Zeszyt 189 Prace Matematyczne X IV **1997**

Janusz Krzyszkowski

Generalized convex sets

Abstract. **In this paper we shall present a definition of convex set with respect to a two-parameter family of functions. It appears that these sets have some properties like convex sets in the usual sense.**

For the convenience of the reader we first repeat two definitions and one theorem from [1].

DEFINITION 1. A family *F* of continuous real-valued functions φ , defined on an open interval (a, b) is said to be a two-parameter family on (a, b) if for any distinct points x_1, x_2 in (a, b) and any numbers y_1, y_2 there exists exactly one $\varphi \in F$ satisfying

$$
\varphi(x_i)=y_i, \quad i=1,2.
$$

DEFINITION 2. Let F be a two-parameter family on (a, b) . We say that a function ψ continuous on (a, b) is convex (concave) function with respect to the family *F* if for any points $a < x_1 < x_2 < b$ the unique $\varphi \in F$ determined by

$$
\varphi(x_i) = \psi(x_i), \quad i = 1, 2 \tag{1}
$$

satisfies the inequality

$$
\psi(x) \leq \varphi(x), \quad x \in (x_1, x_2).
$$

(\geq)

THEOREM 1 (cf. [3]). *Let F be a two-parameter family on* (a, 6). *Let*

$$
a < x_1^n < x_2^n < b \quad \text{and} \quad y_1^n, \ y_2^n \quad \text{be real numbers},
$$

for $n = 0, 1, 2, \ldots$, *such that*

AMS (1991) subject classification: Primary 52A01, Secondary 26A51.

$$
x_i^0 = \lim_{n \to \infty} x_i^n, \ \ y_i^0 = \lim_{n \to \infty} y_i^n, \ \ i = 1, 2.
$$

Let φ_n , where $n = 0, 1, 2, \ldots$, *be the element of F determined by the relations*

$$
\varphi_n(x_i^n) = y_i^n, \quad i = 1, 2.
$$

Then $\varphi_n \to \varphi_0$ uniformly on every compact subinterval of (a,b) .

Now we give a definition of convex set with respect to a two-parameter family. First we introduce some notation.

Let F be a two-parameter family on (a, b) , $A, B \in (a, b) \times \mathbb{R}$, $A = (x_1, y_1)$, $B = (x_2, y_2)$. If $x_1 = x_2$, then

$$
[A, B] := \{(x_1, y) : y_1 \le y \le y_2\}, \quad y_1 \le y_2,
$$

$$
[A, B] := \{(x_1, y) : y_2 \le y \le y_1\}, \quad y_1 > y_2.
$$

If $x_1 \neq x_2$, then

$$
[A, B] := \{(x, \varphi(x)) : x_1 \le x \le x_2\}, \quad x_1 < x_2,
$$

$$
[A, B] := \{(x, \varphi(x)) : x_2 \le x \le x_1\}, \quad x_1 > x_2,
$$

where $\varphi \in F$ is determined by

$$
\varphi(x_i) = y_i, \quad i = 1, 2. \tag{2}
$$

DEFINITION 3. A set $D \subset (a, b) \times \mathbb{R}$ will be called convex with respect to a two-parameter family F (or briefly F-convex) iff for any $A, B \in D$ we have

$$
[A, B] \subset D.
$$

If F is the family of straight lines, then a set is F -convex iff it is convex in the usual sense.

Let $C(a, b)$ denote the set of all continuous function $\psi : (a, b) \to \mathbb{R}$. Set

$$
D^{\psi} := \{(x, y) : x \in (a, b), y \ge \psi(x)\},\
$$

$$
D_{\psi} := \{(x, y) : x \in (a, b), y \le \psi(x)\},\
$$

for $\psi \in C(a, b)$.

We give a generalization of the theorem: "A function ψ is convex (concave) iff the set D^{ψ} (D_{ψ}) is convex."

THEOREM 2. Let F be a two-parameter family on (a, b) and let $\psi \in C(a, b)$. *Then*

a) ψ is convex function with respect to the family F iff the set D^{ψ} is *F-convex;*

b) ψ is concave function with respect to the family F iff the set D_{ψ} is *F -convex.*

Proof. We shall prove *a),* the proof of *b)* is analogous. Let us assume that ψ is convex function with respect to F and let

$$
A=(x_1,y_1), B=(x_2,y_2), A,B\in D^{\Psi}.
$$

Hence

$$
y_i \ge \psi(x_i), \qquad i = 1, 2. \tag{3}
$$

If $x_1 = x_2$, then obviously $[A, B] \subset D^{\psi}$. Let $x_1 \neq x_2$. Without loss of generality we may assume that $x_1 < x_2$. Then

$$
[A, B] = \{ (x, \varphi(x)) : x_1 \le x \le x_2 \},\
$$

where $\varphi \in F$ is determined by (2). From (2) and (3) we deduce that

$$
\varphi(x_i) \ge \psi(x_i), \quad i = 1, 2. \tag{4}
$$

Suppose, on the contrary, that $[A, B] \not\subset D^{\psi}$. This means that there exists a $c \in (x_1, x_2)$ such that

$$
\varphi(c) < \psi(c). \tag{5}
$$

Hence, by the continuity of φ and ψ and from (4), it follows that there exist $c_1 \in (x_1, c)$ and $c_2 \in (c, x_2)$ such that

$$
\varphi(c_i)=\psi(c_i), \quad i=1,2.
$$

Since ψ is convex with respect to *F*,

$$
\varphi(x)\geq \psi(x),\quad \ x\in (c_1,c_2).
$$

In particular, $\varphi(c) \geq \psi(c)$, contrary to (5).

To prove the converse implication, we assume that the set D^{ψ} is F-convex. Let $a < x_1 < x_2 < b$ and let $\varphi \in F$ be determined by (1). We have to show that

$$
\psi(x)\leq\varphi(x),\quad \ x\in(x_1,x_2).
$$

Set

$$
A:=(x_1,\psi(x_1)),\ \ B:=(x_2,\psi(x_2)).
$$

It is evident that $A, B \in D^{\psi}$. Since D^{ψ} is F-convex, $\{A, B\} \subset D^{\psi}$. Hence

$$
(x,\varphi(x))\in D^{\psi}\quad \text{for}\quad x\in [x_1,x_2],
$$

i.e. $\psi(x) \leq \varphi(x)$ for $x \in (x_1, x_2)$. This completes the proof.

If $\varphi \in F$, then φ is convex and concave with respect to *F*. This way from Theorem 2 we get

REMARK 1. *If* $\varphi \in F$, *then the sets* D^{φ} , D_{φ} are *F*-convex.

Now we give an example of a set, which is *F -* convex but is not convex in the usual sense and an example of a set, which is convex in the usual sense but is not F -convex.

Example 1. **Let**

$$
F := \{ \alpha x + \beta - x^2 : \alpha, \beta \in \mathbb{R}, \ x \in \mathbb{R} \} \quad \text{and} \quad \varphi(x) := -x^2, \ x \in \mathbb{R}.
$$

Since $\varphi \in F$, the set D^{φ} is F-convex (see Remark 1). It is evident that D^{φ} is not convex in the usual sense.

Example 2. Let

 $D := \{(x, y) : x^2 + y^2 \le 1\}$ and $F := \{\alpha x + \beta + 2x^2 - 2 : \alpha, \beta \in \mathbb{R}; x \in \mathbb{R}\}.$

It is obvious that D is convex in the usual sense. We prove that D is not F convex. Consider points $A, B \in D$ such that $A = (-1,0), B = (1,0)$. A simple computation shows that the unique $\varphi \in F$ satisfying

$$
\varphi(-1)=0, \quad \varphi(1)=0
$$

is $\varphi(x) = 2x^2 - 2$. Therefore

$$
[A,B]=\{(x,2x^2-2):-1\leq x\leq 1\}.
$$

Since $(0, -2) \notin D$, $[A, B] \notin D$. This means that the set is not F-convex.

It is well known that if *D* is a convex set, then int *D* and cl *D* are convex sets. We shall give a generalization of this theorem. First we prove a lemma needed in the sequel.

LEMMA 1. Let F be a two-parameter family on (a, b) , $a < x_1 < x_2 < b$, $y'_1 < y_1, y'_2 < y_2$. Assume that $\varphi_1, \varphi_2 \in F$ and

$$
\varphi_1(x_i) = y_i \, , \quad i = 1, 2; \qquad \varphi_2(x_i) = y_i' \, , \quad i = 1, 2.
$$

Put

$$
P := \{(x, y) : x_1 \le x \le x_2, \ \varphi_2(x) \le y \le \varphi_1(x)\},\
$$

$$
F_1 := \{\varphi \in F : y_1' \le \varphi(x_1) \le y_1, \ y_2' \le \varphi(x_2) \le y_2\}.
$$

Under the above assumptions

$$
P = \bigcup_{\varphi \in F_1} \bigcup_{x \in [x_1, x_2]} (x, \varphi(x)).
$$

Proof. If $\varphi \in F_1$, then

$$
\varphi(x_1)\leq y_1=\varphi_1(x_1),\quad \varphi(x_2)\leq y_2=\varphi_1(x_2).
$$

Hence

$$
\varphi(x)\leq \varphi_1(x),\quad x\in [x_1,x_2],
$$

because F is a two-parameter family. Similarly $\varphi(x) \geq \varphi_2(x)$ for $x \in [x_1, x_2]$. This means that

$$
\bigcup_{\varphi \in F_1} \bigcup_{x \in [x_1, x_2]} (x, \varphi(x)) \subset P.
$$

To prove the converse inclusion, it suffices to show that if $(x_0, y_0) \in P$, then

$$
(x_0,y_0)\in\bigcup_{\varphi\in F_1}(x_0,\varphi(x_0)).
$$

Fix $(x_0, y_0) \in P$, i.e.

$$
x_1\le x_0\le x_2,\quad \varphi_2(x_2)\le y_0\le \varphi_1(x_0).
$$

If $y_0 = \varphi_2(x_0)$, then $(x_0, y_0) = (x_0, \varphi_2(x_0))$ and consequently

$$
(x_0,y_0)\in\bigcup_{\varphi\in F_1}(x_0,\varphi(x_0)),
$$

because $\varphi_2 \in F_1$.

The same conclusion can be drawn if $y_0 = \varphi_1(x_0)$.

Let $\varphi_2(x_0) < y_0 < \varphi_1(x_0)$ and let $\varphi_3 \in F$ be determined by

 $\varphi_3(x_1) = y'_1, \quad \varphi_3(x_2) = y_2$.

It is seen at once that $\varphi_3 \in F_1$ and

$$
\varphi_2(x)\leq \varphi_3(x)\leq \varphi_1(x),\quad x\in [x_1,x_2].
$$

Three cases are possible

- 1. $y_0 = \varphi_3(x_0)$,
- 2. $y_0 > \varphi_3(x_0)$,
- 3. $y_0 < \varphi_3(x_0)$.
- 1. It is evident that

$$
(x_0,y_0)\in \bigcup_{\varphi\in F_1}(x_0,\varphi(x_0)).
$$

2. Let $\varphi_4 \in F$ be determined by

 $\varphi_4(x_0) = y_0$, $\varphi_4(x_2) = y_2$.

Since $\varphi_1(x_2) = \varphi_4(x_2) = \varphi_3(x_2)$ and $\varphi_3(x_0) < \varphi_4(x_0) < \varphi_1(x_0)$, $\varphi_3(x) < \varphi_4(x) < \varphi_1(x), \quad x \in (a, x_2).$

In particular, $\varphi_3(x_1) < \varphi_4(x_1) < \varphi_1(x_1)$. But $\varphi_1(x_1) = y_1$ and $\varphi_3(x_1) = y'_1$. Therefore $y_1' < \varphi_4(x_1) < y_1$, i.e. $\varphi_4 \in F_1$. Hence it follows that

$$
(x_0,y_0)\in\bigcup_{\varphi\in F_1}(x_0,\varphi(x_0)).
$$

3. The proof is similar to the proof in case 2, then we omit it.

THEOREM 3. Let F be a two-parameter family on (a, b) and let $D \subset$ $(a, b) \times \mathbb{R}$. If *D* is *F*-convex, then int *D* and cl *D* are *F*-convex.

Proof. To prove the first part of the theorem, it suffices to show the following implication

$$
A, B \in \text{int } D \Rightarrow [A, B] \subset \text{int } D.
$$

Let $A, B \in \text{int } D$ and $A = (x_1, y_1), B = (x_2, y_2)$. Consider first the case $x_1 = x_2$. Since $A, B \in \text{int } D$, there exists $r > 0$ such that

$$
K(A,r) \subset D \quad \text{and} \quad K(B,r) \subset D,
$$

where $K(C, r)$ is the open ball centered at C and with the radius r. Therefore

$$
\{(x,y_i): x_1-r < x < x_1+r\} \subset D, \quad i=1,2.
$$

Hence

$$
\{(x,y): x_1-r < x < x_1+r, y_1 \leq y \leq y_2\} \subset D,
$$

because *D* is *F*-convex. It follows that for any $C \in [A, B]$ we have $K(C, r) \subset$ *D.* Consequently

 $[A, B] \subset \text{int } D.$

Consider now the case where $x_1 \neq x_2$. Let for example $x_1 < x_2$. Then

$$
[A, B] = \{ (x, \varphi(x)) : x_1 \le x \le x_2 \},
$$

where $\varphi \in F$ is determined by (2). Analysis similar to that in the proor of the case where $x_1 = x_2$ shows that there exists an $r > 0$ such that

$$
K(A,r) \subset D \quad \text{and} \quad K(B,r) \subset D.
$$

Hence

$$
E_1 := \left\{ (x_1, y) : y_1 - \frac{r}{2} \le y \le y_1 + \frac{r}{2} \right\} \subset D,
$$

$$
E_2 := \left\{ (x_2, y) : y_2 - \frac{r}{2} \le y \le y_2 + \frac{r}{2} \right\} \subset D.
$$

Let $\varphi_1, \varphi_2 \in F$ be determined by the conditions

$$
\varphi_1(x_i) = y_i + \frac{r}{2}, \quad i = 1, 2,
$$

\n $\varphi_2(x_i) = y_i - \frac{r}{2}, \quad i = 1, 2.$

It follows from the definitions of φ_1, φ_2 and φ that

$$
\varphi_2(x) < \varphi(x) < \varphi_1(x), \quad x \in [x_1, x_2]. \tag{6}
$$

Since *D* is *F*-convex and $E_1, E_2 \subset D$, we have

$$
\{(x,y): x_1 \le x \le x_2, \ \varphi_2(x) \le y \le \varphi_1(x)\} \subset D, \tag{7}
$$

by Lemma 1. Let

$$
\begin{aligned} &r_1:=\inf\{d((x,\varphi(x)),(\bar x,\varphi_1(\bar x))):x,\bar x\in[x_1,x_2]\},\\ &r_2:=\inf\{d((x,\varphi(x)),(\bar x,\varphi_2(\bar x))):x,\bar x\in[x_1,x_2]\},\\ &\bar r:=\min(r_1,r_2), \end{aligned}
$$

where *d* is the euclidean metric. By the continuity of φ , φ_1 and φ_2 , and from (6) we get $r_1 > 0$, $r_2 > 0$. Therefore $\bar{r} > 0$. It follows from the definition of \bar{r} and from (7) that for any $C \in [A, B]$ we have $K(C, \bar{r}) \subset D$. This means that $[A, B] \subset \text{int } D$, which completes the proof of the first part of the theorem.

To prove the second part of the theorem, it suffices to show the following implication

$$
A, B \in \text{cl } D \Rightarrow [A, B] \subset \text{cl } D.
$$

Let $A, B \in \text{cl } D$ and $A = (x_1, y_1), B = (x_2, y_2)$. First we consider the case where $x_1 = x_2$. Since $A, B \in \text{cl } D$, there exist sequences $\{A_n\}, \{B_n\} \subset D$ such that

$$
A_n \to A \quad \text{and} \quad B_n \to B.
$$

Hence $[A_n, B_n] \subset D$ for $n = 1, 2, \ldots$, because *D* is *F*-convex. Fix $r > 0$ and let $n_0 \in N$ satisfies the conditions

$$
d(A, A_{n_0}) < r, \quad d(B, B_{n_0}) < r.
$$

It is easy to check that for any $C \in [A, B]$ we have

$$
[A_{n_0}, B_{n_0}] \cap K(C, r) \neq \emptyset.
$$

It follows from this that for any $C \in [A, B]$

$$
D \cap K(C,r) \neq \emptyset.
$$

Consequently

$$
[A,B]\subset\operatorname{cl} D.
$$

Consider now the case where $x_1 \neq x_2$. Let for example $x_1 < x_2$. Then

$$
[A, B] = \{ (x, \varphi(x)) : x_1 \le x \le x_2 \},
$$

where $\varphi \in F$ is determined by (2). As in the proof in the case where $x_1 = x_2$, there exist sequences $\{A_n\}, \{B_n\} \subset D$ such that

$$
A_n \to A
$$
, $B_n \to B$ and $[A_n, B_n] \subset D$ for $n = 3, 4, \ldots$.

Let $A_n = (x_n, y_n), B_n = (x'_n, y'_n)$. Whithout loss of generality we may assume that $x_n < x'_n$ for $n = 3, 4, \ldots$. Obviously, $x_n \to x_1$, $y_n \to y_1$, $x'_n \to x_2$ and $y'_n \to y_2$. Let $\varphi_n \in F$ for $n = 3, 4, \ldots$, be determined by the conditions

$$
\varphi_n(x_n)=y_n\ ,\quad \varphi_n(x'_n)=y'_n.
$$

Then

$$
[A_n, B_n] = \{(x, \varphi_n(x)) : x_n \leq x \leq x'_n\} \subset D, \quad n = 3, 4, \ldots
$$

By Theorem 1 $\varphi_n \to \varphi$ uniformly on every compact subinterval of (a, b) . From this we deduce that

$$
[A,B]\subset \operatorname{cl} D,
$$

which proves the theorem.

An easy consequence of the definition of F-convex set is

LEMMA 2. *Let F be a two-parameter family on* **(a,** *b). The intersection of* any family of F-convex subsets of $(a, b) \times \mathbb{R}$ is F-convex.

From the above lemma and from Remark 1 it follows

REMARK 2. *If* $\varphi_1, \varphi_2 \in F$ *, then the set*

 $D^{\varphi_1} \cap D_{\varphi_{\varphi}}$

is F -convex.

As in the case of the usual convexity, we may introduce the definition of the convex hull.

DEFINITION 4. Let F be a two-parameter family on (a, b) and $D \subset (a, b) \times$ IR. The set

conv \bigcap $D := \bigcap$ $\{U \subset (a, b) \times \mathbb{R} : U \text{ is } F\text{-convex, } D \subset U\}$

is called the convex hull of *D* with respect to the family F.

From this definition and from Lemma 2 we get

THEOREM 4. Let F be a two-parameter family on (a, b) and let D, D_1 , $D_2 \subset (a, b) \times \mathbb{R}$. *Then*

- *1.* $D \subset \text{conv}_F D$,
- 2. conv $_F D$ is the smallest F-convex set containing D ,

3. D is F-convex set iff $D = \text{conv}_F D$,

4. if $D_1 \subset D_2$, then conv_{*F*} $D_1 \subset \text{conv}_F D_2$.

One can prove that if *D* is a closed (an open) set, then the set conv \overline{P} *D* is closed (open).

D. Brydak in [2] has proved the following

THEOREM 5. *Let F be a two-parameter family of differentiable functions on* (a, b) *such that for any* $x_0 \in (a, b)$ *and for any real numbers* y_0, y_1 *there exists exactly one element* $\varphi \in F$ *satisfying*

 $\varphi(x_0) = y_0, \quad \varphi'(x_0) = y_1.$

Suppose that a function ψ *is differentiable on* (a, b) .

Under the above assumptions the following conditions are equivalent:

- (A) the function ψ is convex with respect to the family F ;
- (B) *for any* $x_0 \in (a, b)$

$$
\psi(x)\geq \varphi_{x_0}(x)\quad \textit{for}\;\; x\in (a,b),
$$

where $\varphi_{x_0} \in F$ *is determined by*

$$
\varphi_{x_0}(x_0) = \psi(x_0), \quad \varphi_{x_0}(x_0) = \psi'(x_0). \tag{8}
$$

We are able to give a simpler proof of the implication $(B) \Rightarrow (A)$ than that given in [2].

We see at once (from (B)) that

$$
D^{\psi} = \bigcap_{x_0 \in (a,b)} D^{\varphi_{x_0}},
$$

where $\varphi_{x_0} \in F$ is determined by (8). By Remark 1, the set $D^{\varphi_{x_0}}$ is F-convex (for any $x_0 \in (a, b)$). It follows from Lemma 2 that the set D^{ψ} is F-convex and consequently ψ is convex with respect to the family F (see Theorem 2).

References

- [1] Beckenbach E. F., *Generalized convex functions,* Bull. Amer. Math. Soc. 43 (1937), 363-371.
- [2] Brydak D., *Application of generalized convex functions to second order differential inequalities,* General Inequalities 4 (4th International Conference on General Inequalities, Oberwolfach, 1983), W. Walter (ed.), Birkhäuser Verlag, Basel, Boston, Stuttgart, 1984, 297-305.

[3] Tornheim L., *On n-parameter families of functions and associated convex functions,* Trans. Amer. Math. Soc. 69 (1950), 457-467.

> *Institute of Mathematics Pedagogical University Podchorążych 2 PL-30-084 Kraków Poland*

Manuscript received March 13, 1995