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Introduction

Additive functions on their graphs, i.e. functions satisfying 

the functional equation

#(x+0 (x)) = 0 (x) + <£(£(x)). (1)

for the first time appeared in Dhombres’ book (13], p. 3.37). They 

were examined by G.L.Forti [4], by the present author [8 ] and by W. 

Jarczyk [5], [6 ]. G.L. Forti proved that if <f>\ IR — » R is a

continuous solution of equation (1) such that 0’(O) exists then 

4>{x) = #(l)x, (x e R). W. Jarczyk, in his extremaly interesting and 

important papers, applying nontrivial original methods, determined 

all the continuous solutions of equation (1) defined in R and in 

R+, where R+:=[0,oo). Namely he proved the following, two theorems.

THEOREM A. ((5], Theorem 4.8). I f  <p: R — > R is a continuous 

solution o f  equation (1) then either there exist nonnegative 

numbers c and c+ such that <f>ix) = c x fo r  x < 0  and <p(x) = c+x 

fo r  x ł 0 , or there exists a negative number c such that <p(x) = cx 

fo r  all x e R.
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R is a continuousTHEOREM B. ([6 ], Theorem 2.7). I f  <f>:R+

solution o f equation (1) then <p(x) = cx, (x e RJ, fo r some c ł 0.

REMARK 1. Theorem B is a particular case of Theorem A (if

0 :R --- » R satisfies (1) in R , then </>»:R --- > R given by </>• = <p in♦ + ♦
R  , <p* = O in R\R , satisfies (1) in R and is continuous if <t> is ♦ +
continuous), but the straightforward proof of Theorem B given in

[6 ] is considerably simpler and shorter then the proof of (more ge

neral) Theorem A in [5],

In [8 ] we presented without proof the following

THEOREM 1. I f  0:(O,oo) --- » (O.oo) is a solution o f equation (1)

such that the function g:(0,oo) --- » (0,œ) given by

g(x) := (x>0 ),

is monotonie then </>(x) = cx (x>0 ), for some c > 0 .

In this paper we give a short proof of Theorem 1 which is based 

on a nice geometric interpretation of equation (1). (An analytic

proof of Theorem 1 has been given in [51). Moreover, using Theorems 

A and B, we determine all the continuous solutions of the

functional equation

i/»(F (x,^(x))) = F(i//(x),i/r(0(x))) (2)

in R  and in R , where F is a given associative function. In

particular we show that these solutions form a continuous iteration 

group.

We also give a motivation for equation (1) showing that a

problem concerning the commutativity "in pairs" of two iteration 

groups leads to equation (1). This is a special case of a more 

general problem proposed by J. Schwaiger and investigated by 

Professor Z. Moszner [10] and Z. Leszczyńska, Z. Moszner [7].
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1. A geometric proof of Theorem 1

Equation (1) has the following obvious interpretation. A func

tion <f>: (O,oo) --» (0 ,oo) satisfies equation (1) iff the origin

(0 ,0 ) and the points (x,0 (x), (tf>(x),0 (</>(x))), (x+0 (x),0 (x+<£(x))) of 

the graph of </> form a parallelogram.

From this interpretation and from the monotonicity of the 

function g it follows that for every x > 0  there exists a c(x ) > O 

such that

g(x) = c(x ) for all x e I(x ) := (min<x ,<f>(x )},x + <f>(x )).o o o o o o

Let us fix an xq > 0 and let I := (a,b) be the maximal open

interval containing the interval I(xq) and such that g(x) = c:

= c(x ) for all x € I. o
First we shall show that a = 0. For an indirect proof suppose 

that a > O. Then from the maximality of the interval I it would 

follow that

x + <f>(x) s a  for every x e (0 ,a).

(The case x + <£(x) a b for every x e (0,a) cannot happen for other

wise the function g would be constant in the interval (x,x + #(x)) 

which contains I as a proper subinterval). It follows that 

lim d>(x) = 0 and, obviously, also lim g(x) = 0. Now the
X---»a- x--->a-

monotonicity of g implies that g(x) s 0  for x < a or g(x) ï  0  for 

x > a. This contradiction proves that a = 0.

Hence and from the definition of the function g we have

0 (x) = cx, xe(0 ,b).

Now it is obvious that b=<x>, since in the opposite case we could 

take x >b. This completes the proof.O
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EXAMPLE, (cfi (51). One can easily check that the function

0:(O,®) --- > (0,») given by 0(x) := 2n for x € (2° \  2°);

n=0,-l,l,-2,2,...; satisfies equation (1). This shows that the

assumption of the monotonicity of the function g in Theorem 1 is 

essential.

2. Generalizations of Theorems A and B

In this section we deal with equation (2). To generalize
2

Theorem A we assume that F:R — » R is continuous, associative,

i.e.

F(F(x,y),z) = F(x,F(y,z)), (x,y,z € R),

and that the following condition is fulfilled:

(i) There exists an e e R such that F(x,e) = x for all x 6  R, 

and for every x e R there exists a y e R such that F(x,y) = e.

Then (cf. J. Aczel [1], p. 254) there exists a (unique up to a 

multiplicative constant) homeomorphism f of R such that

F(x,y) = f ' l(f(x) + f (y)), (x,y e R). (3)

f will be called the generator of the operation f.
2

THEOREM 2. Suppose that F:R — > R is continuous, associative

and that condition (i) is fu lfilled . I f  0: R — » R is a continuous

solution o f equation (2 ) then either there exist nonnegative

numbers c and c such that - +

0 (x) =
f_l(c f(x)), 

f_1(c f(x)),4

x < 0  

X Ł 0

or there exists a negative number c such that 0 (x) = f_1(cftx)) fo r  

all x e R, where f is the generator o f the operation F.
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Proof. Applying (3) we can write equation (2) in the form

or, equivalently,

f o /̂of_1(x + f o0 of_1(x))

= fo^of *(x) + f«0 of ^fo^of ^x).

Thus the function <p:=fo^of“1 is a continuous solution of equation

(1). Now the theorem follows from Theorem A.

2
Suppose that F:R — > IR is continuous and associative. If, 

moreover, F is cancellative, i.e. each of the two relations F(x,y) 

= F(x,z), F(y,x) = F(z,x) implies that y = z, then (cf. J. Aczél

[1], p. 256; and R. Craigen, Z. Pâles [2]) there exists a (unique 

up to a multiplicative constant) homeomorphism f of IR such that

F(x,y) = f _1(f(x) + f(y)), (x.y e R+).

Evidently, in this case, the generator f has to be strictly 

increasing.

Applying now Theorem B and repeating the argument used in the 

proof of Theorem 2 we obtain the following.

THEOREM 3. Suppose that F:R2 — > R is continuous, associative 

and cancellative. I f  [//: R — » R is a continuous solution o equation

(2 ) then either there exists a nonnegative number c such that237



0(x) = f_1(cf(x)) fo r  all x 6  IR , where f is the generator o f  the 

operation F.

REMARK. Observe that under the assumptions of Theorem 3 the 

family <f_1 » (cf ): c>0 ) of all the nontrivial solutions of equation

(2) forms a continuous iteration group (see section 3 below).

3. Some motivations in iteration theory

Let I be an interval and let f: I — > I be a function. A family

<fl: t e R>

of functions fSl --- > I is said to be an iteration group o f the
1 c + t S t,function f iff f =f and f = f °f for all s,t«=IR. An iteration 

group of a function f is said to be continuous iff for every teIR 

the function f1 is continuous in I and for every x e I the function

IR a t --- » f'Xx) is continuous in IR.

Similarly we define an iteration group of a function g:I --- > I.

We say that two iteration group {f\ t e IR} and <g\ t e IR) are 

commuting in pairs iff

f^ g 1 = gV*. (t e IR). (4)

We will show that the problem of determining the continuous iter

ation groups commuting in pairs leads to functional equation (1).

Suppose that <fl: t e IR> and {g1: t € IR} are continuous iter

ation groups of functions f and g, respectively. Then there exist 

(cf. J. Aczél (1), Sections 6.11 and 6.21) homeomorphisms a and ß 

mapping I onto IR such that
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(t € IR; x € I). (5)f l (x) = a  l(t+a(x)), gl (x) = ß 1(t+ß(x)),

Moreover, a and ß are unique up to an additive constant. There is 

an xq € I such that a(xQ) = 0. Replacing, if necessary, ß by 

ß - ß(xQ) we may assume that ß(xQ) = 0. Thus the function 

<p:= a » ß 1 is a homeomorphism of IR such that 0(0) = O. Substi

tuting (5) into (4) we obtain

a 1 [t + a(ß '[t+ß(x)])j = ß*1 t + ß(a '[t+a(x)])

for all t e IR and x € I. Putting here x: = a 1 (s) we get

0 (t+ 0  1( t-*-0 (s)]) = t + 0 (t+s), (s,t 6  IR).

Setting s: = O and replacing t by 0(t) we hence obtain

0(t+0(t)) = 0(t) + 0(0(t)). (t e IR),

i.e. functional equation (1).

Using Theorem A, W. Jarczyk [5] determined the continuous 

iteration groups commuting in pairs. (Our contribution is only the 

above presented reduction of the problem of J. Schwaiger to 

equation (1), (cf. W. Jarczyk [5], p. 4). Let us mention that 

earlier a somewhat more general problem has been solved in (9) by a 

different method.
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