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On the stability of the cosine functional equation

Abstract. In the present paper we study the stability problem of the
cosine functional equation for complex- and vector-valued functions.

1. Introduction

Classical d’Alembert’s functional equation (the cosine equation) for a com-
plex function / defined on a group (G,+) has the form:

f{x +y) + f{x -y) = 2({x)f(y), x.,y €G. @

The two most general results concerning equation (1) have been proved by
Kannappan [7] and Dacic [4]. The first one, due to Kannappan asserts that
for any solution / of the cosine functional equation satisfying the condition:

f{x+y+2)=1f{x+2z+y), x,y,zeG, (2)

there exists a homomorphism m of the group G into the multiplicative group
of the complex field C, i.e., m satisfies the exponential functional equation:

m(x +y) = m(x)m{y), x,y £G 3

such that
/I(x) = -(m (x)-t-m (-x)), xeG. (4)

Daci¢ replaced hypothesis (2) by the following assumption:

V (/I (200=0N o f{x+y+2z0)=1F(x+z0+y)\. (5)
20G.G Yy i,y€G J

It was shown in [4] that under the new hypothesis the assertion of Kannappan
result remains valid.

AMS (1991) subject classification: 39B72.
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The aim of this note is to examine the stability problem of the cosine func-
tional equation. It is known that equation (1) for complex functions defined
on Abelian group is stable in the sense of Baker (“superstable”).

Theorem (J. A. Baker, [1])
Let £ > 0 be a given number and let (G,+) be an Abelian group. Then any
unbounded solution f : G —C of the inequality

\f(x +y) + f(x - y)- 2f{xX)f{y)\ < £ x,yeG
satisfies d’Alembert’s equation (1).

We present a new, short proof of Baker’s result. Next, in the second part
of the present paper, we consider the problem of the stability of equation (1)
for vector-valued mappings.

2. The scalar case

J. A. Baker in [1] showed that the cosine functional equation for complex
functions defined on an Abelian group is superstable. Instead of the com-
mutativity of the group G we assume a condition of the type assumed by
Kannappan. Then we have the following generalization of Baker’s result:

T heorem 1
Let e > 0, ©> 0 and let (G,+) be a group. Suppose that f : G — C
satisfies

\f{x +y)+ f(x-y)-2f(x)f(y)\<e, x,y £G. (6)
and
\fi{x + y+ z)-f{x + Z+ y)\<6, X,y,zeG. )]

Then either f is bounded or f satisfies d’Alembert’s equation (1).

Our proof of this theorem is based on the idea presented by A. Bil and
J. Tabor in [3].

Proof. If/ is unbounded then there exists a sequence (xn: n € N) in G
such that

/(xn)®0, n€N (8)

and

nIi_n.go|/(x,,)| = Too. 9)
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Inequality (6) implies that

If(x + xn) + f(x - xn) - 2f(x)f{xn)\ <e, XE£ G, ne N.
Therefore, by (8), we have

f{x + xn) + f{x-xn)

*) < 6 G, € N.
2f(xn) 1) § "

R/(*nm)|’

Hence and from (9) we infer that

. f(x + xn) + f{x - xn)
lim = f(x), Xe G.
n—00 2/(Xn)

Now, applying again (6), we get

F{x + {y + xn)) + f{x - {y+ xn)) - 2f(x)f{y + xn)
+i{x + {y - xn)) + f{x - (y- xn)) - 28(x)f{y - xn)| < 2e,
X,y € G, ne N,

whence,

\f(x + y+ xn)+ f(x - Xn-y) - 2f(x)f(y + xn)
+f{x +y-xn)+ f(x + xn-vy) - 2f(x)f(y - xn)| < 2e,
X,y € G, ne N.

Further, using (7), we obtain

f(x + v+ xn)+ f(x+y-xn)y+ f(x-y +Xn)+ f(x-y- Xn)

(10)

-2F(x)(f{y + xn) + f(y - xn))] < 2e + 26,

X,y e G,
Hence,

f{x+ ¥+ Xn)+ f(x +y- Xn) f(x-y + Xn)+ f{x-y- Xn)

ne N.

2/(x n) 2f(xn)
ot/-\ /(v + xn) + f(y - Xn) ~ 2e+ 26
n - 2f(xn) -2|/(sn)|’
X,y € G, ne N.

This inequality combined with (9) and (10) implies that / satisfies equation

(1) and ends the proof.
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3. The vector case

In the vector-valued case the problem of the stability of equation (3) was
considered by J. Lawrence in [8] and by R. Ger and P. Semrl in [6]. Moreover,
R. Ger in [5] considered the stability problem of a system of trygonometrie
functional equations.

At the beginning of the present section we observe that the superstability
of the cosine functional equation fails to hold in the case of vector-valued
mappings. Our counter-example reads as follows (see also J. A. Baker [1]):
take a function / defined on a group G with values in the algebra C) of
all complex (2 x 2)-matrices given by the formula

fo{x) 0
/(*) 0 c X G G, (|/|)
where /o : G -1 C is an unbounded function fulfilling equation (1) and c ¢ 1

is a positive constant. Then
Wfix + y) + fix - y) - 2/((X)/(Y)|| = const >0 x,y GG.

Therefore, this difference is bounded but / is neither bounded nor satisfying
equation (1).
For vector-valued mappings we have the following stability result:

Theorem 2
Let (G, +) be an Abelian group and let /1 be a complex normed algebra.
Assume that the function f : G — /1 satisfies

s+ y) + fix-y) - 2/(x)/(y)l] <£, X,yeG (12

and
Wfix) - fi-x)\\<r), i GG, (13)

for some e, j > 0. |f

' there exists a zq 6 G such that the map
i G a3Axh |/xX)/(rO)]] GR (14)
Kis bounded

then there exist a function m : G —» /1 and constants ci,C2 G R such that
\\m{x+y) - m{xX)m(y)\\ < ci, x,y GG

and

fix) - 2imix) +m (-x)) < ¢2, xGG.
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Proof. Let us observe that
I/(z)/(-zo)]] <6+ E Xe G,
where 6 := supl6G ||/(xX)/(.zo)]]. In fact, by (12) we have

/(<) (-*)L 1 < 11/(*)/BIH + \\f(x)f(-zo) - /(x)/(zo)] |

< N+ + z0) + fix - z0) - 2f(x)f{zo)

~r°)+ + re) “ 2f(x)f(~zo)
<& Lile 61e x6o.
z z
Now, we define a function h : G —»J1 as follows:
Hx)m=\ifix)+ /(-*)). XeG.
Then
h(-x) = h(x), X€G

and by (13), we have

) - /)] < ~T7, x £G.

Moreover,

MM® + ¥) + h(x - y) - 2h{xX)h(y)\\ < e+ -rf =: eb

X,y G G.
Indeed, from (12) and (13), we deduce that

IVix+ y) + h{x - y) - 2h(x)h(y)\\
= Wf(x+y)+fi-y -x) + fix - y)+f(y- x
-F(x)f(y) - fix)fi-y) - fi-x)fiy) - fi x)fi y\
< \Wfix+y) + fix-y) - V{x)fiy)\

+\\\fi-x-y) + fi-x +y)-2fi-x)fi-y)\\

F\WF(X)Fiy) ~ F(x)fi~y) + fi~x)fi~y) - fi~x)fiy)K

< N

<E+AIW-/(-*)P W -/(-»)«

19
<e+ -r;, x,yE£G

FAsH 100 - 1(-D) () - 1(-»))«

(15)

(16)

17

(18)
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We define the map m : G -* A by the following formula:
m(x) := h(x) + ih(x + zo), x G G.
Then, conditions (18), (14) and (15) imply that

IBm(rr + y) - 2m(x)m(y)\\

= W2h(x + y) + 2ih(x + y + z0)
-h(x +y) - h(x-y) + (h(x+y) + h{x-y) - 2h{x)h{y))
-ih(x + y+ zo) - ih(x - y+ z0)
+i(h(x + y+ zq) + h(x - y+ z0) - 2h(x + z0)h(y))
—ih(x + y+ z0) - ih(x - y - z0)
+i(h(x + y+ zo) + h{x - y - zq) - 2h(x)h(y + z0))
+h{x + y+ 2z0) + h(x - y)
~{h{x + y + 2z0) + h{x - y) - 2h{x + zO)h{y + z0))||

< 4ti -b |l/ix+ y + 2zo) + h(x + y) - 2h(x + y + z0)h(z0)
-i(h(x - y+ z0)+ h(x - y- z0)+ 2h(x - y)h(z0))
+2h(x + y + zo)h(zo) + 2ih(x - y)h(zO)\

< 4e\ + 2ei + 2]Jh(x + y + rO(ro)|] + 2\h(x - y)/i(zO)]]

= bBei + +y+ 20)+ f{—x -y - z0){f{z0) + /(-zo))] |
+\W{fix ~y) + f(~x+y))(/bl + f(-z 0)\

< Bei+ 4- 5+ 4+i(<$ + e)

= 6£i + 46+ 2e, i,y € G,
whence,
IIm(x +y) - m(xX)m(y)]] < 3ei + 25+ £=: Ci, x,y e G.
Moreover, using (16), (17), (18), (14) and (15) we obtain

[H(mX) + m(—x)) - 2f(x)\\
< Hme) + m (-x) - 2611 + \2h(x) —2/(x)]|
[1/i(x) + ih(x + z0) + h(-x) + ih(-x + z0) - 2h(x)\
+211h09 - /911
Yih(x + z0) + ih{-x + zO)]| + 2]h{x) - T(x)II
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< Ih(x + z0) + h(-x + z0) - 2h(x)h(zo)\ + [R/i(x)/i(zO)|| + 2 «irg
= lIh(x + z0) + h(x - 20) - 2h(x)h(zO)\ + [R/i(x)/i(zO)ll 4 r?
< Ei + AJ((@) + F(=x))(f(z0) + /(-z O] + »

<fi+2m-0+2+-(J+e)+ T, XEG,
which yields

/1 r 1 1

PO =AY+ mEad) « 2e1 4w+ 25+ 2v=: °2 X€G6

and completes the proof of the Theorem.

For functions fulfilling conditions (13) and (14) Theorem 2 reduces the
problem of the stability of d’Alembert’s functional equation to the problem
of the stability of Cauchy’s multiplicative functional equation (3) which was
considered by J. Lawrence in [8] and by R. Ger and P. Semrl in [6] (see also
R. Ger [5)]).

Remark 1
Since

FHC)-1G) < H{x) - -(m(2) +m (-s))

tof(=x)- 2m(-x)+ mx) X686
for every m : G -> A, we infer that if the map
G 3 x*2 »|l/(e)- f(-x) IGR

is unbounded, then the stability theorem of our type fails to hold, which means
that assumption (13) is a necessary condition in our study.

Remark 2
If A is a complex normed algebra with the identity e and if /(so0)-1 exists

for some xo G G, then hypothesis (13) is fulfiled with g = |]/(x0)_11If « Indeed,
by (12), we have

[1/x0+ x) + f(xo0- x) - 2f(x0)f(x)\\ <e, xGG
and
[11/z0- x) + f(x0+ x) - 2f(x0)f(-x)\\ <e, x GG.
Therefore
Wi{xo){f(x) - f{-x))\\ <e, iG G
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and
IF{x) - £{-x) 0= \F(x0)~1f{x0){f{x) - F(-x))\\
< HI/M-"lp/IXoK/W -/(-*))»
<U/W-4], "EC.
Remark 3

For a complex normed algebra /1 with the identity e condition (13) can be

replaced by the following assumption:
11 (/(0)-e)/(x)II<£, XxX£G. (19)

In fact, in the proof of Theorem 2 first we observe that if zo = 0 then (12)
with y = 0 yields
112/(z) - 2/(xX)I(0)]] <e, x £ G

and from (14) we deduce that / is bounded. This concludes the proof in the
case zq = 0 beacause we take then the function m : G —y /1 defined as follows:

m(x) =0, XE£ G.

Let zo ¢ 0. We define a function g : G — J1 as follows

Then the function g : G — /1 satisfies:

113(%) - f{X)\\ < Jle-/(0)]] =:7, x £ G. (20)
We are going to show that g satisfies all the assumptions of Theorem 2.
Obviously
lleKz )s (zo)ll < max{sug 11/() /Ol 1101} =: C, X £ G. (21)
ie

From (12) and our assumption (19), we get
WO(x + y) + gf{x - y)- 20{X)g(y)\\ < e+ 26+ 27 =:1¢& Xx,y€G. (22)

To prove this, suppose that x » 0,y 0, x+ y”~ 0and x - y ® 0. Then (22)
is trivially fulfilled. Next assume that x = 0. Then
150+ y) + 5(0 - y) - 2y(O)ywlI
< 110+ Y) + /(0 - y) - 2/(0)/ ()11 + 112/(0)/(y) - 2e/II
< £+ 2£, y £ G\ {0}
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Ify = 0, then ||[<(z+ 0) + g(x - 0) - 2g(i)y(0)]] =0, x e G. Finally, assume
that x + y —0orx- y=0and x ™ 0d¢d y. Then

I$@® + ¥) + 9(x -y )~ 2g{x)g(y)\\
< W (* + YY)+ /(x - y)- 2100/ 11 + 211y - /©O)]]
< e+ 27.

Inserting x = 0 to (22), we get
ls(y) + g(-y) - 2ywIl <e, yeG,
whence

y(y) -g(-y)\\ <&, ye G (23)

From Theorem 2 we deduce that there exist a function m : G A and
constants ci,C2 € K such that

[Imx+ y) —mxX)m(y)\ < ci, x,yeG
and
g{x) - ~(m(x) +m(-a;)) <@ XE€G.

Now, from (20), we get
f(x) - -(m(x) + m(—=x)) <7+ C, xeG.

Moreover, let us observe that every solution of inequality (12) satisfies the
following condition:

WF(x)(f(0) - O] < xeG

(taking y — 0 in (12), we have ||2/(i) - 2/(x)/(0)]] < e x £ G).
So, our last remark yields the following

Remark 4

Assumption (13) can be omitted for a complex commutative normed al-
gebra with the identity.

Remark 5

Condition (14) is fulfilled by the function / defined by (11) when the
function /0 satisfies the cosine functional equation and Dacic’s condition (5).

Finally let us observe, that our stability theorem leads to the following
version of the Daci¢ result for vector valued mappings:
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Theorem 3

Let (G, +) be an Abelian group and let A be a complex normed algebra.
Then every even solution f : G — A of the d’Alembert functional equation (1)
has the form:

f(x) = -(m(x) + m(-x)), x£G,

where m : G —mA satisfies Cauchy’s equation (3).
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