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ABSTRACT. The Hyers-Ulam stability of the Pexider functional 

equation is studied for set-valued functions.

Let (M,+) be an Abelian semigroup and let (Y, II • II ) be a Banach 

space. It is well known that if c is a non-negative real number and 

a map f : M:——> Y satisfies the inequality

llf(x+v) - fix) - f(y)Il s c

for x,y e M, then there exists a unique additive function a: 

M --- » Y such that

lla(x) - fix)Il s e 

for x e M (see [2]).

In this paper we give an analogue of this result for the 

Pexider functional equation for set-valued functions. The stability 

of the Pexider equation has been studied in K. Nikodem’s paper [3] 

for single-valued functions.
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Let (Y, Il * Il ) be a normed space. The functional

d(A,B) = inf<A > O: A C B + AS, B C A + AS),

where S is the closed unit ball in Y, is a metric in the set of all 

non-empty closed bounded subsets of Y. The functional d is said to 

be the Hausdorff metric.

The following lemmas collect the main properties of d.

LEMMA 1.

(a) d(A+C,B+C) = d(A,B),

(b) d(AA,AB) = IA | d(A,B)

fo r  A,B,C from the space cc(Y) o f all non-empty compact convex 

subsets o f  Y and for any real number A.

For the proof of (a) see [4], (b) is a simple corollary from 

the definition of d.

LEMMA 2. (see [1]). I f  (Y, II • II) is a Banach space, then the

metric space (cc(Y),d) is complete.

Now we shall give the main theorem of the paper.

THEOREM. Let F,G and H be some set-valued functions from an 

Abelian semigroup (M,+) with neutral element zero into the family 

o f all non-empty compact convex subsets o f a Banach space (Y, Il-II) 

and let d denote the Hausdorff  metric in (Y, Il-II). I f

d(F(x+z), G(x) + H(z)) £ c (1)

for some c £ 0 and for all x,z e M, then there exists a unique 

additive set-valued function A with non-empty compact convex values 

in Y such that

d(A(x) + F(0), F(x)) £ 4c, (2)
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which means that for every x € M the sequence (A (x)) is a Cauchy
n

sequence in cc(Y) and consequently convergent. Let A(x) be its 

limit. With respect to (5) we have
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The above inequalities imply the re la tion
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From (9), (10) and (13) we obtain

This implies (3). Similarly we can verify (4).

To demonstrate uniqueness of A suppose that (2) holds with an 

additive set-valued function A: M — » cc(Y). By induction we can 

show that

for x e M and positive integers n, whence by (2) we have 

d(nA(x) + F(0), F(nx)) ^ 4c

Dividing by n and passing to the limit as n -> # we obtain

A(x) = lim -  F(nx). nn—>oo

This proves the uniqueness of A and completes the proof.
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