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Remarks on real-valued quasi-isometries

Abstract. In this paper we consider the class of solutions of the func
tional inequality

11f (x)  -  f ( v )I -  \x -  y\ I < emin{|/(x) -  f{y)\ , \x -  y\}, x,y  € IR

where /  : IR -> IR is the unknown function and e G [0,1). The two main 
tasks of the paper are to compare the above class of quasi-isometries 
with the class of quasi-additive functions and to answer the question of 
stability.

Introduction

In the previous volume of this series Z. Hajto and J . Tabor [2] introduced 
a class of approximate isometries which they called quasi-isometries. The 
method applied to define such a class was based on the J . Tabor’s idea of 
defining approximate homomorphisms (quasi-additive mappings) presented in 
[6] and [7]. This class is different from the one defined much earlier by D. H. 
Hyers and S. M. Ulam in [3]. In the present paper we are going to make 
further investigations on quasi-isometries restricting ourselves to the case of 
the real line as the domain and the target space. The m,ain tasks are the 
following. At first, we try to state a stability result of some kind. We prove 
that a quasi-isometry can be approximated by an isometry. It could be treated 
as a complementary problem to the one of Hyers-Ulam stability of isometries 
posed in [3]. Secondly, we would like to raise the question as to whether 
or not a quasi-isometric mapping has to be quasi-affine (analogously to the 
Mazur-Ulam theorem for isometries in [4]).

Let X  and Y  be normed spaces. For e >  0 a function /  : X  —> Y  is called 
e-isometry iff (cf. [3])

l l l / ( s ) - / ( y ) l | - | | ® - ! / | | | < £  for x ,y  € X . (1)
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For e 6 [0,1) a function /  : X  —У Y  is called e-quasi-isometry iff (cf. [2])

I II f {x)  -  f ( y ) II -  ||z -  y|| I <  £ min{||/(x) -  /(y)||, ||z -  y||} for x, y G X  (2) 

or, equivalently, if /  is a solution of a system of functional inequalities

|||/(z) - / M i l  -  l|z-y||l <£||/(*) -/(y)|| for x , y  € X  (3)

and
111/0*0'«-/M il -  I k “  l/ll I <e||*-y|l f o r x , y € X .  (4)

With e =  0 both (1) and (2) become the definition of isometry. Notice that if 
/  is an e-quasi-isometry, then /  +  c (with any c G Y )  is an e-quasi-isometry as 
well. That is why we may assume, without loss of generality, that / (0 )  =  0. 
The following lemma can be compiled from Proposition 1 and Proposition 2 
in [2].

LEMMA 1. For X , Y  -  normed spaces, f  : X  —У Y  and e € [0,1) the 
following conditions are equivalent

1. f  is an e-quasi-isometry;

2.

j-^11* -  yll < ll/(*) -  /МП < (1 +  e)ll® -  yll f ° r x , y e X ; (5)

3.

T-^-||a:-y|| <  ||/- 1( x ) - / _ 1(y)|| <  (l+e)||x-y|| fo r  x ,y  G f ( X ) .  (6)

Condition (5) implies injectivity of /  and since then (6) makes sense. Moreover,
(5) implies that /  is Lipschitzian.
A simple example of an e-quasi-isometry which is neither an isometry nor 
an approximate isometry (in the sense of Hyers-Ulam) can be given for the 
Euclidean plane. Let X  =  Y =  Ж2 and let /  : Ж2 -А И 2 be defined as follows

f ( x )  =  (a x \ , ß x 2) for x =  (x\ , X2) € Ж2

where a  and ß are constants taken from —̂(1 +  e), — Тчт] ^  [l+T’ 1 +  £] • Ob
viously /  satisfies (5), i.e., /  is an e-quasi-isometry. On the other hand, taking 
a  =  l+ e  and хь =  (A:,0) G Ж2, к >  0, one gets | ||/(a:jt)-/(0)||-||xfc-0|| | =  ek, 
which means that /  is not a (5-isometry for any <5.

In considerations that follows we restrict ourselves to the case X  =  Y  =  Ж.

LEMMA 2. An e-quasi-isometry f  : Ж -*  Ж is a Lipschitzian homeo- 
morphism.



Remarks on real-valued quasi-isometries 29

Proof. Suppose that /  : IR —> Ж satisfies (2) and /(0 )  =  0. As a continu
ous and injective mapping /  is strictly monotonie. Thus either

(a) >  0 
X

for X E IR \  {0}

or

(b) / ( I )  <  0 
X

for X E IR \  {0}.

Putting 0 in place of y in (5) we get 

1 f ix)
--------  <  -------  for X E 1R \  {0} in the case (a)
1+e -  X ' 1 1

or
f ix)  1
-------<  — ---------  for X E IR \  {0} in the case (b).

It yields that limI ^ _ 00/ ( x )  =  —oo, limx^ +00f ( x )  =  +oo in the case (a) 
and lim ^ -o o  f ( x )  =  -l-oo, limx-t+oof(x)  =  —oo in the case (b), whence /  is 
bounded neither above nor below and consequently, as an injective and con
tinuous mapping, has to be bijective. Because of (5) and (6) /  is Lipschitzian 
homeomorphism.

Stability

The problem of the stability of isometries was posed by D. H. Hyers and 
S. M. Ulam in [3] and exhaustively solved by M. Omladic and P. Śemrl [5]. In 
the case of real Banach spaces X  and Y  for a surjective e-isometry f  : X  Y  
satisfying /(0 )  =  0 there exists a unique surjective linear isometry I  : X  —> Y  
such that ||/(:r) — /(x)|| <  2e holds true for each x E X .  The constant 2e on 
the right hand side of the last inequality is optimal.
A question arises: is it possible to prove the stability of isometric mappings 
with respect to the class of quasi-isometries? A positive answer to this ques
tion, but only in the case considered in this paper, follows.

For /  : IR —» IR let Gr /  stand for the graph of / .  We define two subsets 
of the plane IR2 :

ICi :=  { (x, у) e ж 2 : - 1 —  <  V-  <  (1 +  £ ))  u {(0, 0)}
I 1 +  £ X )

and

IC2 ■= { (x,y)  G IR2 : —(1 +  £) ' < — <  - T - j - }  U {(0,0)}.
I X 1 +  e J

Now we prove the main result of this section.
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THEOREM 1. I f  f  : IR —»• IR is ап е -quasi-isometry (with е G [0,1)^, then 
there exists a unique isometry i : IR -»  1R satisfying the inequality

\ f (x)  -  i(x)\ <  em in{|/(x) -  Д0)|,|г(х) -г (0 )| } f or  x G 1R. (7)

Proof. We start with the case / (0 )  =  0. Putting in (5) 0 in place of y and 
using the monotonicity of /  (cf. the proof of Lemma 2) we get that Gr /  C  IC\ 
or Gr /  C  K-2- Suppose that the first case holds. For г =  id^ we have then

1
1 +  £

x — x <  / ( x )  — i(x) <  (1 +  e)x — x for x >  0

and
(1 +  e)x — x <  f ( x )  — г(х) <  ■ x — x for x <  0.

Combining these inequalities we get

|/(x) — i (x )I <  е|г(х)| for x G IR.

On the other hand, we have

y - j — X <  f {x)  <  (1 +  e)x < y--^— X for X >  0

and

y------ x <  (1 +  e)x <  f ( x )  <  y-------x for x <  0,

which yields

- e \ f { x ) \  -  - e f ( x )  <  f {x)  -  x <  e f{x)  =  e\f{x)\  for x >  0

and

-e|/(x)| =  ef{x)  <  f ( x )  -  x <  - e f { x )  =  e\f{x)\  for x <  0,

whence
|/(x) -  г(х)| <  e|/(x)| for x G К .

Thus we have obtained

|/(x) -  г(х)| <  £min{|/(x)|, |г(х)|} for x G IR,

i.e., we have proven that there exists an isometry IR —> IR satisfying (7). In 
order to prove that such an isometry is unique notice that (7) implies г(0) =  0. 
The only isometries satisfying this condition are i =  id]R and i =  — idß- 
Supposing that i =  -idjR  we would have |/(x) +  x| <  e|x| and this would 
imply Gr /  С  /С2, a contradiction.
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In the case Gr /  С  /C2 we can take the function —/  which is an e-quasi- 
isometry and G r (—/ )  C  /Ci. Applying for the function (—/ )  what we have 
proved above we obtain that (7) is satisfied with the only isometry i =  — id]R. 
If / (0 )  =  c, one can apply the above result for function / (x )  =  f ( x )  — c and 
obtain (7) in that case easily.

Quasi-additivity

As it was said at the beginning of the paper the definition of quasi-isometry 
(inequality (2)) shows close connections with the definition of quasi-additive 
mappings. Recall that function /  : X  —> Y  is called e-quasi-additive (with 
е е  [0,1)) iff (cf. [6], [7])

IIf ( x  + y) — f { x )  -  /(y)|| < emin{||/(x + y)||, ||/(x) + /(y)||}

holds true for each x ,y  G X .  It is well known, that under some additional 
assumptions on a function or on the target space an isometry I  : X  —> Y  
satisfying 7(0) =  0 is additive (cf. [4], [1]). A similar result for approximate 
isometries and approximate additive mappings can be derived from the main 
result of [5]. Namely, it is true that if X  and Y  are real Banach spaces, 
e >  0 and /  : X  —> Y  is a surjective e-isometry, then /  is 6e-additive up to a 
constant. Indeed, there exists a surjective and linear isometry i : X  —» Y  such 
that for /0 =  /  — /(0 )  there is ||/o(x) — г(ж)|| <  2e for x € X  (cf. [5]). Thus 
for x, у e X

||/o(x+y)-/o(x)-/o(y)|| =  \ \ f o { x + y ) - i { x + y ) - f o ( x ) + i ( x ) - f o { y ) + i { y ) \ \  <  6e.

It seems natural to conjecture that a result of the same type holds as far as 
quasi-isometries and quasi-additive mappings are concerned. In what follows 
we make such an attempt in the case of real-valued quasi-isometries.

THEOREM 2. I f  f  : 1R —> IR is an odd e-quasi-isometry (with e € [0, l)j, 
then f  is a continuous (2 +  e)e-quasi-additive mapping.

Proof. Let

г, г, ч / ( * О +  h) -  f ( x 0)
D \ f ( x 0) :=  lim sup --------------- -------------- ,

л ->  0+  h

ъ s, л ,• /(z o  +  Л) -  /(ж 0)D 2f { x 0) :=  lim sup ---------------------------- ,
/1—> o ~  n

D 3f ( x 0) lim inf +  ^
/1 ^ 0 +  /1

D ] / (xo) :=  lim inf / ( *° +  *> -  ^  
h—>0 h>
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be the Dini derivatives at a point xq. J .  Tabor proved ([6], Theorem 4) that 
for an odd and continuous function /  : IR ->  IR we have

(i) If there exist A,  jE? G IR, 0 <  A <  В  and i G {1,2,3,4}  such that 
A <  Dif(x) <  В  for X G IR, then

I f i x  +  y ) ~  f {x)  -  f ( y )  I <  ^  -  l )  min{|/(x +  y) I, |/(x) +  f (y) \ }

f or  ï , | / G R

(ii) If there exist C,  D  € JR, D < C  < 0 and i G {1 ,2 ,3 ,4}  such that 
D  <  Dif(x) <  C  for X G IR, then

l/(* + У) -  /(*) -  /M l < -  i)  min{|/(x + y)I, If{x) + f{y)|}
for  X, y G IR.

Putting in (5) xo +  h in place of x and xo in place of y we get

1 _  <  f ( x о +  h) ~  / ( x 0) < 1 + £  for XQ e к ,  Д e  J R \  {o},
1 ~j— £ I t

whence
 ̂ <  \Dif(x)\ <  1 +  £ for x G IR, i =  1,2,3,4.

The monotonicity and continuity of /  yields that all the Dini derivatives have 
the same sign, whence

0 <  —- — <  D i f ( x )  <  1 +  £, x G IR, i =  1 ,2 ,3,4 
1 4  £

or
— (1 +  e) <  D i f ( x )  <  — -------  < 0 ,  x G К ,  i =  1,2,3,4.

1 + £
In both cases the assumptions of Tabor’s theorem are satisfied and we get that

\ f ( x  +  y ) - f { x ) - f { y ) \  <  e ' mm{\ f {x  +  y) \ , \ f (x)  + / ( y ) | }  

holds true for x, y G IR with e' =  (1 +  e)2 — 1.

The assumption that /  is odd is essential. Indeed, we used this assumption 
in the proof of Theorem 2 as it was necessary to apply Tabor’s theorem. It 
is easily seen that the definition of quasi-additive function yields that such a 
function has to be odd. The question is whether this property can be derived 
from (2). Putting in (5) 0 in place of y and — x in place of x one obtains
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TT7sl^fsl+£
and

Г ^ 1 Г 7 Г ^ и  ^ 1 + e  t ° r x e x \ { 0}.l + e  ||/(-x)||

Multiplying the above inequalities one gets

(l +  e)2 -  \\f(-x)\\ -  (1+£)2  f O r X G X U 0 } -

If e =  0, then we have ||/(x)|| =  ||/(—x)|| which, in the case Y  =  1R, implies 
that /  is odd. Indeed, |/(x)| — | /(—1 )| implies f { —x) — f ( x )  or f { —x) — 
—f ( x) .  Suppose that f ( —x) =  f ( x) .  Putting y =  —x in (2) we would have 
2|x| <  0. Thus f ( x )  — —f{x)  for x € IR. For e >  0 the oddness of /  does not 
result from (2). It is easily seen when considering the function /  : IR —> Ш. 
defined by

(1 +  e)x , x >  0,
f(x) =  1

--------x, x <  0,
1 + e

which satisfies (2) but is not odd.

One can replace, in the above considerations, the target space by a one
dimensional normed space Y  which implies that the domain is also one
dimensional. As it is not much more general we considered the IR —> IR 
case only. And since we have restricted ourselves merely to the real case, we 
only might hope that in the general case the results of the paper are still valid.
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