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On some subsemigroups of the group L]

Abstract. In this paper we generalize the results concerning determi-
nation of some form subsemigroups of the group L\. We show that for
s > 4+ 2i there are no subsemigroups Z§&s(f) and T 's(g). We determine
all subsemigroups of mentioned form for s < 3 + 2i. Moreover we use
obtained results to determine the subsemigroups P®*(/) and P*'1(hi,hs).

0. Denote by Z the set of all intégral numbers and by R - the set of all
real numbers. Let

Ro := R\ {0}, lcd:={n€Z:k<n</} forklGZ
We adhere to the convention that

0 =1
at=0 and |mnj=0 for m>n.

Definition 1. Let S be a natural number. A set

Zs := {xs:= (xi,...,is)gRs: £i ¢ 0}
with the operation
XS-yS-25s 0.7
if and only if
m="2xk Y, Aml y?  faneill (2
*=j uneunk =i
where

AMS (1991) subject classification: 39BB2, 20M99.
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Unk m= Jun:= (ui,...,u,) G |ofcln: ™~ w=KA” w=nl, (0.3)
| i=l i=l J

Adn~ n ' i (0.4)
n («il(th“o

t=i

is a group, which is denoted by L\ (see [3]).

In this paper we will consider the subsemigroups of the group L] such that
the last parameter or the first one and the last one are the functions of the
remaining ones. Such subsemigroups for s < 6 have been determined in [3],

w, m{n}-
At first we will give some properties of the sets Unkm
(i) una = {(0,...,0,1)}.
(ii) Unn= {(n,0,...,0)}.
(iii) 1Ifin 6 Unk (2 < k¥ < n), then Uj= O0forallj £ [n—k + 2,n].

Let n> 3and K£ |2 n —1].
(iv) If 0, € Unk, then there exists j 6 \2,n —k + 1] such that Uj > 1.

(v) If Gn £ Unk and Uj = 0 for all j £ |2n- f], then ui = ¥k —1 and

“nJfcH = 1-

(vi) Ify =k—1 un fctl = land Uj —Oforallj £ |2,n|\ {n- k + 1}, then
fin ~ Unk-e

(vii) If 4 < 2K < n, iin 6 Unk and u\ = i < ¥ —2, then there exists
i £ 12 such that uj > 1

([x] denotes the integral part of x).

Proof. Properties (i)-(iv) have been proved in [2].
Letn> 3, K £ |2n —1],in £ Unkand Uj = 0 for all j £ |2 n —k\
By (iii) we have Uj —O0 for all j £ \n —k + 2,n]. Thus from (0.3) we get

fui + Un-k+i = K
\Vui+(n-« + Dun_fcH = n

sol =k —1and un-k+i = 1
Prom (0.3) we obtain (vi), immediately.
Let4< 2k< n, n£ Unkand w, = i < K—2.
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Suppose that uj = Oforallj E |2 [~ |} From (0.3) we get

n==¢e = *+ £ Juj > *+ ([i=1]+ 1) £ «j
I=[A]+i

AH([rh] +)(t"9=[rb] <=<>Foa

This demonstrated (vii).

From (i), (ii) and (0.4) we have
Corollary 1. Ayn —1for all iin e Un,i nUnn.

We will characterize some properties of expressions (0.2). In particular
cases we get
z\ - X1yi,
22 = X\Y2 + Xovi,
73 = Xiy3 + 3X2y1y2 + x3yf.

Lemma 1. For every n > 2 we have

n—1 n—
zn= x\yn+ ~2 xk T An M y“) + xny*. (0.5)
Hn€UN k 3=1

Proof. From (i), (ii) and Corollary 1 we get

n— n
(o]
zZn = xuyn+ Xk Aiin I_ijl Fxnyi- ('6

fc=2 ueunk 3=1

For n = 2, from (0.6), on the ground of accepted agreement, (0.5) follows,
whereas for n > 3, KE |2,n —1] and inn E Urek, by (iii) we obtain

Uj=0forall j E\n—k+ 2,n\ D {n}

and then
n—i

- I,
=1

::

j=i 3

Consequently from (0.6) we get (0.5).
Next we prove

LEMMA 2. Let p, q be natural numbers such that | < p < q and let
r=p+qg+ 1 IfXj=0forallj E |]2q]landyj = O0.for allj E |2,p], then zn
specified by (0.21 will be of the form
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1)zl =

2)zn= 0 for n £ |2p],

3) zn = xiyn forn £\p+1,q\,

4) zn = xiyn+ xny? forn£\q + I,p + q\,
5) zr = x\Yy+ J) xariylyp+\ + xry\.

Proof. By the assumption, for n £ |2 q 4- 1], we have

i BE uns2=o0. (0.7)
fc=2 uneunik j=i

Thus from (0.5) we get 2), 3) and 4) forn= g+ 1
Let us fix n £ |[I+ 2,p + g]. Then

J2xk Adnll ¥? =% 9

*=2 nnennK j=i
If A€ \g+ I,n —1J, then by (iv), for every Gn £ Urpit, there exists
i £12n—A+ 1] C |2n—(q+ 1)+ 1 C |2p] suchthat Uj > 1
By the assumption (yj = 0 for all j £ |2,p]) we obtain

E E Aungl:lz Y2 ="

k=g+l Uneunk

Thus from (0.8) and (0.5) it follows that 4) holds for n £ \q+ 2,p + q\.
Now let n —r. For every K £ \q+ 2,r —1] and ur £ Ur™, by (iv) there exists

JEI2r—k+ YC |2r —(g+ 2) + I C |2p| such that Uj > 1,
hence
E x E T y?=% (0.9)
fc9+2 UreUTk 3=1
Since (0.8) holds too, so

ExX E aurll vip=xovi E 10l y2-

Ao nrenr/ 3= ureUr,g+1

Let us notice that if for some ur € t/rg+l there exists j £ |2p] such that

Uj > 1, then we have
r—I

1 »?=q
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Moreover, if for an ur G Ur>gtL Uj = O for all j 6 |2p|, then by (v) we have
ni = g, uptl= 1 and next from (0.4) we get
|

r—1
sori B aw[y2 = IP+IIIi><g+1ygayp+1-

ureUr,g+i j=i
Thus from (0.5) we obtain 5).

Lemma 3. Let p, g be natural numbers such that 1 < p < q and let
r=p+qg+ 1 IfXj=0forallj G |2p] andyj = 0 for allj G\2,q\, then

1) zi = xiyi,

2) zn =0 for n G|2pl,

3) zn = lor nGlp+ 1, 9],

4) zn = xijl,, + for n GIZ+ I,p + ¢,

5) 2r = Xiyr+ ~ J*p+U/liig+l + *ri/l-

Proof. By the assumption, (0.7) holds for n G |2,p + 1], and from (0.5)
we get 2) and 3) forn —p + 1.
Now let n G |p+ 2,p + ¢|. Then

EX E amMy?=° 0

fc=2  unneullk j=i
IflcG |p+ I,n —11 then by (iv), for every inn G UHk, there exists
i Gl2n—k+ 1 C |2n —(p+ 1)+ 1] C \2,q\ suchthat uj > 1
and
E E amlb:=2
Aln ? =
k=p+\  uneurrk j=i

From (0.10) and (0.5) we get that 3) for n G |p+ 2,g] and 4) hold.
Let n=r. For KG |p+ 2,r —1] and every Gr G UTk >by (iv) there exists

j Gl2r—A+ 1 C\2,r—(p+ 2+ 1 C J2g] suchthat uj > 1,
therefore
[ —0
E « E maal?==
fc=P+2  ureurk j=i

Since (0.10) for n = r holds too, so

Ew E Jully: =71 E I'I/”rl‘l e (011

*=2 Ur€urk j=1 Urf£urk
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Let us notice that for every ur G Cr,p+1we have ui < p.
Indeed, ifw, = p+ 1, then we will get Uj = 0 for all j G |2r], so

I

p+q+ l= r= iui=u=p+1

i=l
and we obtain a contradiction with the assumption q > 1.
Prom (vi) we get
if ui = p, ugtl=*1 and Uj=0forall j G |2,r|\{¢c+ 1}, then ur G UrtP+i .

Hence from (0.4), on the right side of (0.11) we get

p\{q + D\Xp+iy'Vvg+l '

On the other hand, if for an Gr G Urp+i u\ = i < p —1 holds, then we obtain

4<2(p+1)< r=p+ q+1 and 2 < ———— <J_
p+ 1—r

Thus by (vii) there existsj G 2, p+f_I C |2¢| such that Uj > 1
Therefore

Consequently

~ n H
xptl £ YT v7 = pig 4 1)1aP+vIyu+ 1.

ArBATLpHi
which with (0.11) and (0.5) completes the proof.

Remark 1. For any fixed natural numbers p and q Lemmas 2 and 3
determine some properties of the operation (0.1) in the group L\ for 2 < s <
p+qg+ 1

1. Denote by
Z\ = {xsGZs: Vj G |21+ ¥ xj = 0},
29 . Xs. (Xj,Xi)2 eesixs). Xg G Zs",
Ti:={xsezZ\: X! =1},
Tt las := {xi+2,...,xs) : Xg G TsJ.

One can prove that for any fixed non-negative integral number r the sets Z\
and T\ are closed with respect to the operation (0.1) in the group L\ .
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Let / :Z\_x—R, g : T*_1—R. Consider sets

z\,;sU) :

{(*s-b/(5s-i)) : 62 j} for S>2+1, (1.1)

TIs(9) := (fe-bS”-i)) : Xs-i eTS-i} for s> 3+r. (1.2)

The subsemigroups Z °s(/) of the group L] for s 6 |26] have been determ-
ined in [3], [4], [9] and [11]. S. Midura has proved in [3] that for the groups
L\ and L\ such subsemigroups belongs to the families

(z22 (ooirpixf - *1)))PR,

3,3 (Z22)>  +P(X1_xi)))

respectively, whereas in [4], [9], [11] it has been shown that for r = 0 there do
not exist any subsemigroups of the form (1.1) of the groups L\, L\ and L\.
Furthermore it is known (see [2], [3]) that for S > 4 there does not exist any
subsemigroup s(f) of the group L\.

The subsemigroups Z"e(/) for S € ]4,6] have been considered in [4], [9], [11].
It has been proved that subsemigroups of the form (1.1) for * = 1 are the sets
from the families

(Z4A (x3->p{x\ ~ zi))) for the érouP L\ -
52X4->55— + p(x\ — for the grouP Lg .

S. Midura has proved in [9] that there does not exist any subsemigroup Zg6(/)
of the group L\ .
In this part we will prove that for s > 4 + 2i there do not exist any subsemi-
groups Zbs(f) and Tl s(g). We will show it by proving that suitable functional
equations have not any solutions.

The sets Zss(f) and T 6s(g) are subsemigroups of the group L\ if and only
if the functions / and g are solutions of the equations:

) 54
I(zs_i) = xxf(ys-i) + E N E A, MMy“deyfr(xs-i)
k=2 useus,k j=1
for Xi-uy”x € 2z\ x ,
5% 5-1
g(zs-1) = 0(ys-i) + v xk E A, My +9(xs-i)
k=2 u,eu,<k j=1 (1,4)

for xs-i,ys.x 6 TI_x,
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where zs-\ and zs-\ are defined by
mn=itxk I Auanf[vy?- (1.5)
k=i  uneunk j=i
We are going to prove

Theorem 1. For s > 4+ 2i the equation (1.4) has not any solutions in
the class of fonctions g : Tj_1—R.

Proof. Suppose that the function g : Tj_I->R is a solution of the equation
(1.4) for s > 4+ 2i.
Put in (1.4) Xj = Oforallj G\i+ 2,s —r—2|. By Lemma 2 (p = i+ 1,
g—s —i—2) we get

g(zs-i) = g{xs-i)+ +  xs-i-iyl+2+ g(ys-i)

(1.6)
for xs_i e €T |,
where
Zji=yn for n £\i42,s—i—2],
zn=xn+yn for nG |s- i- Il,s - 1]
Setin (1.4) yj= 0forallj G\i+ 2,s —i —2] now. By Lemma 3 we obtain
g(Zs-i) = g{xs 1)+ Xi+2ys-i-i +g(ys-i) )
for xs— € T4 !, G Tfz{~3,
where
Zn = xnfor n G Ir+ 2,s — —2],
zn= xn+ ynfor nG|Js—i —1,s — 1]
If we put in (1.6) vs-i := ys_|,t0s_i := xs_i, then we obtain
g(zs-i) = g{ws- D+ (J N 2) wr-i- Ivi+2 + g(vs-i) (18)
for ws-1GT/ri-3, Os-i GTs_I,
where
Zn —vn fornGJr+ 2,s—i — 2], 19
zZ,=un+ nnfornGls—i-1I,s - 1] (1.9)

If we set in (1.7) vs-i = xs-\, O)s_i := ys-1, then we get
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g(zs-i) =g(vs-0+ (I + 1) u*-*-it2 + ff(,l&-l)

(1.10
for r05! GT/TI1-3, Os_i GTj_! ,
where zs-\ is defined by (1.9).
Compare (1.8) and (1.10). We obtain
(r+2) ™-"“-IVi+2= ( 1+ 1) ux-*-iw+2 for all u>2> GR-

Thus
s = 3+ 2r,

and we have a contradiction with the assumption s > 4 + 2i, which completes
the proof.

From above theorem it results

Theorem 2. For s > 4+ 2i there does not exist any subsemigroup T fs(g)
of the group L\ .

Consider the equation (1.3) now. Fix x\ = y\ = 1 If we denote
3(xs_i) = /(1, i) for £s.i Gf\_x,
then by Theorem 1 we will get

Theorem 3.

(i) For s > 4+ 2i the equation (1.3) has not any solutions in the class of
functions f : Z\_x—R.

(ii) For s > 4+ 2i there does not exist any subsemigroup Z\ s(f) of the group
LI

2. In this part we determine all the existing subsemigroups Z és{f) and
Tg s(g). At first we present solutions of some functional equations.

Lemma 4 ([3], Theorem 1). Let n > 1 be a natural number. The general
solution ip : Ro-tR of the equation
ip(xy) = x<p{y) + ynip{x)
is the family of functions
ip(x) —a(xn —x),
where a is an arbitrary real number.

Lemma 5 ([11], Lemma 1). Let t be a real number, n - a natural number.
The general solution ip: R gxR->R of the equation
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P(xiyi,xiy2+ x2y"+1) = xi<p(yi,y2) + tx2y\y2+ Vin+1l<p(xi,x 2)
is given by
Xi,x2) = +a (xfnHl - xi)
i) =, +af )
where a is an arbitrary real constant.
In [11] it has been proved

Lemma 6. Lett be a real number. The general solution ip : R —R of the
equation
Ppx +y) = ip(x) + txy + ip{y)
is the family of functions

DX =1(x) + 1 X2,
where ip : R —R is an arbitrary additive function.

LEMMA 7 ([8] Lemma 1). Letb> 2, ¢ > 2, bd c be integers. The general
solution ip: RoxR—»R of the equation
4>{xiyi,xiy2+ x2y\) = xiip(yu y2) + y[<p(Xi,x2)
is given by
4> (x\,x2) 1= af{x\ - xi),

where a is an arbitrary real constant.

Lemma 8 (see [1], Proposition 1, p. 35). The general solution *p: R n-*R
of the equation
p{x +y) = &{x) + ip(y)

is given by
n
T(x) = Y~"kixk),
k=1
where x = (Xi,...,xn) and ipKk : R R for k G |lI,n] are arbitrary additive
functions.

In the first part of our paper we have proved that for s > 4 + 2i there do
not exist any subsemigroups Z\ s(f) and T&s(g). In order to determine the
subsemigroups of the form (1.1), (1.2), we will consider the equations (1.3)
and (1.4) fors < 3+ 2i.

Consider the equation (1.3) in two cases:

1) sE Jr+ 2,2r+ 2|,
2) s= 3+ 2r.

1) For s Jr+ 2,2r + 2] we have (Lemma 2,p=qg=i+ 1)
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[(za i) = xil(ye_i)+ yf/(xs_i) for x,-i,ys_xGZ'_j, (2.1)

where
Zi = xxyi,
zn= x\¥n + xny\ forn G r+ 2,s- 1]

We will prove

THEOREM 4. 77ie general solution f : Z1_|I—-»R of the equation (2.1) is
the family of functions

f(xs-1) = a(xf - zi),
where a is an arbitrary real constant.

Proof. Suppose that a function / : >R is a solution of (2.1). In a
case CARD]i + 2,s —1] < 1 we get the statement by Lemma 4 or Lemma 7.
Let CARD]i + 2,s—l| >2. Putin (21) Xj =yj=0forallj G\i +2,s—2].
We have

f{xiyi,0,...,0,xiysi +zs_ iyf 1) = xi/(ybO0,...,0,ye_i)
+yf/(xi,0,...,0,xs_i)

and by Lemma 7
f(xi,0,...,0,xs_i) = a(x* - xj). (2.2)

If we set in (21) Y\ = 1, yj= 0forj € \i+ 2,5 —2], then by (2.2) we obtain

f{x1 Xj-(-2»e0 ) xs—2>X1¥5—21+ xs—) f(xs—1) for Xs—5 GZs_ j, 3s—16 R
and so
f{xs-i) = /(xs_2,0) for xs-1G
Suppose that for some AG Jr+ 2,s —2]
/(®e-i) =/(**,0,...,0) for xs-\ GZI_i .
From (2.1) we get

f(zk,0,...,0) = x\f(yk,0,...,0) +y\f{x®0,...,0) for xkIlyk G Z\ .
Similarly like above, we can show that
/(xb 0,...,0) = /(xjfc_bO,...,0)
and so
f(xs- 1) = f(x)t-1,0........0).
Consequently
f{xs-1) = Axb0,...,0)

and from (2.1), by Lemma 4, we get
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[(is-1) = a(xf-xi). (2.3)
It is easy to see that every function of the form (2.3), where a is an arbitrary
real number, is the solution of the equation (2.1).

2) Assume that s = 3-f 2r. From (1.3), by Lemma 2, we will obtain

I(is-D) =xif(ys-i)+ (r + 2) z«+Ali+1ly>2+ yf/(is-i)
for xs-\, j/s_i 6 zs_Xx,
where

z\ = Ziyi,
n= yn+ Xnyx forn € |t+ 2,s- 1J.

THEOREM 5. The general solution f : Zs_|—=TIl of the equation (2.4) is
the family of functions

[(is-i) =\ (r+ 2) +°(*5 -® 0, (2-5)
where a is an arbitrary real constant.

Proof. Let/ : R be a solution of the equation (2.4). Ifi = 0, then
we get the statement from Lemma 5, directly.
Now let i > 1. Similarly like in the proof of Theorem 4 we can prove that

[(ie_i) = [(xi,xi+2,0,...,0) for i,-i £

Hence from (2.4), by Lemma 5 we get (2.5). One can verify that every function
of the form (2.5), where a is an arbitrary real constant, is a solution of the
equation (2.4).

From Theorems 4 and 5 we have

THEOREM 6. Let us fix a non-negative integral number i.

(i) The only subsemigroups of the form (1.1) of L] for s 6 Jr+ 2,2r + 2] are
the sets from the families

(is-i-*a (*' - :ci)))a€R *

(if) The only subsemigroups of the form (1.1) of L] for S = 3 + 2i are the
sets from the families

(Zi.S(xs-i—>2(i+ 2) +a(*1 _3:i))) a€R’
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Now consider the equation (1.4). For s E \i + 3,2i + 2], by Lemma 2, we get

g(zs-i) = g(xs~i) + g(ys-i) for xs-i,yai £T\_x, (2.6)
where
Zn —Xn + Yn for nENi+ 2,s- 1]

From Lemma 8 we get

Theorem 7. The general solution g : T*_1* R of the equation (2.6) is
given by

s—1

g{xs- 1) = M xKk),
k=i+2

where mk : R —R for KE |+ 2,s —1] are arbitrary additive functions.

Let s = 3+ 2r. From (1.4), by Lemma 2, we obtain

FE(A-0) =FR(Ea i)+ (j 7 2) xi+2Vit2 + g(ys-i)

2.7)
for xs—,ys.y ETs_j ,
where
Zn = Xn+ yn for nE Jr+ 2,s- 1]
We will prove
THEOREM 8. The general solution g : R of the equation (2.7) is

given by

gixs-y = j+2) K+ E V@)

where XX : R —R /or KE [Jr+ 2,s —1] are arbitrary additive functions.

Proof. Let g : Tj_j->R be a solution of the equation (2.7). Ifr = 0,
then the statement results from Lemma 6. Now let i > 1. Putting in (2.7)
Xi+2 = jl/j+2 = 0 we obtain

g{0,xi+3 +yi+3,...,X,-i +ys-1) = 9(0,Xi+3,...,zs i) +g{0,yi+3,...,ys-i)

and by Lemma 8 we get

s—1

O £j+3,2..X5 1) = 5Z o, (28
k=i+3

where mk : R —R for K E \i + 2, s — 1] are arbitrary additive functions.
Set in (2.7) Xj = yj=0forallj E [r+ 3,s —1]. We have
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9(Xi+2I"Vi+2)0,.. 0) — g(Xi+2,0,.. 0)+ A~~~ 27 @t+21/i+2 T 9{Vi+2i 0, ..., 0).
From Lemma 6 we obtain
9(a»+2,0,...,0) = \ (i + 2) X2+ N+ 2("+2), (2.9)

where ®1+2 : R —R is an arbitrary additive function.
If we put in (2.7) y*+2= 0 and Xj —O0 for all j G Jt+ 3,3 —1], then by (2.9)
we get

\( \ 51
g(Xi+2,yi+3,---ys-1) = 2 fi+ 2)N+2 + ~A2(®»+2) + 5Z Vieyfo)- (2.10)
/lc=r+3

It is easy to see that every function given by (2.10), where ipk : R —R for
K G |r+ 2,s —1] are arbitrary additive functions, satisfies (2.7).

THEOREM 9. Let us fix a non-negative integral number i.

(i) The only subsemigroups of the form (1.2) ofL] for s G\i+ 3,2i + 2| are
the sets

Tss -~ DK(XK) J)
\% fc=i+2 /

where tpk mR —R for kK € \i + 2,5 — 1] are arbitrary additive functions.

(ii) The only subsemigroups of the form (1.2) of L\ for s — 3 + 2i are the
sets

Tss ’2(r+2) =2 (DK{XKy\i
where ipk : R —R for Kk G \i + 2,s — 1] are arbitrary additive functions.

3. Denote

Pl ;= {is = (x2,...,xs) GRs 1: VjG|2i+ 1 Xj=o0],

Ps == {Xi+2i+¢>XxS) + XxSe Psi .
Let h : P\—-»Ro, h\ : P\_~—Ro, hs: R. Consider sets
P I1,I{h) := {(/»(®s),ees) : xs G for s> i+ 2, (3.1)
P?;l(huhs) := {(fci(fe_i),2a-i,hf(E£e-i)) : xs_i GP_i}

for s> i+ 3.
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Subsemigroups P{*I(/i) and P~'g(h\, hs) of the group L\ for s < 6, on some
conditions, have been considered in [5], [7], [9], [10].
The set P~’'I(h) with the operation (0.1) is a subsemigroup of L\ if and

only if the function h : Pg->Ro is a solution of the equation
h(zs) = h(xa)h(ys) for xs,ys€ P\, (3.3)

where

zn= h{xs)yn+ E xk JL Aun4ys)u ﬂ Vj3+ xnh{ys)n
k=2 ineuwnk j=2
for n6 Jr+ 2, 3]

Assume that
the functions Xj—(0,..., 0, Xj, 0,..., 0)
for j € [t+ 2,5] are continuous.

We prove

THEOREM 10. A unique solution h : P*—Ro of the equation (3.3), on
condition (3.4), is the constant function h = 1.

Proof. We will use the following

Lemma 9 ([12]). A unique continuous solution ip : R -aR g of the equation

V (x<p{Y¥)k+ YU>(x)) = (p(x)(p{y).
where kK and | are natural numbers such that k ¢ I, is the constant function
=1
Ifs =i+ 2, then we have the statement from Lemma 9.
Now let s > i + 3. Putting in (3.3) Xj —yj = 0forallj 6 g+ 2,s —1] we
obtain

h (0, «-.,0, ysh(O,..., 0, xs) + xsh{0,.. .,0, ys)s) = h(0,..., 0, xs)h{0,..., 0,ys)
and by Lemma 9
A(0,...,0,z«) = 1 for xs € R. (3.5)
If we set in (3.3) Xj = Oforallj G r+ 2,s —1], then by (3.5) we get
Hyi+2, -;ya-i,xsh{ys) + ya) = h(ys) for xs€R, ys £ P\
and for xs = —ys[My«)]-1 we have
Uya) = Uy ,-10) for ys€ P\ .

Suppose that for some K G Jr+ 2,s —1
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h(x,,) = h(xk,0,...,0) for xsG P\ .

Prom (3.3) we get
/i(z*,0,...,0) = h(xk,0,...,0)h{yk,0,...,0) for xkyke Pk.
Similarly like above we can show that
/li(Tb0O,...,0) = /i(1"*_bo0,...,0)

and so
h(x3) = /i(it. bO0,...,0) for XS€ P\ .

Consequently
h(xs) = h(0,...,0) for xs€ P\ . (3.6)

From (3.3) we get
h(0,..., 0) = h(0,...,0)2

SO
/i(0,....0) = 1

and from (3.6)
fi= 1

Obviously the function h = 1 satisfies (3.3).

Thus we have

THEOREM 11. A unique subsemigroup of the form (3.1) of the group L\,
on condition (3.4), is the set Pf'l(xs-¥ 1).
Consider a set Pj&*(/ii, hs). The set P~*(/ii, hs) is a subsemigroup of the

group L\ if and only if the functions h\ : P* x—>Ro, hs:P*_j->R satisfy the
following system of functional equations

hi{zs-i) = /ii(®&i)M ys_i) 3.7)
S—1 s—1
MA2A-i) = M*<-i)MVj-i)+ Y2xk E AiM Y -1T L y?
k=2 ii.en, K j=2
+hs(xsi)hi(ys I)s for is-b ys-i e P*_! |
where
= h\{xs+)yn+ E ** £ T yll1+xn/il(ys Hn
fc=2 u,et/, .t i=2

for n6 i+ 2,s —1].
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Assume that

the functions Xj—Ai(0,...,0,Xj,0,...,0) for jJE\i + 2,5 —1]]

are continuous. Y,

From Theorem 10 we then get

hy = 1.

Set in (3.8) hi = 1. From Theorems 1, 7 and 8 we get

Theorem 12. Assume that (3.9) holds.

()
(i)

(Hi)

For s > 4 + 2i the system of equations (3.7)-(3.8) has not any solutions.

The general solution of the system of equations (3.7)-(3.8) for s 6
li + 3,2i + 2] is given by

hs{xs- 1) = ipk(xk),
k=i+2

where ipk mR —R for K £ Jr+ 2,s —1] are arbitrary additive functions.

The general solution of the system of equations (3.7)-(3.8) for s = 3+ 2i
is given by
hi =1,
hs{xs-i) = i ~t”™ 2)a:i+2+ C bl*K),

where ipk - R—=R for k¢ \i -f 2, —1| are arbitrary additive functions.

Thus we have

THEOREM 13. Assume that (3.9) holds.

(1)

The only subsemigroups of the form (3.2) of L\ for S£ Jr+ 3,2i+ 2| are
the sets

P\$ vxa-l-tlvl s-|-»k _ ZA*(**_)J' «

where tpk mR~>R for kK £ |[r+ 2,s —1] are arbitrary additive functions.
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(ii) The only subsemigroups of the form (3.2) of L] for s = 3+ 2i are the
sets

5 (r +2) X{+#2 + DK(XK)™ )

where mb> BR —R for K G \i + 2, s —1] are arbitrary additive functions.

(in) For s > 4 + 2i here does not exist any subsemigroup P (’6(hi,hs) of the
group L\.
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