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ABSTRACT. Let G be a group and let M be an object of the topos

G-Set. Let (C) denotee the following condition: X is isomorphic to

some subobject of one eof the objects M = ——:-----  We proveJ J n n times K
the main result that (C) holds is and only if card X < sup{card 

M :NelN = *(M) and {GeG: VmeM gm=m} £ {geG: VxeG: AxeX gx=x}. If G
n

is infinite then T(G) denote the least cardinal number a for which 

the power of the set of homomorphism of G into the group of

bijections of the set of the power a is greater than the power of 

G. If G is finite then we put T(G)=0. We prove that under the

assumption r(G) < *(M) if (C) holds for all X of the power less

than x(M) then {geG: VmeM gm=m} = {e}. In the paper we formulate 

the above theorems in the language of Klein’s geometry.

E.J. Jasińska and M. Kucharzewski ([2], [3]), in their attempt

to formulate the notion of geometry in Klein’s sense more 

precisely, defined a Klein space as a triplet (M,G,f), where M is 

an arbitrary non-empty set (called a fibre), (G.,e) is a group and 

f defines an operation of the group G on the set M, namely 

f : M x G --- » M,
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V x € M f(x,e) = x, (1)

V x e M V gt, g2 e G ftfU .g^.g^ = ttx .g ^ ) , (2)

which is effective, i.e.

V g € G ((V x 6 M f(x,g) = x) =» g = e).

They called a triplet (X,G,F), where X is an arbitrary non-empty 

set and F defines an operation of the group G on the set X, a 

geometric object of the Klein space (M,G,f). This definition gives 

rise to two reservations.

1) There is no "a priori” connection between the fibre of an 

object X and the fibre of a Klein space, as well as between the 

operation f of the group G on M and the operation F of this group

on X.

2) The role played by the effectivity assumption is not 

clearly seen.

In order to solve the first problem B. Szocinski proposed in [5] 

some modification, namely a restricted definition of a geometric 

object.

That definition allowed finally to settle a connection between the

fibre of a Klein space and the fibre of its geometric object as 

well as between the operations of the group on those fibres. This 

connection is established in Theorem 1 of the present paper.

Theorem 2 explains the role of the effectivity assumption in the 

definition of a Klein space. The results contained in these

theorems can be expressed in terms of notions of the topoi theory 

(power object, subobject). As an introduction to the topoi theory

we may serve a book 111.
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Let us recall the terminology of the paper [5].

By an abstract óbject we mean the triplet (M,G,f), where (G,-,e) is 

a group and f: M x G — » M is a function satisfying (1) and (2).

If the operation f is effective, then the triplet (M,G,f) is called 

a Klein space.

Two abstract objects (M^G.f ), (M ,G,f ) erne called equivalent if

there exists a bijective h: -----» Mz which satisfies the

following condition:

V m e M V g e G  Mhiml.g) = Mf^m.g)).

An abstract object (S,G,I), where I(s,g) := s for any s e S, g e G, 

is called a scalar.

If (M,G,f) is an abstract object, M c M, M* 0, and f(m,g) e M for 

each m € M and g 6  G (in this case the set M is called an 

invariant) then the triplet (M,G,f), where f = f |~ x(,, is an

abstract object. This object is called a partial object of the 

abstract object (M,G,f) determined by an invariant subset M.

Let (X,G,f) be a given abstract object. We denote by P(X) the 

family of all subsets of the fibre of this object.

The transformation:

F*: P(X) x G — » P(X),

given by the formula

F*(A,g) := F(A,g) = <F(x,g) : x 6  A>,

is obviously an operation of the group G on the set P(X) where as 

the triplet (P(X),G,F*) is an abstract object. The standard
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geometrie object of rank k of Klein space (M,G,f) is an abstract 

object (Q<k>(M),G,f<k>) (k 6  IN) defined by the following conditions:

a) for k = 1 this object is the object of all subsets of the 

fibre of the Klein space (M,G,f) i.e.

n<U(M) := P(M) and f<0 = f \

b) the object (fi(m+1)(M),G,f(m+1)) is the object of all

subsets of the fibre of the object (n<m)(M),G,f(m)) i.e.

n<m+I)(M) := P(Q<m’(M)) and f lm+1> = (f<mV.

The abstract object (X,G,F) which is equivalent to some partial 

object of a standard geometric object is called the geometric

object of the Klein space (M,G,f).

The following Theorem 1 strengthens the conclusion of the paper [6 ] 

in which it was showed that for the Klein space (M,G,f) the scalar 

(M,G,I) is its geometric object.

THEOREM 1. I f  (M,G,f) is a Klein space, (X,G,F) an abstract

object, card X < x (M) := sup {card M, card card
(2 )0 {M),...>, then (X,G,F) is the geometric object o f  (M,G,f).

Proof. Let us denote by Ord the class of ordinals numbers. We 

fix S e Ord such that : card M = card S. It is easy to check that 

using the effectivity of f for any wellordering (m ) of M the
2 y y*'- °

transitive fibre* of fi (M) determined by

*) Without effectivity of f we can prove that the
non-effectivity group of this fibre is equal to the non-effectivity 
group of the object (M,G,f) (it is obvious that this group include 
the non-effectivity }group of the object (M,G,f)).
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is equivalent to the object (G,G,L) where L(a,b) = ba.

In this way we obtain that the object (G,G,L) is a geometric object 

of rank at most 2.

Z. Moszner presented the author with the following proof of the 

condition (Wl):

For any p e IN and p ł 3, any group G and any Klein space (M,G,f),

every transitive abstract object (X,G,F) is equivalent to some

partial object of the standard geometric object of rank p.

If the object (X,G,F) is transitive, then it is equivalent to the

object ({aG , a € G},G,L), where G is some subgroup G and L(aG ,b) o o  o
= baGQ. Although it follows from [4], for the reader’s convenience

we present the direct proof. Let xq be a fixed element of X. A

set G := (a e G : F(x ,a) = x } is then a subgroup of G, because o o o
F(x ,e) = x implies e e G and when a,b e G , then F(x , a b ;  = o o  ̂ o o o
F(F(x ,b),ab *) = F(x ,a) = x . Thus ab 1 e G . The functiono o o  o
h(aG ) = F(x ,a) is a well defined bijection of a set {aG , a e G} o o  o
onto X. Indeed, when aG = bG then a o € G . Hence F(x ,a b) =o o  o o
x , then: o

|<m y : y < ß > : 0  s ß s ä |  6 £ÎZ(M)
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Moreover, we have:

which proves the equivalence of objects (X,G,F) and ({aGQ: a 6 G>, 

G.LL The tatter object vs a partiaV object of a standard geometric 

object of rank 1 of the object (G.G.L). This implies that the

object ({aGQ : a € G},G,L) and equivalent to it the transitive

object (X,G,F) are geometric objects of rank at most 3, hence of

rank at most p a 3. This means that the condition (Wl) is 

fulfilled.

Let (X,G,F) be a nontransitive abstract object. The fibre X is a 

disjoint union of orbits of the operation F, that is sets F(x,G) 

for x € X, for which the object (X,G,F) is transitive. Let a e Card 

denote the number of orbits of the operation F.

We have:

a £ card X < x (M). (3)

We shall prove that there exists k 6 IN obeying the following 

property (W2):

for all 1 a k, a is less or equal to the number of orbits of the 

operation of the standard geometric object of rank 1.

First we prove the property (W2) in the case where M is 

infinite.

Let us take k a 2 for which a £ card fik(M). Then for 1 a k we have: 

a £ card fik(M) £ card q'(M).

Now it suffices to show that for 1 a 2 the family of orbits of the
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operation of a standard geometric object of rank 1 is equipotent to1 M Mthe set n (M). We have : card G s card M = card 2 , because the

operation f is effective. Hence for any operation of the group G,Mthe power of every orbit does not exceed card 2 .

For 1 — 2 we have

card fi'(M) a card fi2(M) > card 2M a card G.

Since a fibre n'(M) is a union of orbits, we conclude that the 

family of orbits of the same object cannot have the power less than 

card n'(M). Therefore the family of orbits of the operation of the 

standard geometric object of rank 1 is equipotent to the set n'(M). 

This completes the proof of the property (W2) for infinite M.

Now we present the proof of (W2) for finite M. In virtue of (3) a 

is a positive integer. Let Bij(M) denote the group of the 

bijections of the set M. Since the operation f is effective:

card G £ card Bij(M) < Kq .

Thus the power of G is a positive integer. The power of every 

orbit is less than or equal to card G.

The positive integer k for which:

will satisfy (W2).
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Now let s = max(3,k). It follows that every transitive abstract 

object with the group G is equivalent to some partial object of the 

object ns(M).

Let <X : y € I) denote the family of orbits of the operation F 
#

(I is a set of indices). We have : card I = a. By R we denote the
S

family of orbits of the object (fis(M),G,f(s)). Since s £ k from 

(W2) we conclude that there exists an injection : j : I -----» R .
S

s s+2For y e I we define the injection i : fi (M) -----» fi (M) by :
If

i (x) = {{x},{x}uj(y)>. The range of the injection i is an

invariant subset of a fibre of the object (M). This range is 

given bv:

The abstract object determined by this range is a Klein space

equivalent to a standard geometric object of rank s.

If € I, ^  € I, ŷ  * ŷ  then the Klein spaces determined by the

ranges of the injections i , i possess disjoint fibres. A
*1 ^2

transitive abstract object determined by X is equivalent to some
If

partial object of the object

Since the fibres are disjoint, the object (X,G,F) is equivalent to 

some partial object of a standard geometric object of rank s+2. 

This completes the proof of Theorem 1.
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REMARKS.

1) The condition card X < % (M) in Theorem i can be replaced 

by an equivalent condition stating that a number of transitive 

fibres of the object (X,G,F) is less than x (M).

2) Our proof of Theorem 1 can estimate the rank of the 

abstract object (X,G,F) by s+2, where s = max(3,k).

3) We can prove Theorem 1 using the effectivity of f only to 

prove that (G,G,L) is a geometric object. In order to prove this, 

we observe that property (W2) is identical for the abstract object 

(M,G,f) and for the Klein space with the fibre M and group G/G, 

where G denotes the non-effectivity group of the object (M,G,f). 

So, we can prove (W2) without effectivity, which ends the proof.

4) So, without effectivity of f we can prove that each

abstract object (X,G,F) such that card X < *(M) and its

non-effectivity group include the non-effectivity group of the 

object (M,G,f) is a geometric object of the object (M,G,f).

Now we go on to inverting, in some sens, of Theorem 1. Let us adopt 

the following definition:

I f  the group G is infinite, then by F(G) we denote the least

cardinal number a fo r  which the power o f the set o f homomorphisms 

o f  G into the group o f bijections o f set consisting o f a elements 

is greater then the power o f  G. I f  G is finite, we take T(G) = 0. 

Now we prove:

LEMMA. r(G) s card G.
Proof. For the groups we denote by HomlG^G^ the set of

homomorphisms of the group G into the group G . It is sufficient
X / 2 -, card G

to show that for infinite groups G: card Hom(G,Bij(G)) = 2car
cardG '  *because 2 >card G. For g e G we define left translation

L :G — » G by equality:
g
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L (x) = g • x. 
s

Let H c Bij(G) denote the subgroup of right translations of G.

We have:

card H = card G, card(Bij(G)) = 2card 

Hence:

card(Bij(G)/H) = 2card G, where Bij(G)/H := {hH : h € Bij(G)}.

It is sufficient to observe that the mapping 4>:

Bij(G)/H 3  hH {G 3  g — * h o L ° h' 1 e Bij(G)> e Hom(G,Bij(G))
z

is injective.

THEOREM 2. Let T(G) < *(M) and the property (W3) hold: 

every object (X,G,F) fo r  which card X < *(M) is a (W3) 

geometric object.

Then (M,G,f) is a Klein space.

REMARKS.

1) The condition T(G) < *(M), is trivially fulfilled if

(M,G,f) is a Klein space, because in that case our Lemma asserts 

that: r(G) s card G s card Bij(M) < *(M).

2) Let us denote by G the non-effectivity group of the object 

(M,G,f). Because we car prove Theorem 1 using effectivity of f only 

to the transitive objects (X,G,F), we obtain that property (W3) 

holds if and only if for each normal subgroup H c G: (G:H) < *(M) 

implies that G c H.
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Proof o f  Theorem 2. We begin by proving that card G < *(M). 

For a finite group G this condition is evident. In the case of 

infinite groups we suppose by contradiction, that card G ł x(M). 

Consequently:

(4) the power of the family of partial objects of the objects 

n"(M), n e IN, does not exceed card G.

We will analyse the number of nonequivalent abstract object with 

the power of the fibre equal to T(G). Every abstract object with 

the group G and of the power the fibre m is equivalent at most to 

card(Bij(m )) abstract objects with the same fibre.

We have:

This inequality means that the number of abstract objects with a 

fixed fibre of the power T(G) is greater than the number of 

elements of G. The class of equivalence of an abstract object in 

relation to the equivalence relation of objects on the family of 

abstract objects with the same fibre of the power equal to TIG) has 

a power
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Therefore the number of nonequivalent abstract objects with the 

power of the fibre equal to T(G) is greater than the number of 

elements of the group G. Thus, in virtue of (4), the property (W3) 

does not hold, which contradicts our assumption. We have just 

proved that:

card G < *(M).

Hence the object (G,G,L), where L(x,g) = g • x is for some n € IN

equivalent to some partial object of the object Q(n)(M). Were

(M,G,f) not a Klein space, it would mean that the operation f is

not eff ective. Thus, the operation f has at least two distinct

unities e and e . If e and e are the unities of the operation f, 
1 2 1 2

then they are unities of the operation f*. f**,.. as well.

Consequently the operations of all objects £2<n'(M), n e IN have two

distinct unities et and e .̂ Hence, operations in all partial

objects of n<nl(M), n e IN, have two distinct unities ej and ê .

Since the operation L of the object (G,G,L) has precisely one 

unity, we arrived at contradiction. This completes the proof of 

Theorem 2.

The question arises:

For which groups G and abstract objects (M,G,f) does the property 

(W3) of Theorem 2 hold if we assume that T(G) a *(M)?

We present a partial answer, the property (W3) is fulfilled

trivially if there exist only a trivial operation of G on

the sets of the power less than *(M). It is equivalent

to the non-existence of the normal subgroup H c G such that 

1 < (G:H) < *(M).
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It is easily seen that under the assumption T(G) ^ *(M) this 

condition is particularly fulfilled if G is a simple group 

or if G is a divisible group of the power less than

Acknowledgment

The author wishes to express his gratitude to Professor Zenon 
Moszner for his numerous and valuable comments and suggestions 
during preparation of this paper. The author is especially indebted 
for directing his attention towards simplification of proofs, which 
were originally rather complicated.

REFERENCES

[1] Goldblatt R., Topol, the catégorial analysis o f logic, North 
Holland, Amsterdam 1979.

[2] Jasińska E.J., Kucharzewski M., Kleinsche Geometrie und Theorie 
der geometrischen Objekte, Coli.Math. 26(1972), pp 271-279.

[3] Jasińska E.J., Kucharzewski K., Grundlegende Begriffe der 
Kleinschen Geometrie, Demonstratio Math. 7(1974), pp 391-402.

[4] Moszner Z., Les objets abstraits comme les systèmes des 
sous-groupes, Zeszyty Naukowe Politechniki Śląskiej 1070, 
Mat.-Fiz. 64, 1990, pp. 191-201.

[5] Szociński B., • Basic concepts o f Klein geometries, Zeszyty 
Naukowe Politechniki Śląskiej 1055, Mat.-Fiz. 62, 1990.

[6] Tyszka A., On one combinatorial lemma and its geometric 
consequences, Demonstratio Math. 25, 1992 pp. 579-582.

299


