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Maria E. Pliś

Singular solutions of some nonlinear singular partial 
differential equations

Abstract. In this paper a family of formal solutions of the Laplace- 
Beltrami equation is constructed and the convergence of these formal 
series is proved by finding the majorant convergent series.

In [1] and [2] a family of singular solutions of the nonlinear singular partial 
differential equations of the form

и

is constructed. Here t G C , x G C n, l >  m,  (j , a ) G No x Ng, I m =  { (j, a); j +  
\ at \<  m,  j  <  m},

G 2{ x , t , Z ) =  gpq(x)tpZ q,
P+I«l>2

Z  =  {Zja}(j ,a)elmi Я — {Qja}(j,a)6/m •
The main idea of the construction is to use a majorant equation method 

for a family of formal solutions.
The aim of this paper is to show that in several cases the convergence of 

the formal solutions can be proved directly by finding the majorant convergent 
series.

We follow the notations used in [2], namely C  \  {0} denotes the universal 
covering of C  \  {0}, So =  {t G C \ { 0 } ;  | argf |< в} a sector in C \ { 0 } ;

(‘I ) +C‘- 1<I)(<I )  + ■'■+co(l)

AMS (1991) subject classification: 35C10.
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S ( e (s )) =  { ( e C  \  {0}; 0 <| t |< e(argf)}, where e(s) is a function defined on 
R  continuous and strictly positive, Д г =  {x 6 C n; | Xj |< r, j  — 1 , . . .  ,n }; 
and 0 + is the set of functions u(t, x) satisfying the following conditions:

i) there exist a function e(s) defined on R  continuous and strictly positive 
and a real number r >  0 such that и is holomorphic in 5(e(s)) x A ,  ;

ii) there exists a real number а >  0 such that for any в >  0

max I u (t ,x ) |= 0(| t |a) as t tends to zero in Sg.
x e A r

To facilitate the presentation of the method, we prove the main result in 
a very special case of the Laplace-Beltrami equation

d2 d2
dt2 ^  dx2 +  c и =  0. ( 2 )

It is clear that equation (2) is a particular case of equations of type (1), 
namely we can rewrite (2) in equivalent form

(  a y  д

Vdt) łdt + c
2 d2

“  =  g ^ u- (3)

Thus, m  =  2, ci(x) =  —1, co(x) =  c, b(x) =  0 and G 2{ x ,t ,Z )  =  —t2Zo2, 
with gpq{x) =  0 for (p ,q ) ±  (2 ,102) and =  “ 1- Here I02 denotes q
such that qo2 — 1 and qja =  0 for other (j, a).

It is worth pointing out that equation (2) which is linear in the classical 
sense (see e.g. [4], Chapter 2), here becomes nonlinear in the sense of [1] and it 
will be evident that the same method works for more general cases, although 
with more complicated estimates.

A characteristic polynomial of the operator on the left-hand side of (3) is 

£(p) =  P2 -  p +  c =  { p - s ) { p - {  1 - s ) )

with c -- s(l — s).

The Main Theorem. Assume that C{2k +  s) ф 0 and C{2k +  1 -  s) ф 0 
for к =  1 , 2 , . . .  . Then the equation (3) has a family of solutions belonging to 
Ö+ of the form

и l (t ,x) =  a(x)ts +  ] T ( - 1 ) P
p =  1

T -1
J C ( 2 k  +  s )

Ljfc=l

d2Pg
dx̂ P(x)(2p+I, (4)

provided Re s >  0;
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u4t,x) = b(x)t'-‘ + '£(-ir П  c(2* + 1 - ») §-2f ( ^ +1~‘, (5)
p = i  Lfc=i J

provided Re s <  1, and

u ( t , x )  =  u l ( t , x )  +  u 2 ( t , x )  ( 6 )

for 0 <  R es <  1, where a(a;) and b(x) are arbitrary functions holomorphic in 
some disk centered at 0.

This theorem is a reformulation of Theorem 3 in [1], for the particular case 
of (2).

We begin by proving Lemma 1, which is crucial for the proof of convergence 
of formal series (4). This lemma can be found in [2] without proof and our 
proof is adapted from [3] (Lemma 5.1.3).

LEMMA 1. I f  a function f  is holomorphic in some disk А д ,  and satisfies
rj

max I f {x)  |< — ------ — for 0 <  r <  R  (7)
хедг 1 J v ' { R - r ) P  J v '

for some p >  0 and C  >  0, then

df t s  ̂ (p+l)eCmax —— (X ) <  — --------- -— - г
xeAr dxj (R  — r)P+1

for 0 <  r <  R ,

and j  =  1 , . . .  ,n.

Proof. Fix r, 0 <  r <  R , x € A r and j  € { l , . . . , n } .  Set p =  R — 
I Xj I >  R  — r. Now fix e 6 (0, p). It is obvious that if | yj — Xj |< e, then 

\ V j \ < R - { p -  £)- Thus, by (7)

I'<»> i r #

for every у -  (aq, . . . ,  y j , . . . ,  i „ )  with | yj -  xj  \ <  e. By Cauchy’s inequality

Ë L , X) < .
d x j { ’ -  £{p -  e)P '

Taking e =  we obtain p -  e =  p -  ^  =  p ( l  -  =  p ^  =

P ( x +  p) i therefore e(pl_ €y  =  ( l  +  £ ) <  ^ r e <  ( R - r )l+i  > which
proves the lemma.

We will need a purely technical



16 Maria E. Plis

Lemma 2. I f  R e s  >  0, and q 6 C, then for some a >  0 and for some 
n e  N

ki 4- k2s — q a
к i -b k2 2

for every k\, k2 G N with k\ +  k2 >  n.

Proof of The Main Theorem. The proof is naturally divided into two 
steps. First, by simple computation we check that the formal series (4), (5) 
and obviously (6) are solutions of (3), and every formal solution of the form

OO

v( t , x )  =  Vi j l h (x ) t l+ns+j2(-1~s'>
tj'lj2=l

must be of the form (4), (5) or (6).
Now we pass to the second step, namely to the proof of the convergence 

of (4) and (5). We write ap(x) =  (—l) p [П/с=1 C(2k +  s )]-1 (ж) for p >  1
and cio (z) =  a(x). By Lemma 2 with q =  s and q =  1 — s

C(2p +  s) |=| (2p +  s -  s)(2p +  s -  (1 -  s)) |>

for p sufficiently large, say for p >  n, and this gives

Now fix R  >  0 such that the function a is holomorphic on A r .  Denote 
C  — m ax{a(i); x G Ar}; then a(x) satisfies (7) with p =  0. By Lemma 1 
applied 2p times

d ^ a ,  . (2p)!e2pC
max ^ „ (x) <  — ------ T7Ï-
хбДг dx2P (R  — r)2P

for 0 <  r <  R. Hence,

Proof. Since R es >  0, 0 does not belong to the segment [l,s] in C. For 

this reason fcl̂ fc2 +  ^ ^ s — a ~  dist {0, [1, s]}, for all к \,к 2 G N. We

choose a large enough n  satisfying ^  <  f , and we see that

ki +  k2s - g k\ +  k2s \ q | cr _  cr
k\ -b k2 k\ ~b k2 k\ -b k2 2 2

for ki +  k2 >  n.

|“^ ) (2р15 В ( 1 ) " " « ¥ Т д а [ 1 5 Н | ‘ 12г
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ap(x)t2p |< В
/ 2 \ 2р (2p)\e2pC  I t \2p
\<r/  ((2p +  l)!!)2(i? -  r)2P

(  2e|M  \ 2p (2p)\
\ o { R - r ) )  ( (2p+l)! ! )2

for X G A r. Thus, fixing r we get locally uniform convergence of the formal 
series

OO

ux(t,x) =  ap(x)t2p+s
p=0

for I t I sufficiently small, and for x G A r. It is immediate that и1 G Ö +. 
The same proof works for u2.
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