Gamma_{t}), \\ \bar{G}_{t} &:= G_{t}, \\ \bar{g}_{t}(W) &:= f(g_{t}(W)), \text{ for } W \in G/\bar{G}_{t}, \\ \Gamma_{t}^{\circ} &:= \left\{ \{f(\alpha), \alpha\} : \alpha \in \Gamma_{t} \right\}, \end{split}$$

$$B_{f}^{o} := \left\{ \{f(\alpha), f^{2}(\alpha)\} : \alpha \in \Gamma \right\}.$$

For every $t \in T$ and every $W \in G/G_{\downarrow}$ we have:

$$g_t(W) = F(\alpha_t, W) = h_{\alpha_t}(W)$$
, where $\alpha_t := g_t(G_t)$

and by Remark 4

$$\overline{g}_{t}(W) = f(g_{t}(W)) = f(h_{\alpha_{t}}(W)) = h_{f(\alpha_{t})}(W) = F(f(\alpha_{t}), W).$$

In virtue of the proof of Theorem 1 in [2] the proof of Theorem 2 is finished.

The next theorem describes all solutions $F:\Gamma_xG \longrightarrow \Gamma$ of (1) satisfying (3), (4).

THEOREM 3. Let (G, \cdot, e) be a group, Γ an arbitrary non-empty set and the function $f \in \Gamma^{\Gamma}$ satisfies equality $:f^3 = f$. All solutions $F:\Gamma xG \longrightarrow \Gamma$ of the translation equation (1) satisfying (3), (4) and only such can be obtained by

CONSTRUCTION C4

1° Let $A_f := \{ \alpha \in \Gamma: f(\alpha) = f^2(\alpha) \}$ nad let $\phi: A_f \times G \longrightarrow A_f$ be a solution of the translation equation (1) obtained by construction C1 such that $\phi(\alpha, e) = f^2(\alpha)$.

2° We decompose the set $\{(f(\alpha), f^2(\alpha)): \alpha \in \Gamma \setminus A_f\} = B_f^1 \cup B_f^2$ in a disjoint union of sets B_f^1 , B_f^2 . Let

$$\Gamma_{1} := \left\{ \alpha \in \Gamma \setminus A_{f} : (f(\alpha), f^{2}(\alpha)) \in B_{f}^{1} \right\}, \text{ for } i=1,2.$$

3° Let $\psi_1:\Gamma_1 \times G \longrightarrow \Gamma_1$ be a compatible with f solution of the translation equation (1) satisfying (3), (4). This means ψ_1 is obtained by construction C2.

4° Let $\psi_2: \Gamma_2 \times G \longrightarrow \Gamma_2$ be a not compatible with f solution of the translation equation (1) satisfying (3), (4). This means ψ_2 is obtained by construction C3.

5° We put

$$F := \phi \cup \psi_1 \cup \psi_2.$$

Proof. It is evident that F obtained by construction C4 satisfies (1), (3), (4). Assume that $F:\Gamma xG \longrightarrow \Gamma$ is a solution of (1) satisfying (3), (4). By Lemma 1 we can put $\phi := F|_{A_f xG}$ By Lemma 3 all fibres $\{\Gamma_r\}_{ref}$ of F satisfy (6) or (7). Let us define:

$$B_{f}^{1} := \left\{ \{f(\alpha), f^{2}(\alpha)\} : \alpha \in \Gamma \setminus A_{f} \text{ and } \exists k \in K : f(\alpha), f^{2}(\alpha) \in \Gamma_{k} \right\},$$
$$B_{f}^{2} := \left\{ \{f(\alpha), f^{2}(\alpha)\} : \alpha \in \Gamma \setminus A_{f} \text{ and } \exists k, l \in K : k \neq l \text{ and} \right.$$
$$f(\alpha) \in \Gamma_{k}, f^{2}(\alpha) \in \Gamma_{l} \right\}$$

and

$$\Gamma_{i} := \left\{ \alpha \in \Gamma \setminus A_{f} : (f(\alpha), f^{2}(\alpha)) \in B_{f}^{1} \right\}, \text{ for } i = 1, 2$$

and

$$\psi_1 := F \big|_{\prod_1 x G'} \text{ for } i = 1, 2.$$

It is visible that

 $F = \phi \cup \psi_1 \cup \psi_2, \text{ where } A_f, \Gamma_1, \Gamma_2, \phi, \psi_1, \psi_2 \text{ are such as in}$ Construction C4.

The proof of Theorem 3 is finished.

REMARK 5. A.A.J. Marley of McGill University is interested in solutions of the following equation:

$$F(F(A(\ell, \alpha)x+B(\ell, \alpha), \ell), \alpha) = F(x, \ell+\alpha), \text{ where } F: \mathbb{R}^2 \longrightarrow \mathbb{R}.$$
(11)

Let us consider the equation

$$F(F(-\chi, \ell), \Delta) = F(\chi, \ell + \Delta), \qquad (12)$$

where $F:R^2 \longrightarrow R$ is such that the function $F(\cdot,0)$ is invertible.

The equation (12) is the special case of equation (11) when $A(\ell, \alpha) \equiv -1, B(\ell, \alpha) \equiv 0.$

If we put $f(x) := F(\chi, 0)$ then by (12) $:f(x) = -\chi$, therefore $f^3 = f$. Let us define $\Phi(\chi, \ell) := -F(\chi, \ell)$. We have:

$$\Phi(-\chi,\ell) = -F(-\chi,\ell) = F(F(-\chi,\ell),O) = F(\chi,\ell) = -\Phi(\chi,\ell) \text{ and}$$

$$\Phi(\chi,\ell + \Delta) = -F(\chi,\ell+\Delta) = -F(F(-\chi,\ell),\Delta) = -F(-\Phi(-\chi,\ell),\Delta)$$

$$= \Phi(-\Phi(-\chi,\ell),\Delta) = \Phi(\Phi(\chi,\ell),\Delta).$$

Therefore, Φ is the solution of the translation equation commuting with the function $f(\chi) = -\chi$.

We conclude that every solution of (12) is of the form $F(\chi, \ell) = - \Phi(\chi, \ell)$.

REFERENCES

- [1] Mach A., The translation equation on certain n-groups. Aeq. Math., in print.
- [2] Moszner Z., Structure de l'automat plein, reduit et inversible. Aeq Math. 9(1973), p.46-59.