Zeszyt 189

Prace Matematyczne XIV

1997

Krzysztof Ciepliński

General solution of a linear functional equation of even order

Abstract. In this paper we show that the functional equation

$$A\varphi(g(x)) = \sum_{i=-n}^{n} A_i \varphi(h^i(x))$$

has in an open interval I a solution φ depending on an arbitrary function. An analogous result we obtain for continuous solutions.

In this note the functional equation

$$A\varphi(g(x)) = \sum_{i=-n}^{n} A_i \varphi(h^i(x)), \qquad (1)$$

where unknown function φ maps an open interval I = (a, b) into a linear space X over a field K, $n \in \mathbb{N}$, $A, A_i \in K$, $i \in \{-n, \ldots, n\}$ is considered. One or both endpoints of I may be infinite. Assume that functions h, g fulfil the following conditions:

- (H) $h: I \mapsto I$ is an increasing bijection such that h(x) > x for all $x \in I$,
- (G) $g: I \mapsto I$ is an increasing bijection such that for some $x_0 \in I$ g(x) < x for $x > x_0$, g(x) > x for $x < x_0$.

For $I = K = X = \mathbf{R}$, g(x) = qx, $q \in [0, 1]$, h(x) = x + 1, $A_{-1} \neq 0 \neq A_1$ the general solution of (1) gave A. Grząślewicz in [3] (the same result has been obtained by W. Főrg-Rob, see [2]). The aim of this paper is to generalize Grząślewicz's result.

AMS (1991) subject classification: 39B12.

By f^n we denote here the *n*-th iterate of the function $f: I \mapsto I$, that is $f^0 := \operatorname{id}_{|I}, \quad f^1 := f, \quad f^{n+1} := f \circ f^n, \quad f^{-n} := (f^n)^{-1}, \quad n = 1, 2, \dots$. It is easy to check that

{
$$h^{n}(x_{0}), n \in \mathbb{Z}$$
} is a strictly increasing sequence,

$$\lim_{n \to \infty} h^{n}(x_{0}) = b, \quad \lim_{n \to \infty} h^{-n}(x_{0}) = a.$$
(2)

 \mathbf{Put}

$$I_k := [h^k(x_0), \ h^{k+1}(x_0)] \text{ for } k \in \mathbb{Z}.$$
 (3)

Now, note that relations (2) and (3) imply

$$I = \bigcup_{k \in \mathbf{Z}} I_k$$

Define a function $E: I \mapsto \mathbf{Z}$ by the formula

$$E(x) := k \text{ for } x \in I_k \setminus \{h^{k+1}(x_0)\}, \quad k \in \mathbb{Z}.$$
(4)

First we formulate two lemmas

LEMMA 1. The functional equation (1) is equivalent to each of the following functional equations:

$$A_{n}\varphi(x) = A\varphi(g(h^{-n}(x))) - \sum_{i=-n}^{n-1} A_{i}\varphi(h^{i-n}(x)),$$
(5)

$$A_{-n}\varphi(x) = A\varphi(g(h^n(x))) - \sum_{i=-n+1}^n A_i\varphi(h^{i+n}(x)).$$
(6)

Proof. It is sufficient to put $h^{-n}(x)$ or $h^{n}(x)$ in place of x, respectively.

LEMMA 2. If $x \in I_k$, then

$$0 \le E(g(h^{-n}(x))) < k+1-n \ for \ k \ge n$$
(7)

and

$$k + n - 1 < E(g(h^n(x))) \le 0 \text{ for } k \le -n - 1.$$
 (8)

Proof. By (3), (H), (G) we get

$$g(h^{k-n}(x_0)) \le g(h^{-n}(x)) \le g(h^{k+1-n}(x_0)).$$

Let $k \ge n$, then $x_0 \le h^{k-n}(x_0) < h^{k-n+1}(x_0)$ and by (G) we obtain

$$x_0 = g(x_0) \le g(h^{k-n}(x_0)) \le g(h^{-n}(x)) \le g(h^{k-n+1}(x_0)) < h^{k-n+1}(x_0),$$

which together with (4) gives (7). We apply the same arguments for $k \leq -n-1$ to obtain (8). This completes the proof.

Now, we can prove the following

THEOREM 1. Let $n \in \mathbb{N}$, $A, A_i \in K$, $i \in \{-n, \ldots, n\}$, $A_{-n} \neq 0 \neq A_n$ and let functions h, g fulfil (H) and (G). Then equation (1) has in I a solution φ depending on an arbitrary function. More precisely, for an arbitrary function

$$\psi: \bigcup_{i=-n}^{n-1} I_i \mapsto X$$

fulfilling the condition

$$A\psi(x_0) = \sum_{i=-n}^{n} A_i \psi(h^i(x_0))$$
(9)

there exists exactly one function $\varphi: I \mapsto X$ satisfying equation (1) and such that

$$\varphi(x) = \psi(x) \quad for \quad x \in \bigcup_{i=-n}^{n-1} I_i.$$
 (10)

This function is given by

$$\varphi = \bigcup_{k \in \mathbf{Z}} \varphi_k,\tag{11}$$

where the functions $\varphi_k : I_k \mapsto X$ are defined as follows:

$$\varphi_k(x) = \psi(x) \text{ if } k \in \{-n, \dots, n-1\}, x \in I_k,$$
 (12)

$$\varphi_k(x) = A_n^{-1} [A \varphi_{E(g(h^{-n}(x)))}(g(h^{-n}(x))) - \sum_{i=-n}^{n-1} A_i \varphi_{k+i-n}(h^{i-n}(x))]$$

$$if \ k \ge n, \quad x \in I_k,$$
(13)

$$\varphi_k(x) = A_{-n}^{-1} [A \varphi_{E(g(h^n(x)))}(g(h^n(x))) - \sum_{i=-n+1}^n A_i \varphi_{k+i+n}(h^{i+n}(x))]$$

$$if \ k \le -n-1, \quad x \in I_k.$$
(14)

Moreover, every solution $\varphi : I \mapsto X$ of equation (1) is given by (11), where the functions φ_k are given by (12), (13), (14) and

$$\psi: \bigcup_{i=-n}^{n-1} I_i \mapsto X$$

is a function satisfying condition (9).

Proof. Let $A, A_i \in K$ for $i \in \{-n, \ldots, n\}$. $A_{-n} \neq 0 \neq A_n$ and let the functions h, g fulfil (H) and (G), respectively. Assume first that the function φ satisfies equation (1) and put $\varphi_k := \varphi_{|I_k}$ for all $k \in \mathbb{Z}$,

$$\psi := \bigcup_{k=-n}^{n-1} \varphi_k$$

Clearly, conditions (11), (12) are satisfied. Substituting x_0 for x in (1) and using (G) we get (9). If $x \in I_k$ for $k \ge n$, then from (3), (H) and (7)

$$h^{i-n}(x) \in I_{k+i-n}$$
 for $i \in \{-n, ..., n-1\}$ and $g(h^{-n}(x)) \in I_j$,

where $j = E(g(h^{-n}(x)))$ and $0 \le j < k + 1 - n$, whence by Lemma 1 we get (13). Similarly, we obtain (14). This completes the first part of the proof.

Assume now that

$$\psi: \bigcup_{k=-n}^{n-1} I_k \mapsto X$$

is an arbitrary function fulfilling condition (9). Define a sequence of functions

 $\{\varphi_k, k \in \mathbf{Z}\},\$

by formulas (12), (13) and (14), respectively. Clearly, the functions φ_k are well defined on I_k for $k \in \{-n, \ldots, n-1\}$. Let $x \in I_n$. Then by Lemma 2

$$g(h^{-n}(x)) \in I_0$$

and in view of (3) and (H) we get

$$h^{i-n}(x) \in I_i$$
 for $i \in \{-n, ..., n-1\},\$

which implies that the function φ_n is defined on I_n by φ_i for $-n \leq i \leq n-1$. Let now k > n and the functions φ_i be well defined on I_i for $-n \leq i < k$. Let us note that (13) define the function φ_k on I_k by φ_i for $-n+1 \leq i < k$. In fact, if $i \in \{-n, \ldots, n-1\}$ and $x \in I_k$, then $h^{i-n}(x) \in I_{k+i-n}$ and $-n < k+i-n \leq k-1$, since n < k. Further by Lemma 2 $0 \leq E(g(h^{-n}(x))) < k+1-n \leq k$, so $g(h^{-n}(x)) \in I_j$, where $j = E(g(h^{-n}(x)))$ and $0 \leq j < k$. Thus φ_k is defined by the previous functions. Consequently, by induction the functions φ_k are well defined on I_k for $k \geq n$. The same conclusion can be drawn for $k \leq -n-1$. Thus the functions φ_k for every $k \in \mathbb{Z}$ are well defined. Now we shall prove that for every $k \in \mathbb{Z}$

$$\varphi_{k+1}(y) = \varphi_k(y) \text{ for } y \in I_{k+1} \cap I_k$$

that is, the condition

$$\varphi_{k+1}(h^{k+1}(x_0)) = \varphi_k(h^{k+1}(x_0)) \tag{15}$$

for $k \in \mathbb{Z}$ holds. By (12) we get

$$\varphi_{k+1}(h^{k+1}(x_0)) = \varphi_k(h^{k+1}(x_0)) \text{ for } k \in \{-n, \dots, n-2\}.$$
 (16)

Now we show that condition (15) holds for k = n - 1 and k = -n - 1. In virtue of (9) and (12) we see that

$$A\varphi_0(x_0) = \sum_{i=-n}^{-1} A_i \varphi_i(h^i(x_0)) + \sum_{i=0}^{n} A_i \varphi_{i-1}(h^i(x_0))$$
(17)

whence by (13), (G), (4) and (16) we obtain

$$\begin{split} \varphi_n(h^n(x_0)) &= A_n^{-1} [A\varphi_0(x_0) - \sum_{i=-n}^{n-1} A_i \varphi_i(h^i(x_0))] \\ &= A_n^{-1} [\sum_{i=-n}^{-1} A_i \varphi_i(h^i(x_0)) + \sum_{i=0}^n A_i \varphi_{i-1}(h^i(x_0)) \\ &- \sum_{i=-n}^{-1} A_i \varphi_i(h^i(x_0)) - \sum_{i=0}^{n-1} A_i \varphi_i(h^i(x_0))] \\ &= A_n^{-1} [\sum_{i=0}^n A_i \varphi_{i-1}(h^i(x_0)) - \sum_{i=0}^{n-1} A_i \varphi_{i-1}(h^i(x_0))] \\ &= \varphi_{n-1}(h^n(x_0)). \end{split}$$

Using (14), (G), (4), (17), (16) we get the following equalities

$$\begin{split} \varphi_{-n-1}(h^{-n}(x_0)) &= A_{-n}^{-1} [A\varphi_0(x_0) - \sum_{i=-n+1}^n A_i \varphi_{i-1}(h^i(x_0))] \\ &= A_{-n}^{-1} [\sum_{i=-n}^{-1} A_i \varphi_i(h^i(x_0)) + \sum_{i=0}^n A_i \varphi_{i-1}(h^i(x_0)) \\ &- \sum_{i=-n+1}^{-1} A_i \varphi_{i-1}(h^i(x_0)) - \sum_{i=0}^n A_i \varphi_{i-1}(h^i(x_0))] \\ &= A_{-n}^{-1} [\sum_{i=-n}^{-1} A_i \varphi_i(h^i(x_0)) - \sum_{i=-n+1}^{-1} A_i \varphi_i(h^i(x_0))] \\ &= \varphi_{-n}(h^{-n}(x_0)). \end{split}$$

Hence and by (16) we have (15) for $k \in \{-n-1, \ldots, n-1\}$. Now, fix $k \ge n$ and assume

$$\varphi_{i+1}(h^{i+1}(x_0)) = \varphi_i(h^{i+1}(x_0)) \text{ for } -n-1 \le i < k.$$
 (18)

We shall show that

$$\varphi_{k+1}(h^{k+1}(x_0)) = \varphi_k(h^{k+1}(x_0)).$$
(19)

By (13) and (18) we have

$$\begin{split} \varphi_{k+1}(h^{k+1}(x_0)) &= A_n^{-1} [A \varphi_{E(g(h^{k+1-n}(x_0)))}(g(h^{k+1-n}(x_0))) \\ &- \sum_{i=-n}^{n-1} A_i \varphi_{k+1+i-n}(h^{k+1+i-n}(x_0))] \\ &= A_n^{-1} [A \varphi_{E(g(h^{k+1-n}(x_0)))}(g(h^{k+1-n}(x_0))) \\ &- \sum_{i=-n}^{n-1} A_i \varphi_{k+i-n}(h^{k+1+i-n}(x_0))] \\ &= \varphi_k(h^{k+1}(x_0)), \end{split}$$

i. e. (19). Consequently, by induction, condition (15) holds for every $k \ge -n-1$.

Now, let $k \leq -n-2$ and assume that

$$\varphi_{i+1}(h^{i+1}(x_0)) = \varphi_i(h^{i+1}(x_0)) \text{ for } i > k.$$
 (20)

We shall prove that condition (20) holds for i = k, i. e. condition (19). By (14) and (20) we get

$$\begin{split} \varphi_k(h^{k+1}(x_0)) &= A_{-n}^{-1} [A \varphi_{E(g(h^{n+1+k}(x_0)))}(g(h^{n+1+k}(x_0))) \\ &- \sum_{i=-n+1}^n A_i \varphi_{k+i+n}(h^{k+1+i+n}(x_0))] \\ &= A_{-n}^{-1} [A \varphi_{E(g(h^{n+1+k}(x_0)))}(g(h^{n+1+k}(x_0))) \\ &- \sum_{i=-n+1}^n A_i \varphi_{k+1+i+n}(h^{k+1+i+n}(x_0))] \\ &= \varphi_{k+1}(h^{k+1}(x_0)), \end{split}$$

since k+i+n > k for $-n+1 \le i \le n$. Thus we have (19) and by induction we infer that (15) holds for $k \le -n-2$, which consequently gives (15) for $k \in \mathbb{Z}$. Since for every $k \in \mathbb{Z} \varphi_k$ maps I_k into $X, I = \bigcup_{k \in \mathbb{Z}} I_k, I_k \cap I_{k+1} = \{h^{k+1}(x_0)\}$ and condition (15) holds we may define the function $\varphi : I \mapsto X$ by formula (11).

Now, we shall show that φ satisfies equation (1). To this aim, we prove that

$$\varphi_{k}(x) = A_{-n}^{-1}[A\varphi_{E(g(h^{n}(x)))}(g(h^{n}(x))) - \sum_{i=-n+1}^{n} A_{i}\varphi_{k+i+n}(h^{i+n}(x))]$$
for $k \in \mathbf{Z}, \ x \in I_{k}$.
(21)

Let $k \geq -n$, $x \in I_k$. Then $k + 2n \geq n$, $h^{2n}(x) \in I_{k+2n}$ and by (13) we obtain

$$\begin{aligned} A_{-n}^{-1}[A\varphi_{E(g(h^{n}(x)))}(g(h^{n}(x))) - \sum_{i=-n+1}^{n} A_{i}\varphi_{k+i+n}(h^{i+n}(x))] \\ &= A_{-n}^{-1}[A\varphi_{E(g(h^{n}(x)))}(g(h^{n}(x))) - \sum_{i=-n+1}^{n-1} A_{i}\varphi_{k+i+n}(h^{i+n}(x)) \\ &- A_{n}\varphi_{k+2n}(h^{2n}(x))] \\ &= A_{-n}^{-1}[A\varphi_{E(g(h^{n}(x)))}(g(h^{n}(x))) - \sum_{i=-n+1}^{n-1} A_{i}\varphi_{k+i+n}(h^{i+n}(x)) \\ &- A_{n}(A_{n}^{-1}\{\varphi_{E(g(h^{n}(x)))}(g(h^{n}(x))) - \sum_{i=-n}^{n-1} A_{i}\varphi_{k+i+n}(h^{i+n}(x))\})] \\ &= \varphi_{k}(x), \end{aligned}$$

which together with (14) gives (21). By (21), (11) we immediately deduce that the function φ satisfies (6) and consequently, by Lemma 1, φ satisfies equation (1). The uniqueness of φ follows immediately from induction and the above proof. This completes the proof.

Since I_k , $k \in \mathbb{Z}$ are closed intervals, the proof of Th. 1 and induction give the following

COROLLARY 1. If X is a linear topological space over the field K of real or complex numbers and ψ is a continuous function, then the unique extension of ψ to a solution of equation (1) is continuous.

In the case A=0 we get

COROLLARY 2. Let $n \in \mathbb{N}$, $A_i \in K$, $i \in \{-n, \ldots, n\}$, $A_{-n} \neq 0 \neq A_n$ and let h fulfils (H). Then equation

$$\sum_{i=-n}^{n} A_i \varphi(h^i(x)) = 0$$
(22)

has in I a solution φ depending on an arbitrary function. More precisely, for $x_0 \in I$ and an arbitrary function

$$\psi: \bigcup_{i=-n}^{n-1} I_i \mapsto X$$

fulfilling the condition

$$\sum_{i=-n}^{n} A_i \psi(h^i(x_0)) = 0$$
(23)

there exists exactly one function $\varphi : I \mapsto X$ satisfying equation (22) and such that condition (10) holds. This function is given by formula (11), where the functions $\varphi_k : I_k \mapsto X$ are defined as follows:

$$\varphi_k(x) = \psi(x)$$
 if $k \in \{-n, \dots, n-1\}, x \in I_k,$ (24)

$$\varphi_k(x) = -A_n^{-1} \sum_{i=-n}^{n-1} A_i \varphi_{k+i-n}(h^{i-n}(x)) \quad if \ k \ge n, \quad x \in I_k,$$
(25)

$$\varphi_k(x) = -A_{-n}^{-1} \sum_{i=-n+1}^n A_i \varphi_{k+i+n}(h^{i+n}(x)) \quad if \ k \le -n-1, \quad x \in I_k.$$
(26)

Moreover, every solution $\varphi : I \mapsto X$ of equation (22) is given by (11), where the functions φ_k are given by (24), (25), (26) and $x_0 \in I$,

$$\psi: \bigcup_{i=-n}^{n-1} I_i \mapsto X$$

is a function satisfying condition (23).

If X is a linear topological space over the field K of real or complex numbers and ψ is a continuous function, then the unique extension of ψ to a solution of equation (22) is continuous.

The paper [1] deals with the case $I = K = X = \mathbf{R}$, n = 1, $A_{-1} = 0$.

References

- [1] Ciepliński K., Grząślewicz A., The general solution of the functional equation $A\varphi(g(x)) = B\varphi(h(x)) + D\varphi(x)$, (to appear).
- [2] Förg-Rob W., On a problem of R. Schilling, Mathematica Pannonica 5 (1994), I: 29-65, II: 145-168.
- [3] Grząślewicz A., The general solution of the generalized Schilling's equation, Aequationes Math. 44 (1992), 317-326.

Institute of Mathematics Pedagogical University Podchorążych 2 PL-30-084 Kraków Poland

Manuscript received June 22, 1995