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On a class of linear differential operators 
of first order with singular point

Abstract. The aim of this paper is to give a background to study 
spectral properties of some operators occurring in differentiell geometry.
We deal with the problem of existence and uniqueness of local solutions 
of partial differential equations of type D xu  — В и — f .  An integral 
formula for the solutions and conditions of its feasibility are given in 
terms of dynamics of the vector field X . A generalization to equations 
with polynomials in the operator D x  is presented.

1. Introduction

Let C k(n,s) ,  for к =  0 ,1 ,2 , . . .  ,oo,iu, denote the space of germs at the 
origin 0 G IRn of C fc-maps (analytic if к =  ш) from IRn into 1RS.

Consider a linear differential operator L : C k+l(n, s) —> C k(n,s)  defined 
by

Lu =  D x u  — B u ,

where X  G C k(n, n ) is a vector-function, B  G C k( n , s x  s) is a matrix-function, 
and D x u  stands for the directional derivative of и in direction X .

The operators of this type represent a local form (for specific B )  of a Lie 
derivative L x  or covariant derivative V x , which are widely used in differential 
geometry on manifolds. In both these cases B{x)  depends uniquely on a certain 
jet of X  at the point x , and и stands usualy for a differentiable section of a 
vector bundle over the manifold.

For example, if и =  Y  is another vector field, then Lu =  [X , Y] is the 
Poisson bracket of vector fields, and then В  =  D X .

In this paper we are interested in local solvability of the operator L. In 
other words we ask for the existence and the uniqueness of local solutions of
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the partial differential equation

Dx u -  Bu  =  / ,  (1.1)

or in coordinates

-  Bj(x) u7 =  f ( x )  (1.2)
j= i

where i =  1 , . . .  , s.

Remark 1. In case u =  Y  and B =  DX,  equation (1.1) takes the form

Dx  Y  — Dy X  =  / .

In linear case X  (ж) =  Ax  this is called a homological equation, and the problem 
of existence of its formal and analytic solutions was solved by Poincaré and 
Siegel.

Remark 2. If the origin 0 is not a critical point of X , i.e., X (0 ) Ф 0, then 
X  is a non-zero characteristic vector and the existence of local solutions is well 
known. Thus, henceforth, we shall consider only the singular case X  (0) =  0.

2. An integral form of solution

We are going to present a dynamical method to give an integral formula 
for a solution of equation (1.1), useful in case when the method works.

We shall assume in this section that the coefficients in (1.2) are of class 
C l and the vector field X  is halfcomplete in the sense that the flow 
generated by X  is defined in a half-cylindrical neighborhood Cs C  IR71 x IR

||x|| <  5, t >  0.

The flow of X  is the solution of the initial value problem

x' — X (x ) , о II H (2.1)

which means that
Ф[ =  Х о ф и ф0{х) =  X, (2.2)

where; =  f t .

Lemma 1. For all s, t such that s >  0, t >  0 and s — t >  0 we have

4>sl t =  4>t o<j>s l . (2.3)

Proof. In fact, since t —> (pt is a semigroup of local diffeomorphisms of 
IRn, so ф5 о <ft =  <ps+t for positive s, t, and hence
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Фз-t  o (0t О  ф- 1) =  {(j)s_ t о  фь) О  ф3 1 =  ф0 =  i d  

which completes the proof.

Consider another auxiliary differential equation

w ' = - В { ф ^ 1{х))и) (2.4)

where w G lRm and В  is the matrix function from equation (1.1). x plays here 
a role of a parameter in respect to which the right hand side is C 1. Thus there 
exists a normalized fundamental solution R (t ,x )  of (2.4), satisfying

R  '(t, x) =  — В(ф^1(х)) R(t,  x), R(0,x)  =  I.  (2.5)

We shall prove now

Theorem 1. I f  the integral on the right hand side of the formula
roo

u{x) =  -  R ( s ^ s{x)) f ^ s(x))ds  (2.6)
Jo

is uniformly convergent in a neighborhood of the origin, then u(x) is a local 
solution of equation (1.1).

Proof. The function u(x)  is continuous in a neighborhood of 0 G IRn. 
In order to show that it satisfies (1.1) we compute first u ^ t ( x ) )  since its 
derivative at t =  0 is equal to D x  u, by (2.2).

roo

« (& (* ))  =  -  /  R(s,  ф,{фг{х)) f  {фв{фг{х))Лз 
Jo

roo

=  -  R{s, Фз+tix)) ЯФз+tix)) ds 
Jo

=  -  J t R ( T - t M x ) ) f ^ r ( x ) ) ) d T .

By Lemma 1 and (2.4) we get

d Г°°
— u№t{x)) =  R ( 0 ^ t { x ) ) f № t{x)) +  J I R ' ( t — t, фт{х)) f ^ T{x)) dr

/
OO

B № t- M t{x ) )R{t -  г,фг{х)) f№ r(x ) )d T

/00

R{ t -  t, фт(х) f  {фт{х))) dr 

=  f№t(x))  +  В(ф1(х)) и(фг{х).

Setting t =  0 and knowing that ф0(х) =  x, we get finally D \  u =  f  +  B u  
which yields (1.1).
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Consider a particular case В  =  Ы, b =  const. Then equation (2.4) is 
w' =  —bw and R (t ,x )  =  e~btI , and (2.6) writes formally

r 00

u(x) -  -  e~bt f  (4>t(x)) dt
Jo

Thus, if b is positive and /  bounded, the integral is uniformly convergent and 
the formula gives a solution of (1.1). We shall see in the next section that this 
solution is unique.

The integral formula (2.6) works to get effectively a local solution near a 
wandering point of the vector field X .  Recall that а € IR71 is a wandering point 
of X  if there is a neighborhood U  of a and some T  >  0 such that <&([/) П U 
is empty for t >  T.

THEOREM 2. For each wandering point of X  there is a neighborhood in 
which the integral in (2.6) can be modified to define a local solution of eq. 
(1.1).

In fact, since a local solution is wanted, we may replace /  by /  :=  a f ,  
where a  is a test function which is 1 in a neighborhood W  of the point a with 
compact support in U  mentioned above. Then

й(х) =  -  [  R(s,  (ps(x))f(4>s{x))ds 
Jo

is a solution of equation
D x ù  +  В(х)й  =  f

in W.  But in this neighborhood /  and /  coincide, so that ù is a local solution 
of (1.1).

3. Uniqueness theorems

Consider the homogenous version of equation (1.1)

D x v  — B v  =  0, w(0) =  0, (3.1)

The solutions described in Section 2 are unique if eq. (3.1) has only trivial 
solution v(x) — 0 in a neighborhood of the origin.

Let a(t, x) and ß(t, x) denote respectively the least and the greatest real 
parts of the eigenvalues occurring in the spectrum of the matrix B(fit(x))  
(with fixed t and x).
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Let S(t,  X) be the normalized fundamental matrix of the auxiliary equation

v' =  B(<j>t(x))v. (3.2)

The following estimates, in version without x are well known (cf. Wintner [2])

exp [  a(s ,x)ds <  ||5(t,x)|| <  exp f  ß(s,x)ds  (3.3)
Jo Jo

for t >  0 and x  fixed, and for every solution v(t, x)  of (3.2) with w(0, x) =  v(x) 
it holds

||v(x)||exp [  a(s ,x)ds  <  ||u(t,:r)|| <  ||г>(х)|| exp [  ß(s,x)ds  (3.3)* 
Jo Jo

Setting (j>t{x) as argument in eq. (3.1) yields

« (& (* )) ' =  B ( M x ) ) v { M x ) ) .

This is because by (2.2)

{Dx v) о (j)t =  ^ ( v  о (f>t). (3.4)

If a solution v(x) satisfies (3.1) then v(t,x)  u(^t(x)) satifies (3.2), and 
consequently v(t ,x)  =  S ( t ,x )v(x ) ,  since n(0, x) =  v{x).  Combining this we 
get the equality

v((j)t{x)) =  S{t ,x)  v(x), t >  0. (3.5)

Suppose that both integrals
roc roo

/  a (t : x)dt , /  ß(t,x)dt,  (3.6)
Jo Jo

are convergent, then

(i) both ||5(t,a:)|| and ||5_1 (t,re)|| are bounded as t —> oo,

(ii) the norm ||u(t,a;)|| of every non-zero solution vector of (3.2) tends to a 
finite and non-vanishing limit as t —> oo and x  remains fixed.

If moreover roo
/  \\B((i)t{x)\\dt <  oo, 
Jo

(3.7)

then there exists
S(x)  lim S ( t , x),

o o
(3.8)

which is a non-singular matrix.

The facts above follow from (3.3) and (3,3)* by arguments as in [2, sec. 
9, 10]. Recall that a flow ^  is said to be quasi-asymptotically stable if there 
exists <5 >  0 such that if ||æ|| <  6 then </>t(z) -»  0 as t —> oo.
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THEOREM 3. Suppose that the flow <f>t generated by X  is quasi-asymptoti
cally stable and either integral

ro o  r  oo
/  a(s,x )ds or /  ||B((/>((a;))||<ft

Jo Jo

converges for x from a neighborhood of the origin. Then every solution of (3.1) 
is locally trivial.

Proof. Note that if the second integral is convergent then so is the first one. 
By the assumption there exists 6 >  0 such that if ||z|| <  6 then u(<fo(:r)) —> 0 
as t —► oo. From (3.3)* we have

IK<M*))II > ||u(x)|| exp [  a(s,x)ds.  (3.9)
Jo

Letting t —у oo we get v(x)  =  0 for x  sufficiently small.

THEOREM 4. Suppose that (f>t{x) is bounded as t -> oo and x is small (e.g., 
i f  X  is finitely supported). I f  for such x

sup / a(s,x)ds =  +00 
t>o Jo

then v(x) =  0 for every solution of (3.1").

Proof. It follows directly from (3.9).

C orollary . Suppose that B(x)  =  В  is a constant matrix. I f  either 
hypothesis below holds

(a) (/>t is quasi-asymptotically stable and Re Л >  0 for all A from the spectrum 
of B , or

(b) is bounded and Re A >  0 for A 6 Specti?,
then every solution of equation (3.1) vanishes in a neighborhood of the 
origin.

In particular, the conclusion is true if  В  =  0 and fy is quasi-asymptotically 
stable.

4. Solvability of the operator D x

We return to the non-homogenous equation (1.1) in the case when В  =  0,

D \ u  =  / .  (4.1)
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With X (0 ) =  0 the origin 0 is a hyperbolic point of X  if the Jacobian matrix 
D X  (0) has no eigenvalue with real part equal to zero. In this case there exists 
a decomposition IR" =  E +  ® E -  in which D X (0) has a quasi-diagonal form 
with blocks C , D , and thare are positive constants c, 5, К  such that

l|etC|| <  e - rt, ||е-ш || <  в - 4, \\etDX^  z|| >  6\\x\\, (4.2)

Ut(x)\ \  <  K \\x\\e~ct if x e E + D B s ,  (4.3)

and
U -t (x ) \ \  <  K \\x\\e~ct if x e E _ H B s , (4.4)

where B$ denotes the ball {||x|| <  d}.
The subspace E + is called contracting and the subspace E _  expanding. If 

both are non-trivial the critical point is of saddle type. In restriction to E + 
the eigenvalues of D X (0) have negative real parts (notation: Re Л <  0) and 
the restriction to E -  satisfies Re A >  0.

We know that hyperbolic critical points of any vector field are necessarily 
isolated critical points (cf. Smale [1])

A critical point will be said a contracting critical point if the whole space 
HI" is contracting. We introduce a new notion by

Definition. A hyperbolic critical point is said to be strongly hyperbolic 
if it is of saddle type and the contracting subspace E + is invariant under linear 
maps D X ( x )  for x from a neighborhood of the point.

Note that E +  is invariant under D X ( 0) by definition.
Clearly, every hyperbolic point of a linear vector field on lRn is strongly 

hyperbolic. Denote by p any projection in IR" the kernel of which is exactly 
E + ; e.g., the projection on

Lemma 2. A critical hyperbolic point is strongly hyperbolic if  and only if 
it satisfies locally one of the following equivalent properties

(1) D X E + C E + ,
(2) p o D X  =  p o D X o p ,
(3) p X  = p { X  op),
(4) p f i t= p { (pt °p ) ,
(5) p о D fit = p o  D fit о p, 

where D X  and Dfit are taken at x.

Proof. The proof goes (1) <=>  (2) => . . .  (5) =» (2). Trivially (2) =>• (3), 
(4) => (5) and (5) => (2); the latter by differentiation at t =  0.

In order to show (1) => (2) we decompose v =  w +  z where w € E + and 
z =  p(v). Then
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p ( D X v )  =  p (D X w )  +  p (D Xp(v) )  =  p (D Xp(v) )  

because D X w  G E + by (1).
For (2) =$> (1) let V G E+\  then pv — 0 and we have 0 =  p D X (pv )  =  p D X v  

which means that D X v  is in E + .
Now we show (3) =>• (4). By (3) we have

d
-т̂ТРФь — p X  о ф1 =  p X  о рфь

and

—pfit ° р =  р Х  о p(j)t о р.

We see that both sides of (4) satisfy the same differential equation

z' = pX(z)

with same initial value, since фо =  id and p2 =  p. Therefore they coincide.

PROPOSITION 1. Let the origin be a contracting critical point of a C°°  
vector field X  on lRn and let f  : lRn ->  IRS be C °° and satisfying / (0 )  =  0.

Then equation (4.1) has a C °° solution u(x), uniquely defined in a neigh
borhood of the origin.

Proof. Without loss of generality we can assume that X  has a global 
Lipschitz constant, hence its flow is defined for all t G 1R. To make use 
of the integral formula (2.6) we should set R (t ,x )  =  I  since here В  =  0. 
Therefore the only problem is to show that the map

roo
u { x ) ~  /  f ^ t{x))dt  (4.5)

Jo
is well defined and C°°  near the origin. The local uniqueness then follows from 
Corollary (a). For this it should be noted that if a point is contracting then 
it is obviously quasi-asympotically stable.

Now, we have to show that all the integrals
roo

/  D kf ^ t(x))dt  
Jo

are uniformly convergent in a neighborhood of the origin. We have

к
D k( f o ф t) = Y , ( DSf ) 0 Фt £  0 » ф 1. . . & - ф 1. (4.6)

S=1 j \  + . ,} .  + ja =  к
ii > 0

The estimate (4.3) now reads ||(/>t(a;)|| <  ÜT||:r||e~c< for x near the origin. There
fore, for t sufficiently large and x small
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М о М х ) ) \ \ < С \ \ М * ) ) \ \ < С К \ \ х \ \ е - « .

In [3] it was shown that if <f>t has an exponential bound of order e~ci, then so 
do all the derivatives D k(j)t, k >  1. Therefore by (4.6) we easily get

IID k{ f  о <f>t){x)\\ <  const • e_ct, (4.7)

where we assumed {D s f )  о <f>t as bounded by a constant in a ball ||a:|| <  6. 
This completes the proof.

Actually, we proved the following

Fact. In a neighborhood of a contracting critical point of a vector field 
X  on IR71, the linear differential operator D \ ,  acting on the space of smooth 
maps f  : ]Rn —> IRS vanishing at the point, is surjective and injective.

The above properties are strictly connected with the fact that there are 
no non-trivial germs of first integrals of a vector field at a contracting critical 
point. We have namely

Lemma 3 . I f  a vector field X  has bounded right branches of its flow <pt, 
e.g., i f X  is finitely supported, and there exists a non-zero germ of first integral, 
say f ,  of X  at a point o /lR n then the equation (4.1) has no C 1 local solution.

Proof. Substituting <j>t{x) for x in (D x u ) ( x ) =  f {x) ,  we obtain using (3.4) 

^ u { f i t{x)) =  f{<j>t(x)) =  f {x) .

Hence
u(4>t(x)) — u(x) =  t f (x) ,  t >  0.

Letting t -A Too we get f ( x)  =  0 because the left hand side is bounded, which 
proves the lemma.

Since non-trivial first integrals may exist around a hyperbolic critical point 
of saddle type, we can not expect an assertion like Proposition 1 in this case. 
However, under stronger hypotheses we can obtain the following

Proposition 2. Let X  be a C °° vector field on IRn for which the origin 0 
is a strongly hyperbolic point. Suppose that f  G C °°(n , s) vanishes to infinite 
order on the contracting subspace E + . Then the differential equation (4.1) has 
a C °° local solution near the origin.

Proof. Since /  is infinitely flat on the contracting subspace, for all non
negative integers k, m  there is a 6 >  0 such that if ||x|[ <  6 then

\ \ D kf ( x ) \ \ < M k<m\ \ x - E + \ r , (4.8)
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where MfcjTn are positive constants and x — E + stands for the projection p(x) 
on the expanding subspace E _ .  It should be noted that 6 can be chosen 
independently of к and m. It follows from the fact that each derivative D k f  is 
also zero to infinite order on E + , and hence the map x \\x — E + \\~mD kf{x)  
is C °° and equally flat . Therefore it is bounded in the ball Bs and M\tiTO is a 
bound for it.

Instead of (4.1) we consider the equivalent equation

D - x u  =  - /

because —X  is contracting on E _  with the estimate (4.4) which now can be 
written, using property (4) of Lemma 2,

IW>-t(z)ll =  IN>-«(p(z))ll <  K\\p{x)\\e~ct. (4.9)

The integral formula (2.6) writes now
roc

u(x) =  /  / {<t>-t{x)) dt.
Jo

The uniform convergence of all the integrals
roc

/  D kf  (<f>-t{x)) dt 
Jo

follows directly from the estimates (4.8) and (4.9), as it was shown in the proof 
of Proposition 1.

5. Generalization to polynomials in D x

Let E(£) =  £r +  ar_ i£ r_1 +  . . .  +  a +  ao be a polynomial of degree r 
with real coefficients. The differential operator P ( D x ) of order r gives rise to 
equation

( D x ) ru +  . . .  +  a \ D x u +  a0u — f .  (5.1)

Theorem 5. Let k(t) be the solution of the ordinary differential equation 
P  к =  0 with initial conditions

Ifc(O) =  . . .  =  А;{г~2)(0) =  0, Â:(r" 1)(0) =  -1  

for r >  2 and /c(O) =  —1 for r =  1. I f  the integrals

[  k ^ \ t  — s) f(<j)s(x)) ds,
Jo

are uniformly convergent in a ball Bs, for j  =  0 , 1 , . . . ,  r, then the map
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u(x) =  /  k(—s) f((ps(x)) ds
Jo

is a local solution of (5.1).

Proof. Denote щ =  и о фг and ft =  f  ° 4>t- Then no =  n, /о =  / ,  and 
using (3.4) we get by iteration

u\3) =  ( D x u y  о ф1.

Applying this to P ( D \ ) u  =  f  we obtain

P { D x ) u t =  p ( ^ j u t =  f t . (5.2)

In order to verify that u(x)  defined in the theorem satisfies equation (5.1) for 
X in Bg we show that щ  satisfies (5.2) and set t =  0. We have

r  o o  r  o o  roo
ut =  k ( - s ) f  о ф8 o =  /  k ( - s ) f t+sd s =  /  k(t — s ) f sds.

Jo Jo Jt
Hence, using initial conditions one has

/ОО Г О О
k'(t -  s ) f sds =  J  k'(t -  s ) f sds

etc.,

u[r =  J t k(r~^( t  — s ) f sds,

/OO
k r̂\ t  -  s ) f sds.

Taking the sum of these terms with due coefficients yields

p{£)u,=n+r p(î)kit-s)f-ds-
Setting t — 0 and applying the definition of function k(t) we get

P ( D x )u =  f  +  f Q°° ( P  ( I )  fc) ( s ) f s d s  =  /  

which proves the theorem.
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