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Hans-Heinrich Kairies

Takagi’s function and its functional equations

Abstract. The Takagi function T : K -> R is given by

where d{y) denotes the distance from y to the nearest integer.

We give some information on the history and on the analytic prop-
erties of T. Moreover, we present several functional equations for T and
discuss various relationships between them as well as their characterizing
properties.

1. Introduction

In the year 1903, Takagi [17] introduced a function T : [0,1] — R, which
is defined as follows. For cn € (0,1},

O

where an is the number of digits 1 among ci,C2,... ,cn in case cn = 0 and an
is the number of digits 0 among c¢j, cr,..., Cn in case ¢, = 1.

Note that the argument x of T is given in its dyadic expansion whereas
the value T (x) in general is not. The aim of Takagi was to present a simple
example of a continuous nowhere differentiable function. In fact, the end
property for T is much easier established than for other functions of this type
considered earlier by Weierstrass.

Since then many other authors discussed various end functions including
Takagi’s; some historical information can be found in [1], [6], [9], [10], [16].

A note of van der Waerden [18] from the year 1930 became especially well
known.
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There it is shown that the function W : R —» K, given by
(e]e]
W (x) := min {I® —10 *em|; m £2) @
k=0
has no one-sided derivative at any point.

It is easily seen that, for a = 10, W coincides with the function Sa: R —» R,
given by

©)
k=0

where d(y) denotes the distance from y to the nearest integer.

It is by far not as obvious that S2, restricted to the interval [0,1], is in
fact Takagi’s function T. This is probably the reason why Takagi’s work did
not receive due recognition compared to van der Waerden’s. For example,
Billingsley [2] and Cater [3] denote S2 as “van der Waerden'’s function”, Dar-
sow, Frank and Kairies [4] as “a function of van der Waerden type” without
mentioning the name Takagi.

From now on we extend T by 1-periodicity and have for every x G M

(4)

In Section 2 we state geometrical and analytical properties of T. However, the
main object of this paper are functional equations for T. They are discussed in
Section 3. Our results are based on previous work by de Rham [15], Darsow,
Frank and Kairies [4], Girgensohn [6], [7] and by Kairies [9].

2. Geometrical and analytical properties of T

The representation (4) shows immediately that T is continuous on R. Now
we list some other important properties of T in the following
Theorem 1

a) T is nowhere differentiable.

b) T satisfies on [0,1] a Lipschitz condition of any order a G (0,1).

c) max{T(x); x G [0,1]} = for any z G [0,1], T(z) — | iff the 4-adic
expansion of z contains only the digits 1 or 2.

d) The Hausdorff dimension of {(x,T(x))] x G [0,1]} is one.
e) Let Mn := xnT(x)dx. Then Mg= | and
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1 1 AACEL
Mn= (n+1) (n+2) 2@®l—1) S \k) Mk’ nGN'

Proof, a) Takagi [17] proved the end property of T on the interval [0,1]
using his representation (1). Billingsley [2] showed by means of the repres-
entation (4) that T is nowhere differentiable and Cater [3], using as well (4),
showed that T has no one-sided derivative at any point. This fact can also be
deduced from Takagi’'s paper. A completely different proof using functional
equations can be found in the work of Darsow, Frank and Kairies [4].

b) Let x,y G [0,1] and \y —x\ > Because of 0 < T(z) < |, z G [0,1], we
get immediately |T(y) —TX)] < |1y —x\

Now let \y - x\ < . It is sufficient to consider the case x = 0 and we do
so. From the representation (4) we deduce that T(2~k) — k m2~k for every
K e N and that T(y) < (k+ 1)2~ft whenever 2_(fc+tl) < y < 2~k. This implies

IT(y) - T(O)] < 4]ly- O] log2ly - 0Tr' 1< c(a) m\y - OJa

for any a G (0,1) with a suitable constant c(a).
Clearly T does not belong to Lipi [0,1] because this would imply the ab-
solute continuity of T, contradicting a). Kéno [11] proved the related result

lim [x=Yi->0 00T ()
{x-y) -log2 (1/1x-y )
T(x)-T t
o e ()T (y) _

(®-y)-log2 (U ®-y])

c) The statements have been proved by Martynov [13] and in a more general
setting by Dubuc and Elqortobi [5]. Note that the partial sums

2m+1
T2m+i(x)= T~ kd{2kx)
fco

attain i[heir maximal value 2~(2k+~ on 2m full intervals, each of length

As a consequence, the global maximal value of T is 2~(2fctl) = 2/3
and the set M := {z G [0,1]; T(z) = 2/3} has measure zero. Its minimal
element is 1/3 and its Hausdorff dimension is 1/2, a fact which has also been
proved by Martynov [13].
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d) The claim is a particular case of a result due to Mauldin and Willi-
ams [14]. These authors proved that {(x, Sa{x)); x G [0,1]} has Hausdorff
dimension one whenever a > 1.

e) The moments of T have been obtained by Darsow, Frank and Kairies [4]
using neither the representation (1) nor (4) for T, but a functional equation
which is satisfied by T.

Remarks
a) Let ip(x) := 2d(x). Then for the T&ath iterate ipn of ip we have
mn{x) = ip(2n~1x), n € N, i £ | . As a consequence,

:i Eli « .Eﬁ*—]?'):kg ? m S

Hata and Yamaguti [8] generalized this third representation (5) for T
and discussed the Takagi class T of functions F(ak) : [0,1] —E,

F(ak) (x) := okipk (x),
k=1

which are generated by a sequence (ak) 6 i1l.

They showed for instance that the convergence of Y~KkLi“k~[x) for
every x € [0,1] implies : (bk) € 11. They obtained structural properties
as Schauder expansions or functional equations for the elements of T
and exhibited a connection of T with de Rham’s singular function. The
paper of Kéno [11] contains several other interesting statements on T.
We give one especially nice example:

F (ak) is nowhere differentiable iff im~oo 2fclgt] > O.

b) Takagi’s function T can as well be interpreted as a member of the Knopp
class of functions K : E — E, given by

00
K(x) = Y2, akg(bkx)
k=0
with Ja] < 1 and g of period one. This class has been investigated as
thoroughly as the Takagi class. Information can be obtained from the
references [1], [5], [7], [9], [10], [14], [16].

The graph of Takagi’s function T and the graphs of some of the partial
sums Tm of the series (4) are sketched at the end of our paper.
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3. Functional equations for T

We first give a list of functional equations which are satisfied by Takagi’s
T. They are all in a single variable and of order one or two according to
Kuczma’s [12] terminology.

Theorem 2
The Takagi junction T satisfies the following functional equations (6)-(12)
for every x E K and (6')-(8") exactly for x E [0,1].

I

*1(8) nt = 3 ©
V(I) - f{x) = E (6)
2/t - 2 ) ()
2/(,,.) - I(x) = 1- X )
U1)- ®)
X+ 1
2 ) 1y (®0
clory slw =] Q)
1(2) =2/(x) = -2d(x) (10
f(x+ D-/(s)=0 (1)
[(*)-1(i-*) = o 12

Proof. By using the representation (4), the verification of these functional
equations for T is straightforward. As an example we check the statements
about the equations (6) and (6').

@ - @ -

2r (s) - T(x) 242 d (2 'f) - E » d{2tx)
k—0

1
tH

k=0
00 1 00 1

M(I)+E:| Jjs=i «(@*-1¥)- ch:oJ

- [14 (!)
for every x E K, which proves (6). As a consequence, T satisfies (6') iff
2d(]) = x and this is exactly the case for x E [0,1].
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Equation (10) was stated by de Rham [15] and used to characterize T on
K. The equations (6')-(8) and (9)-(12) were discussed by Darsow, Prank and
Kairies [4] and used to characterize T on [0,1].

The equations (6) and (7) are a particular case of a system which was
examined in great detail by Girgensohn [6], [7]. Equation (9) is of replicativity
type, cf. Kairies [9].

We collect the most important facts on functional equations for Takagi’s
T from the just quoted papers in

Theorem 3
a) Assume that f :R —aR is bounded and satisfies equation (10) for every
i ¢ K. Then f(x) —T(x) for everyi G i

b) Any solution f : [0,1] — R of two of the equations (6'), (7"), (8), (9) on
[0, 1] satisfies the other two on [0, 1].

c) Any solution f :[0,1] —R of two of the equations (6'), (7, (8), (9) on
[0, 1] has no one-sided derivative at any point of (0,1). /+(0) and /1(1)
do not exist (in R).

d) Assume that f : [0,1] — R is bounded and satisfies two of the equations
(6, (79, (8), (9) on [0,1]. Then f(x) = T{x) for every x G [0,1].

e) Assume that f : R — R satisfies equation (11) on R and (9) on [0,1].
Then f satisfies (9) on R.

f) Assume that f : R —» R satisfies equation (11) on R and two of the
equations (6'), (7", (8), (9) on [0,1]. Then f satisfies (10) on R.

Proof. Statement a) is due to de Rham and is proved in [15]. All the
other statements are due to Darsow, Prank and Kairies and are proved in [4].

Remarks
a) Each of the functional equations (6)-(12) and (6')-(8) has 2Csolutions
on R. This can be seen as follows. In case of equations (7), (7", (8),
(89, (11) and (12), a solution can be arbitrarily prescribed on the in-
terval (0, g), in case of equations (6), (6'), (9) and (10), a solution can
be arbitrarily prescribed on the interval (5,1). In any case, this initial
solution can be extended (not necessarily in a unique way) by the cor-
responding functional equation to a solution on the whole real line. As
an example we verify the statement for the equation (9). Start with a
prescribed / on the interval (®, 1]. In the first step, for x G (~,1], the
equation /(]) = f(x) —fféjr-) + \ gives a unique extension on (], 1].
In the second step, for x G (], 1], we obtain a unique extension on (], 1].
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Proceeding in this manner we get a unique extension of / on (0,1]. Now
extend this (0,I]-solution of (9) by 1-periodicity on R. According to
Theorem 3 e), this extension satisfies (9) on R.

b) T satisfies equation (6') exactly on [0,1]. There is a unique extension of
(6") preserving the left hand side which is satisfied by T on R, namely
(6). The same relationship is shared by the pairs (7"), (7) and (8), (8).

c) On R, equation (6) has exactly the same solutions as de Rham’s equation
(10). It is easy to check that no other pair of the equations (6)-(12),
(6,)-(8) has identical solutions on R.

d) Statement b) of Theorem 3 remains true when any interval [0,1] is re-
placed by R.

From now on we consider the system (6)-(12) which is satisfied by Takagi’s
function on the whole real line. The following Lemma is the tool to extend
the important statements ¢) and d) of Theorem 3 on R.

Lemma
Assume that f : R — R satisfies two of the equations (6), (7), (8), (9) on
R. Then f satisfies the other two and equation (11) on R.

Proof. Given equations (6), (7), we obtain (8) by subtracting (6) from (7)
and (9) by adding up (6) and (7). In a similar fashion we get (in symbolic
notation)

(7) = (6) + 2 +(8), (9) = (6) + (8) for given (6), (8),
(7) = - (6) + 2= (9), (8 - (9) - (6) for given (6), (9),
© = (7 - 2+(8), (9 = (1) - (8) forgiven (7), (8),

®=- @+ 2-09. (B
6) = - (8 + (9, )

Now let (6) and (7) be satisfied for every x € R. Replacing x in (6) by
x + 1gives f(x + 1) = 2/(2") —2 and by (7) the right hand side is
t{x). This proves that any solution of two of the equations (6)-(9) necessarily
is of period 1.

(7) - (9) for given (7), (9),
(8) + (9) for given (8), (9).

Theorem 4
a) Assume that f : R — R satisfies two of the equations (6)-(9) on R. Then
f has no one-sided derivative at any pointi £R.

b) Assume thatf : R —R is bounded on {x € R; |x] > a} for some a and
let f satisfy two of the equations (6)-(9) on R. Then f(x) = T(x) for
every i é R.



80 Hans-Heinrich Kairies

Proof, a) By the Lemma, / has period 1. (6), (7), (8) coincide on [0,1]
with (6", (7", (8') respectively. Thus the claim is an immediate consequence
of Theorem 3 c¢).

b) Our hypotheses imply that / satisfies equation (11) on R and (6'), (7",
(8), (9) on [0,1]. By Theorem 3 f), / satisfies the de Rham equation (10) on
R.

Iteration of (10) yields

/W =7~ N 4 +E ™ (2 *i) (13)
k=0
forevery i f1, n GN. For x ® 0 the boundedness condition on / implies
n-i

fix) = H‘ﬂ?o E—O Qk d(2fcr) = N ~*)
and /(0) = T(0) = O follows immediately from (10).

It is somewhat surprising that the characterization of T on R, which is
given by Theorem 4 b), can be considerably improved — in contrast to the
corresponding characterization of T on the smaller interval [0,1] expressed by
Theorem 3d).

Theorem 5
Assume that f : R — R is bounded on {a; G R; | > a} for some a and
that f satisfies equation (6) or (7) on R. Then f(x) —T(x) for every i GR.

Proof. Equation (6) on R implies equation (10) on R (they are in fact
equivalent) and the argument used in the proof of Theorem 4 b) gives our
assertion.

Now suppose that (7) holds on R. We write (7) in the form

2f(g(x)) - f{x) = h{x) (14)
where g(x) = and h(x) = 2d(*y”) is a continuous function of period 2.
Iteration of (14) gives
1
IM =2"/(9"(i))- Y, 2% ‘M) (15)
fc=0

for every i G1, n G N. The k-th iterate of g is given by gk(x) = z~ -1. We
introduce the new variable z = (x + 2" —1) «2~n and obtain from (15)
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co n—1 2nz -2 n+ 2k
n (2nz - 2"+ 1) =f(z) - IJ(:202k~n 2k

=t{2)-32 ACNh(zn-kz + 1)
fi

c-0

=/(*)-£ 2~* h{2kz + 1)
fc=i

foreveryrEE, n 6 N. For 2”1 and n > no(z) all the arguments 2nz —2"+ |

fall in the set on which, by assumption, / is bounded. Consequently, forz / 1,
we have

= i-f**-*)
fc=i Z

= T(z).

Now equation (7) for a = 1 gives immediately /(1) = 0 = T(l) and that
finishes our proof.

We conclude with the observation that Theorem 5 no longer remains true
when “equation (6) or (7)” is replaced by “equation (8) or (9)”.
Counterexamples are given in form of trigonometric series:

-1 2 oo 1
=i-"E (&rnp cos2’Ln+ »*

represents a bounded solution of (8) on R,

1 1~ 1

I(x) = 2~* X . n sm2nnx
=l

represents a bounded solution of (9) on R.

Obviously both functions are different from Takagi’'s T.

So the first two single equations from (6)-(9) on R have a much stronger
characterizing power with respect to T than the remaining two equations.
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The Takagi function

11
T{X - AOE tfo@od 1 (x) - u ZfI"CKZO()i Ay - aist(y. 7).

k=0Z
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