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Quasi-linear mappings

Abstract. Let E \ , E2 be real normed spaces and let e € [0,1). The 
paper deals with the system of inequalities

II f(x  +  y) -  f (x)  -  /(y)|| < emin{||/(x +  y)||,||/(x) + /(y)||}

for x , y e E lf

II f{ax) -  a/(x)|| < emin {||/(q x)||, ||a/(x)||} for x € E i t a 6 R , 

where f  maps E\ into Eo.
We prove that some basic theorems concerning linear operators also hold 
for mappings satisfying these inequalities. In the next part of the paper 
we assume additionally that E 2 — R  and /  is continuous. Then we prove 
that there exists a continuous linear mapping L : Ei —t R  such that

I f (x)  -  L(x) |< emin {| f(x)  |, | L(x) |} for x £ Ei .

In the set of such linear mappings there exists a unique one, which is the 
best linear approximation of / .

1. Introduction

S. M. Ulam posed in [5] the following question: “Wheq does for a nearly 
linear mapping /  there exist a linear mapping which is near to / ? ” Let E \  be 
a real vector space and E 2 a real normed space. D. H. Hyers [1] meant the 
term “nearly linear mapping” as a mapping /  : E \  -> E 2 satisfying for some 
e >  0 the following inequality

\ \ f (x +  y) -  f {x)  -  f ( y ) \ \ < £  for X,y e  E l .  (1)

In the present-day terminology such a mapping is called nearly additive or 
approximately additive. By a linear mapping we mean a mapping g : E \  -A E 2
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satisfying the following conditions

g{x +  y) =  g{x) +  g{y) for ж, y G S i ,  (2)

д(ах) — ад(х) for ж € S i ,  а  £ R . (3)

Following Hyers’ idea we may say that a mapping /  : S i  —> S 2 is nearly linear 
if it is nearly additive and nearly homogeneous, i.e. if it satisfies (1) and

| | / ( а ж )  -  а/(ж)|| <  e for x £ S i ,  а  £ R. (4)

In fact such a mapping must be linear (cf. [4]). Inequalities (1) and (4) can 
be obtained by replacing in (2) and (3) equalities by “equalities up to e " . In 
other words, (1) and (4) mean that we deal with a linear mapping up to some 
error, namely, with an absolute error less than or equal to e. But from the 
point of view of applications an absolute error is not so important as a relative 
error. Therefore it is reasonable to investigate additive up to small relative 
errors mappings, i.e. mappings /  : S i  —> S 2 satisfying for some £ £ [0,1) the 
inequality

||/(x +  y) -  /(ж) -  f { y ) Il <  e min { ||/( ж  +  у ) ||, ||/(ж) +  /(y)||}
(5)

for ж ,  y £ S i .

Such a mapping /  is called quasi-addititve (cf. [3]). A similar reasoning leads 
to the following generalization of equation (3)

||/(ож) -а/(ж )|| < £ min {У /(аж )II, I а  | ||/(ж)||} for ж £ S b а  £ R ,  (6)

where e £ [0,1).
A mapping /  : S i  —> S 2 satisfying (5) and (6) will be called e-quasi-linear 
(quasi-linear if the value of e is inessential).

2. General properties

It appears that quasi-linear mappings have properties very similar to those 
of linear ones.

T h e o r e m  1. Let E \ be a real vector space, S 2 a real normed space and 
let f  : S i  —> S 2 be quasi-linear. Then

(i) ker f  is a subspace of S i ,
(ii) f ( x )  =  f ( y ) o x - y e k e r f  for x , y  £ E\  .
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Proof, (i). By (6) /(0 )  =  0, i.e. 0 G kerf .  If x, y G ker /  then by (5) 
x +  y G ker / .  If a; G ker /  then we obtain from (6) that ах G ker /  for a  G R . 
(ii). Suppose that f ( x )  — f (y ) .  By Proposition 2 from [3] /  is odd. Making 
use of (5) and the oddness of /  we obtain

IIf i x  -  y)l| =  | | / ( *  -  y) -  f i x )  -  f i - y )II <  e ||/(* )  +  / (  y ) II =  o,
which means that x — y G ker / .
Now suppose that x — y G ker / .  Then by (5)

11/0*0 -  f ( v )  II =  11/(2/ +  ( *  -  У) )  -  f i v )  -  f i x  -  2/) ll
<  emin {||/(7/)II, ||/(x — 2/)II} = 0 ,

i.e. f{ x )  =  f (y ) .

THEOREM 2. Let E \ ,  E<i be real normed spaces and let f  : E \  —> E 2 be 
quasi-linear. Then the following conditions are equivalent:

(i) f  is continuous,
(ii) there exists a c G R  such that

1№ )11.<Ф Н 1 for x E E \ ,

(in) f  is bounded on the unit sphere S  =  {x E E \ : ||x|| =  1}.

Proof, (i) =>(ii). It is clear that condition (ii) is equivalent to the following
one

Su p { ! M L  x € B „ x # o } < o o .

Suppose the contrary i.e.

s u p j M g l  : X G Е ъ х ф  o j  =  00.

Then there exists a sequence {xn}, xn G E \  \  {0} such that

>  n for n  G N . (7)
IFnll

Let zn :=  и1 иx n . Obviously zn -> 0. Since /  is continuous and /(0 )  =  0,
n\\Xn \\

lim f ( z n) =  0. (8)
n —>00

By (6) we have

f { z n) ------ J — rJ{xn )  <  - ip -f i  ||/(a:n)|| for n G N ,
n||Xn || 77.||Х7г||

whence by (7) we get
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Il/(*n)ll >  (1 -  e) * =H/(x,)|| >  1 -  £ for n e  N , 
n||xn||

which contradicts (8).
(ii) =>(iii). Obvious.
(iii) =>(i). Let

||/(rr) U <  M  for X  €  S.

For an arbitrary x G E i  such that 0 <  ||ж|| <  1, we have by (6)

l l / ( * ) l l  Ц / ( i N I j j f j i )  I  <  (e  +  l)||x|| Ц / ( î j l r ï )  I <  (e  +  1 )M.

Hence /  is locally bounded at zero. By Theorem 1 from [3] /  is continuous.

For the next theorem we need the following simple lemma.

LEMMA 1. Let E \ be a real vector space and E 2 a real normed space. I f  a 
mapping f  : E \  —► E 2 satisfies (5) and (6) then

ll/(<*ia:i +  .» +  a „x„)|| < (1 +  e)n(| oti I ||/(ati)|| +  ...+ | a n  \ ||/(x „)||)

for X \ ,  . . . ,x n € El,  a i , . . . .a n G R, n G N.

Proof. Easy induction.

T h e o r e m  3. Let E \ and E 2 be real normed spaces and let dim Ei <  00. 
Then every quasi-linear mapping f  : E \ -*  E? is continuous.

Proof. Let {ej, ...,e n} be a basis of E \ .  We have, by Lemma 1, for some 
e € [0,1)

l l / (Qi ei +  +  anen)|| < (1 +  e)n(| « i I ||/(ei)|| +  ...+ | a n  \ ||/(en)||)

for c*i,..., a n e  R.

Hence /  is locally bounded at zero. By Theorem 1 from [3] /  is continuous.

LEMMA 2. Let E \ be a real vector space, E 2 a normed space and let 
f  : E \ —> E 2 satisfy (5) for some e € [0,1). Then

II/ ( « * )  -  a / ( * ) l l  <  y z ~ £  m in { |  a  \ | | / ( x ) | | ,  | | / ( a a ; ) | | }  ^

for x e  E i , a  G Q .

Proof. Obviously (9) can be written as a conjuction of

||/(ax) -  a/(x)|| <  I a  | ||/(ж)|| f o r i 6 ß b a  Ç Q  (10)

and

Il/N - af{x)Il < j ^Wfiax)]] for x € Eu a G Q. (И)
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By Lemma 1 from [3] we have

\ \ f (x +  y) - f { x )  - f ( y ) \ \  <emin{||/(x)||,||/(y)||} for x ,y  G E x . (12)

We prove inductively that

||/(nx) -  n/(x)II <  ne||/(x)|| for X £ E i ,  n G N . (13)

For n  =  1 it is obvious. Suppose that this inequality holds for some n G N . 
Then by (12) for x G E \  we obtain

||/((n +  l)x ) -  (n +  l)/(x)|| <  Il f ( ( n  +  1 )x) -  f ( nx )  -  /(x)II

+  11 f ( nx )  -  n /(x )  Il <  e||/(x)|| +  ne (I/(x) I)

=  (n +  l)e||/(x)||.

Thus (13) is proved. Since by Proposition 2 from [3] /  is odd, we have by (13) 

||/(nx) -  n/(x)|| <  e I n I ||/(x)H for i  G S i ,  n G Z . (14)

For x G E \ ,  m  G Z. n G N . we get by (14)

771
f ( n x ) — mf ( x )  <  e I m I ||/(x)||

71

and
||/(mx) -  m/(x)|| <  e  \ m \ ||/(x)||.

Adding these inequalities side by side, applying the triangle inequality and 
replacing x by ^ we obtain

(
771 \ 777 / x \
— x ) -------f ( x )  <  2e I m I /  f —J  for x G Ei ,  m G Z, n G N . (15)

From (14) we get

ll/(x)ll < i n i Д _ g) ll/(»^)ll for * e Ei, n e  z. (16)

Replacing in this inequality x by we obtain

K D h l n l ô - , ) ^ 1 for
which together with (15) yields

/  ( — x \  -  — f ( x )  <  — ||/(x)|| for x G Ê i ,  m G Z , n e  N.
\ n  /  n 1 — e n

This means that (10) is valid.



74 Józef Tabor

For X €  E \ , m G Z, n G N , we have by (15) and (16)

„ / m \  m л . , , / х \  _  2e , /  m \
f  ( — ar ) -------/ ( x )  < 2 e | m |  / ( - )  < -    / ( — xj  .

\ n  )  n \ n j  1 —e \ n  J

Theorem 4. Let E \ ,E ^  be real normed spaces, and let e 6 [0,1). Let 
f  : E i  —> E? be an e-quasi-additive mapping such that for each x G E \ the 
mapping R  Э a  —> f(a x )  is continuous. Then f  is -^-quasi-linear.

Proof. Let x  6 E i, a E R , and let {a „} , a n E Q  be a sequence such that 
lim b ec a n - a. By Lemma 2 we have

||/(anx) -  a nf ( x ) II <  min{| a n | ||/(®)||, ||/(an®)||} for n € N .

Letting n —>■ oo we obtain

||/(ax) -  a f  (®)|| <  min {| a  I ||/(x)||, ||/(ax)||}.
1 — e

3. U la m ’s problem

We turn again to Ulam’s question. If we understand the term “nearly 
linear mapping” as quasi-linear one, it may be formulated as follows.

Let E i, E 2 be normed spaces and let e G [0,1). Does there exist an £\ E 
[0,1) such that for each e-quasi-linear mapping /  : E \  —»• E 2 there exists a 
linear mapping L : E \  —> E 2 satisfying the following condition

ll/(* ) ~ Ц х ) \ \  <  £imin{||/(æ)||,||L(®)||} for x € E x ? (17)

We will answer this question affirmatively for E 2 =  R  and /  being continuous. 
We will also prove that in this case there exists the best linear approximation 
of / .  The meaning of the term “the best linear approximation” will be specified 
later on.

We start with the following lemma.

Lemma 3. Let E \ be a real normed space and let f  : E \ —> R  be quasi- 
linear and continuous. Then there exists a subspace A of E \ such that dim A  <  
1 and

E i  =  ker /  ф  A. (18)

Proof. By Theorem l(i) E \  can be written in the form (18). We need 
only to prove that dim A <  1. Let g f  \ A. Then ker g =  {0}, and hence 
A \  {0} is the disjoint union of the open sets g~l ((0, oo)) and <7- 1 ((—oo, 0)). If 
dim A >  1 then, since g is odd, neither of these sets is void so A \  {0} is not 
connected -  a contradiction.
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Theorem 5. Let E \  be a real normed space, let e £ [0,1), and let 
f  : E i  ->  R  be e-quasi-linear and continuous. Then there exist uniquely 
determined: an £f £ [0, e) and a continuous linear mapping L f  : E i —> R  such 
that

\ f ( x ) - L f ( x ) \ < e ° f mm{\ f{x) \ , \Lf (x) \ }  for x £ E i  (19)

and there is no smaller E\ satisfying (19) with some linear L : E \ —> R .

Proof. Let D f  denote the set of all linear mappings L : E \  —> R  satisfying 
with a certain £i >  0 the following condition

\ f{x)  -  L(x)\  <  d  min{|/(x)|,L(a;)|} for x £ E \  . (20)

Since /  is continuous, every L  € D f  is locally bounded and hence continuous. 
It is clear that

k e r / =  kerL for L e D j . (21)

Hence if /  =  0 then L j  — 0 and Ef =  0. Prom now on we assume that /  ф 0. 
We begin with the case E \  =  R . Then by Lemma 3 from [2] /  is strictly 
monotonie. Let

(22)

Cf inf 1 / ( * )
X

: x £ R \  {0}|

df  sup 1 f i x )
X

: x £ R  \  {0} j

It follows from (6) that

j - ^ M I / ( l ) |  < C f < d f < (  1 +  e)|a||/(l)| for a e  R .

Hence we obtain

0 < Г Т 7 |/(1)| - Cf -  d f  -  (1 + £)l/(1)|- (23)
For any a G R  let

L a(x) :=  ax for x G R .

We shall prove that D f  =  {La : а ф  0}. If L a G D f  then, by (21), La ф 0, i.e. 
а Ф 0. On the other hand, if а Ф 0 then, by (22) and (23), we have for x € R

\ f{x)  -  ax I <  (d f  +  |a|)|x| =  ^  |ax|,
| a |

and

| / ( x )  -  a x  I <  ( d f  +  | a | ) |x |  =  ^  +  ^ c / | x |  <  ^ ^ M / ( x ) .
C Cf

It means that L a satisfies (20) with ei =  max , df^  j  , i.e. L a € D j  .
Hence D f  =  { La : а ф 0}.
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We define a function e j  : R  \  {0} —> R  by putting

/ \ f I f i x )  — ax I I
e/(a) := sup \ . .— rr : x Ф 0 L

lmin{|/(x)|,|ax|} J

Clearly £f{a)  is the smallest £1 satisfying (20) with L =  L a . Therefore it is 
needed to prove that the function £/{■) reaches the minimum. We have

/ ч \ ( \ f ( x ) ~  a x \ | /(x) ~  a x \ 1£ / ( a ) = s u p { m a x { L y ^ , L U - r - l ) : i  ф о }

f f | /(x) — ax I . л 1 ( |/(x) — ax  I } )
=  max {su p  {  | / ( x ) | . : * * < > , } , s u p {  M  : * # < > } } .

Since /  is odd, we obtain further

C/(a)=aMx{mp { l/(g (~ ” 1: i > 0 { , s u P{ i M ^ î l :  *> o }}

=  max (sup {  1 — a —j -г  : x  >  o l , sup Л  -  ^  — 1 : x > o l l .
I l f { x )  J II a x J J

For any a € R  \  {0} we put

G }{a)  sup < 1 — a -z j—r : x > o i ,

1 m  ’  (24)

H t i a ) :=  sup {  -  1 : x  >  o l .
l a x  J

Then
£f (a)  =  max { G / ( a ) ,  H f ( a ) }  f o r a € R \ { 0 } .  (25)

Suppose that /  is strictly increasing. Then

C/ = i n f { M  : x > o | ,
(26)

df  =  s u p j ^  : x >  o | .

We are going to show that

£ f { a ) > £ f { c f ) for a e  ( R \ {0}) \  [cf , d f ]. (27)

In view of (24) and (25), £ /(a ) <  £ f { —a) for a >  0. Making use of (26) we 
obtain
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Gf ( a)  =  max (  l -  — , 1 -  }  ,
U C/ df  I  (28)

Hr (a) — max (I  — — 1 , —  — 1 1
11 a a J

for a >  0.
Hence we have

Hf ( a)  — —  — l >  —  - 1  =  Ej (cf )  for a G (0, c /) ,

and

Gr(a)  = -------1 >  — — 1 — Ef(cr)  for a G {dr, oo).
Cf Cf

This means that (27) is valid.
Let a G [Cf , d j ]. By (25) and (28) we have

Ef (a) =  max {  1 — — , 1 — - j -  , — — 1 , —  — 1 }  
y Cf df  a a

f a , df \
=  max < -------1, ——  1 > .

Iе/ a )
Applying this equality one can calculate easily that Ef(-) has a strict minimum 

at aj  :=  yjcfdf .  Let e° :=  £ /(a /)  =  ~  1- Since / ( 1) >  0, as /(0 )  =  0 and

/  is strictly increasing, we obtain from (23)

£f =  ^1^- -  1 < y/(l +  e)2 -  1 = £.

We define a linear mapping L f  : R  —» R  by putting

Lf ( x)  =  af  ■ X =  J c j d f X  for X G R .

It is clear that Ef and L f  satisfy the assertion of the theorem.
Now suppose that /  is strictly decreasing. Let g(x) : =  —f ( x) .  Then, by 

the preceding part of the proof, E°g \ =  — 1 and L g defined by the formula

L g(x) =  \JcgdgX for x G R

satisfy the theorem for g in place of / .  But cg =  Cf, dg =  df ,  and hence Eag =  

J f ï  — 1 =  — 1. Since /  and L g are odd we conclude that Ef :=
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and L f  :=  —L g satisfy the assertion for the function / .  It is clear that there are 
no other constants and linear mappings with this property. We have proved

that, in the case where E\  — R  and f  ф 0, :=  — 1 and L f  defined by

the formula
Lf (x)  =  sgn f ( l ) y j c f d f x  for X e R

is the unique pair satisfying the conclusion of our theorem.
Now we considęr the general case where E\  is a normed space. Since f  ф 0, 
there exists an e\ E E \  such that / (e i )  Ф 0. By Lemma 3

E \  =  ker /  ® Lin(ei).

Let
f*(t)  :=  / ( te i )  for t E R .

For each linear mapping L : E \  —> R  we define a corresponding mapping 
L* : R  —> R  by putting

L*(t) L(te\)  for f E R .

Making use of Theorem 1 (ii) and (21) we obtain

f { x  1 +  te i) =  / ( t e l )  =  f*(t)  for X i  G ker/, f G R ,

L(xi +  tei) =  L(tei) =  L*(t) for x\  G ker / ,  t G R .

By the last equality and Theorem 1 (i), each linear mapping of R  into R  
determines uniquely a corresponding linear mapping of E \  into R . In this way 
we have reduced the problem of finding and to the real case. We have

e° -  5 . -  1
f~ V ,

L°f(xi +  tei) =  s g n f* ( l )y j c f ‘ d f t  for x\ E ker/ ,  t E R .

In order to complete the proof it is sufficient to show that e°f and are 
determined uniquely, i.e. that they do not depend on the choice of e\.  Let 
ег Ф ker / ,  and let

/Г  (*) :=  № 2) for t E R ,

L \ (x \  +  te2) •■= s g n f * ( l ) ^ c f -d f - t  for x\ E k er/, t E R .

The element e2 can be uniquely represented in the form

в2 =  жо +  t0eu

where xo E ker /  and to € R  \  {0}.
Applying Theorem 1 (ii) and the definitions of /*  and /* ,  we obtain
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f l ( t )  =  f ( t e 2) =  f { t x Q +  tt0ei) =  f{ t t0ex) =  f*{tt0) for t € R . 

Hence we have

Thus

• « - “ I T " ” ! • = 4
1Г(«о)1

1*1
* ^ o J =  1*0| c/,

■ =  sup
l  1*1

t *  o] =  |*o|c*/

> - 1
\  cn

We also have
sg n /r ( l )  =  sgn f*{t0) =  sgn«0s g n /* (l) . 

Finally, for x x € ker / ,  t G R , we obtain

Li (xi  +  tei) =  L x(x\ -  —x 0 +  ^-e2) =  sgn f x(l)yjc°f . d f >^-

=  sgn t0 sgn f * ( \ ) \ J c p d p  |fo|~

=  s g n /* (l)  yjCf' dfxt  =  L°f {xi +  te i),

which means that L x =  L°j

From Theorem 5 we obtain directly the following

COROLLARY. Let E x be a real normed space and let e 6 [0,1). Then for 
each e-quasi-linear continuous mapping f  : E \ —» R  there exists a continuous 
linear mapping L : E \ —> R  such that

I f {x)  -  L{x )I <  e min{|/(x)|, |T(x)|} for x G E x.

The question whether or not Theorem 5 and Corollary hold without continuity 
of /  is an open problem. The same concerns the question whether or not R  
can be replaced by a normed space.
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