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On a generalization of a functional equation
associated with Simpson’s rule

Abstract. The general solution of the functional equation
f(x) - 9{x) = (x- y)[h(sx + ty) + d(x) + dfy)}

for all x,y E E (the set of reals) with s and t being a priori known
parameters is determined without any regularity assumptions (differen-
tiability, continuity, measurability, etc.) imposed on the real functions
/, g, h, dand ¢. The motivation for studying this equation came from
Simpson’s rule for evaluating definite integrals. Special cases of this equa-
tion include functioned equations studied by Aczél [1] and Haruki [2].

1. Introduction

Let R be the set of real numbers. A function A : XX — R is said to
be additive if and only if A{x + y) = A(x) + A(y) for all x,y G R. For a
comprehensive account on additive functions the interested reader should refer
to [5]. In connection with the Simpson’s rule for evaluating definite integrals,
we came across the following functional equation

00 =1 = * 77 000+ (4g) oo O

where / is an antiderivative of g. This equation is a special case of

F(x) = g(y) = (x-y) [N(x+ y) + b{x) + b)) @

where &,4.H, b, : R — R are unknown functions. The equation (2) was
treated in [3]. The middle term of the equation (1), that is Ag (—”) is due
to the fact that in Simpson rule one partitions the interval into subintervals
of equal lenghts. However, there is no reason why one should be restricted to
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such an equal partition. If we allow unequal partition, then the middle term is
no longer of the form 4g but rather it is of the form ag(sx -f ty), where
a, s, t are constants. Taking this into account we have a generalization of (1)
as

f(x) - f(y) = (x-y) Ui(sx + ty) + g(x) + g{y)} (3)
for all x,y G IRwith s and t being a priori chosen parameters.

Our main objective in this paper is to determine the general solution of the
functional equation (3) without any regularity assumptions (differentiability,
continuity, measurability, etc.) imposed on the unknown functions. Further,
utilizing the solution of this equation we determine the general solution of the
functional equation

f{x) - g(y) = (x-y) [h{sx + ty) + ip(x) + d{y)] 4

for all x,y G K where s and t are a priori chosen parameters. Special cases of
this equation include functional equations studied by Aczél, Haruki, Kannap-
pan, Sahoo, Jacobson, and Riedel (cf. [1], [2], [4], [3])-

2. Some auxiliary results

In this section, we prepare some auxiliary results to be used in determining
the general solutions of the functional equations (3) and (4). The first result
is due to Haruki [2].

Lemma 1

The functions f,g : K —» M satisfy the functional equation

= (5)
for all x,y G K if and only if
f(x) = ax2+ bx+ ¢ and g(x) = 2aa:-fb (6)
where a, b and ¢ are arbitrary real costants.

The following result will be used in determining the general solution of
the functional equation (4). This result is due to Kannappan, Riedel and
Sahoo [3].

Lemma 2

The functions /, g : K —R satisfy the functional equation

xf{y) - YH*) = {x~ y)lg{x + y)~ 9(x) - g{y)] ()
for all x,y C.M. if and only if
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f{x) = 3ax3+ 2bx2+cx +d and g{x) = -ax3- bx2- A(x) - d, (8

where A : R -> LW is additive and a, b, c, d are arbitrary real costants.

3. Solution of the functional equation (3)

In this section we determine the most general solution of the functional
equation (3) with no regularity assumptions (differentiability, continuity, meas-
urability, etc.) imposed on /, g and h. The solution of this equation will be
used in the next section to determine the general solution of the functional
equation (4).

Theorem 1
Let s and t be real parameters. The functions /, g, h : R — R satisfy the
functional equation (3) for all x,y 6 R if and only if

"ax2+ (b+ d)x -bc ifs—0=1t

ax2+ (6+ d)x + ¢ ifs=0, tgp0

ax2+ (b+ d)x + ¢ ifsp0, t=20

f(x') — <

3ax4d+ 2bx3-1cx2+ (d4-2R)x -ka ifs=td0

2ax3+ cx2+ 2Bx —A(x) + a ifs= 100

kax2+ (b+ d)x + ¢ itfOps2pt2~ 0
ifs=0=1t
ifs—0,to 0
ifs® 0, t—0

2ax3+ bx2+ cx - A{x)+ R ifs=tod 0

3ax2+ cx + B ifs= —,70
b .

(ax+2 ifOps2pt2p 0

arbitrary with h(0) = d if s=0=1t

d ifs=0 tgp0

d ifsp0 t=0
ifs=td0
ifs—-ti~ 0

d ifOdps2pt2g 0,
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where A : R R is an additive function and a, b, ¢, d, a, B are arbitrary real
constants.

Proof. To prove the theorem, we consider several cases depending on the
parameters s and t.

Case 1. Suppose s = 0= t. Then (3) reduces to
fix) - fiv) = (x- y)[d+ g{x) + g{y)l. 9)
where d = h(0). Defining
F{x) := f(x) - dx and G(x) := 2g(x), (10)

and using (10) in (9), we obtain

(i)

for all x,y e R. The general solution of (11) can be obtained from Lemma 1
as
F(x) = ax2+ bx+ c and G{x) = 2ax + b, (12)

where a, b, ¢ are arbitrary constants. Hence from (10) and (12), we have
f(x) —ax2+ (6+ d)x + ¢
g(x) = ax + - (13)
h(x) arbitrary with h(0) = d,,

where a, 6, ¢, d are arbitrary constants.

Case 2. Suppose s = 0Oand t ¢ 0. (The case s ¢p 0 and t = 0 can be
handled in a similar manner.) Then (3) reduces to

fix) - f(y) = (x- y)[h(ty) + g[x) + g(¥)]. (14)
Letting y = 0 in (14), we obtain
fix) = /(0) + a[1(0) + g(x) + V(0)]. (15)
Using (15) in (14), we get
xg{x) - yg(y) = (x- y)[h(ty) + g(x) + g(y) - 9(0) - h(O)]. (16)
Interchanging x and y in (16), we obtain
Yay) - xg{x) = (y- x)[h(tx) + g[y) + g(x) - g(0) - h(0)]. a7)

Adding (16) to (17), we see that
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h(tx) = h(ty) (18)
for all x,y GE with x ¢py. Hence from (18), we have
h(x) = d foralliEIl, (29)
where d is an arbitrary constant. Inserting (19) into (14), we obtain
fix) - fiv) = {x~ y)[d+ g{x) + 0(y)], (0)
which is (9). Thus, by case 1, (19) and (13), we get
fix) = ax2+ [b+ d)x + ¢
g(x) =ax + b (21)
h(x) = d,
where a, b, ¢, d are arbitrary constants.

Case 3. Next suppose s/ O and t ® 0. Lettingy — 0 and x — O,
separately in (3), we obtain

fix) = /(0) + x[h(sx) + g(x) + p(0)] (22)

f(y) = /(0) + y[h{ty) + g(y) + 0(0)], (23)
respectively. Comparing / in (22) and (23), we have
h{sx) = h{tx) (24)

for all x G R\ {0}. Letting (22) and (23) into (3) and rearranging terms, we
gGt
y[h{sx) + g(x) - 0(0)] - x[h{ty) + g{y) - 0(0)]
= {x- y)[h{sx + ty) - h(sx) - h{ty)]
for all x,y GR.

Now consider several subcases

Subcase 3.1. Suppose s = t. Then (25) yields

XP(y) - yp{x) = (x - y)[d(x +y) - d(x) - P(y)] (26)
for all x,y € R, where
®{x) := h{tx) + 0(2) —00) and d(x) := —h{tx). (27)

The solution of the functional equation (26) can be obtained from Lemma 2

as
3ax3+ 2bx2+ cx + d

-ax3- bx2- A{x) - d,

h(x)
P (x)

(28)
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where A : R -> R is additive and a, b, ¢, d are constants. From (28), (27) and
(22), we have the asserted solution

/(x) 3ax4+ 26x3+ cx2+ {d+ 2RB)x + a
g(x) = 2ax3+ bx2+ cx - A(X) + R

[.(x)=0(f)3+ 6 (1)2+(i)+d,

where A : R -> R is an additive map and a, b, ¢, d, a, R are arbitrary constants.

Subcase 3.2. Next, suppose s = -t. Then from (24), we have h(tx) =
h(—tx) for all X 6 R\ {0}. That is, h is an even function in K. Now with
s = —t and using the evenness of h, from (25), we have

ylh(tx) + g{x) - f(0)] - x[h{ty) + g{y) - 5(0)]
= (x- y)h(tx - ty) - h(tx) - h{ty)}

for all x,y 6 R. Defining

G(x) := h(tx) + g(x) - ¥(0) and H{x) := - h(tx) (31)
we have from (30)

XG(y) - yG(x) = (x- y)[H(x -y ) - H{x) - H{y)l. (32)

Note that H is also an even function in view of (31). Replacing y by —y in
(32), we get

XG(-y) + yG(x) = {x+ y)[H(x +y) - H{x) - H(y)]. (33)
Letting X = y in (33), we get
G{-x) + G(x) = 2[H{2x)-2H{x)] (34)

for all X ® 0. By (31), (34) holds for x = 0 also. Adding (32) and (33) and
using (34), we have

X+ y)H(X +y) + (x- y)H(x - y) = 2xH{x) + 2x[tf(2y) - H{y)]. (35)
Interchanging x with y in (35), we get

(x+ y)H[x +y) + (y- x)H(x - y) = 2yH(y) + 2y[A(2x) - A(x)].  (36)

Adding (35) to (36) and rearranging terms, we obtain

(x+y)H(x+y)-xH(x)-yH(y) = y[H(2x)-H(x)] + x[H(2y)-ff(y)\. (37)
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The equation (37) yields
Bx +y) - d{x) - dly) = yd(x) + xap(y), (38)

where
P(x) \= xH(x) and d¢(x) := H(2x) —H(x). (39)

Note from (39) since H is even, ¢ is odd and ¢ is even. Replace x by x - y
and y by —y separately in (38) to get

B(x) - D(x-y) - dly) = yb{x - y) + (x - y)dp{y) (40)
and
dfx - y) - d{x) - d{-y) = -yb{x) + xd(-y). (41)
Adding (40) to (41) and using the fact that ¢ is odd and ¢ is even, we obtain
yl(x -y) - d{x) - d(y)] = -2 xad(y). (42)
Replacing y by —y in (42), we have
Y\p(x +y) - df{x) - d(y)] = 2xp{y),

that is
Xy[{x + y) - P{x) - d(y)\ = 2x2d(y) (43)

for x ~ 0. Interchanging x and y in (43), we have
xy[p{x +y) - d{x) - d(y)] = 2y2dp{x). (44)
Hence, from (43) and (44), we see that
2x20(y) = 2y2p{x)
for all x,y G K\ {0}. Thus we have
h{x) —3ax2 for all x G IR\ {0}, (45)

where a is a constant. By (39), (45) holds for x = 0 also. Letting (45) into
(38), we get
b(x +y) - d(x) - d(y) = 3ax2y + 3axy2 (46)

for all x,y G K\ {0}. This in turns gives a Cauchy equation

B(x +y) - a(x + y)3= d(x) - ax3+ d(y) - ayn (47)

and hence

B{x) = ax3+ A(x) (48)
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where A : R — K is an additive function. From (48) and (39), we get
xH(x) = ax3+ A(x). (49)

Using (49) and (32), we obtain
G(y) + - 2ay2 =y G(x)+ ~ - 2ax2 (50)
Yy

for all x,y € K\ {0} with x ¢p y. Thus

G(x) = 2ax‘%+‘ ex —Mx) *® 0, (51)
where c is a constant. From (22), (31), (49) and (51), we have the asserted
solution

f(x) = 2ax3+ cx2+ 2Rx - A(x) + a '

<?X) = 3ax2+ ¢cx + R > (52)

M

-o(r)2-1n(]), xnO,
where A : M —K is an additive map and a, ¢, a, B are arbitrary constants.

Subcase 3.3. Suppose s2 ¢ t2, that is det g') ® 0. Note that if x and

y are linearly independent, so also n = sx + ty and v = sy + tx. Suppose
not, then for some constants a and b (not both zero), we have 0 = au + bv =
(as 4- bt)x + (at + bs)y. Since x and y are linearly independent, we have

Since determinant of the matrix ~ ” is nonzero, this yields that both a and

b are zero which is a contradiction.
Now we return to equation (25). Using (24) in (25), we have

ylli(sx) + g(x) - y(0)] - x[h(sy) + g(y) - y(0)]

(53)
= (x - y)[h(sx + ty) - h(sx) - h(sy)]
for all x,y € R. Interchanging x and y in (53) we have
x[h(sy) + g(y) - 9(0)] - y[h(sx) + g(x) - 0(0)] (54)

= (y - x)[h(sy + tx) - h(sy) - h(sx)}.
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Adding (53) to (54), we obtain
h(sx 4-ty) —h(sy + tx) (55)
for all X, y G R\ {0} with x ~ y. Hence
h(x) = d forall x £ R\ {0}, (56)
where d is a constant. Using (56) in (3), we get
f(x) - f(y) = {x- t)[d + g{x) + g(y)], (57)

which is (9). Thus, by case 1, (56) and (13), we obtain the asserted solution

f(x) = ax24- (64-d)x 4-¢"
g{x) = ax + b (58)
h{x) = d,

where a, b, ¢, d are arbitrary constants. Since no more cases are left, the proof
of the theorem is now complete.

The following result is obvious from Theorem 1 and it was established in
[4] to answer a problem posed by Walter Rudin [6].

Corollary 1
Let s and t be real parameters. The functions f,g,h:M.-> R satisfy the
functional equation

f(x) - 9(¥) = (* - y)h(sx + ty)

for all x,y € R if and only ifg(x) = f(x) and

"dx + ¢ ifs=0=1t
dx 4-c ifs=0 tgp0
dx + ¢ ifs® 0, t=20
1) cx +dx+a ifs=t20
a —A(x) ifs—-t g0

dx 4- ¢ ifOps2pt2p 0
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arbitrary with h(0) = d if s=0=1t
d ifs—0, to 0
d ifso 0, t—0
hd £80
s B==2°
ifs= <0
d if O sl t2ch O,

where A : R -> K is an additive function and c,d, a are arbitrary real constants.

4. Solution of the functional equation (4)

Now we proceed to determine the most general solution of the equation (4).

Theorem 2
Let s and t be real parameters.

The functions /, g, h,d, m: R -» R satisfy

the functional equation (4) for all x,y € R if and only if g(x) = f(x) and

f(x) =

Pp(x) =

<

ax2+ (6+ d)x + ¢

ax2+ bx+ ¢

ax2+ bx + ¢

3ax4+ 2bx3+ cx2+ (d+ 2R)x + a
2ax3+ cx2+ (2/?- d)x - A{x) + a
-2 bstx3+ Rx2+ (27 + a - d)x + 8

r
2ax3+ bx2+ cx - A(X) + B+ -

3ax2+ cx - "AQ(x) + B

bs(s —2t)x2+ Rx + A(sx) + 7+ a

ifs=0=t
ifs=0,tgp0
ifsp0 t=0
ifs=tgp0

t/s= —to0
ifOds2pt2d0

8 =0 =¥
ifs=0 tg0
ifso0, t=0
ifs—td0
ifs=-t ®0

ifOc8Llp12cp0
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b+ S
a*+ —

b-S y
ax H—— - hytx)
b-6 . .
ax H—— - ri(sx)
md(X) 2

2ax3+ for2+ cx —A(X) + R —5

3ax2+ cx + Mlo(x) + B - d
CBt(E —25):r2+ Rx + N(Er) + 7
' arbitrary with fo(0) —d

arbitrary

arbitrary

Ok RN (D

=4 f)Z'HfHMf) X ®

>—for2 —A(:r) —d

where Ao,A : R — R are additive functions and a, b, c, d,

arbitrary real constants.
Proof. Letting x —y in (4), we see that

fix) = d(x)

for all x 6 X Hence (59) in (4) yields

ifs=0=t
ifs=0, tod 0
rrse®0, f=20
ifs=tg0

ifs=-tp0
it0~ s2pt2p 0
rh s=0=1t

ifs=0 £70
ifsd0, t=0

ifs=td0

0 rs=-tp0

95

if 0/ s2/ <70,

f(x) - H{y) = {x- y)[h{sx + ty) + p{x) + ip{y)\.

a, B, 7, 6 are

(59)

(60)

Interchanging x and y in (60) and adding the resulting equation to (60), we

have

h{sx + ty) + (x) + rp(y) = h(sy + tx) + d(y) + d(x)

for all x,y € R with x ¢ y. But (61) holds even for x = y.

Now we consider several cases.

Case 1. Suppose s = 0= t. Then (61) yields

d(x) = d{x) - S,

(61)

(62)
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where 8 is a constant. Letting (62) into (60) we have
fix) - fiy) = {x- y)[h(sx + ty) + ip(x) + rI>{y) - 6]. (63)
Hence by Lemma 1, (59) and (62) we obtain the asserted solution
fix) = ax2+ (b+ d)x 4-c
g{x) = fix)
<t>ix§1=ax + b~ S

M | bis
Mx) —ax+ —j—

h(x) arbitrary with h(0) —d,
where a, b, ¢, d, 8 are arbitrary constants.

Case 2. Suppose s =0 and t 0. (The case s § 0 and t =0 can be
handled in a similar manner.) Then for this case, from (61), we have

hity) + I y) - <Piy) = Htx) + UX) - 45ix) (64)

for all x,y € K. Thus
*0(x) = <frix) —hitx) —8 (65)

where 8 is a constant. Letting (65) in (60) with s —0, we see that
fix) - fiy) = ix - Y)No(X) + Hy) - 4 (66)
By Lemma 1, (59) and (65), we have the asserted solution

f(x) = ax2+ bx+ ¢

gix) = fix)

b+ 8

<>ix) = ax + >
rpix) —ax + ~ hitx)

hix) arbitrary,
where a, b, ¢, d, 8 are arbitrary constants.

Case 3. suppose s ® 0 ® t. Next, we consider several subcases.
Subcase 3.1. Suppose s = t. Then from (61), we get
hitx + ty) + <>ix) + Vi(y) = hity + tx) + (fiy) + ip{x). (67)

Hence, we have

(fix) =i>ix) - 8 (68)
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where <Hs a constant. Letting (68) into (60), we obtain

f(x) - f(y) = {x- y)[h(tx + ty) + d(x) + ip(y) - I
From Theorem 1, (68) and (59), we obtain

f(x) = 3ax4+ 2bx3+ cx2+ (d+ 2B)x + a '
A(X) = f(x)
g

h(x) = 2ax3+ bx2+ cx - JI(Xx) + B + -

ip{x) = 2ax3+ bx2+ cx - A(x) + B -

P34 F 1 (]

97

(69)

where a, b, ¢, d, a, B, 6 are arbitrary constants and A : R — K is an additive

function.

Subcase 3.2. Suppose s = —t. From (61), we have
h(ty - tx) + d{x) + d{y) = h(tx - ty) + d(y) + d{x)
for all x,y € K. This in turn yields
h(tx —ty) —h(ty - tx) = H(x) - H(y),
where H(x) := d(x) —d(x). Letting x = 0 in (71), we observe that
h{—ty) —h(ty) = d —H(y),
where d = H(0). Using (72) in (71), we have
H(x - y)+d= H(x) +d - H(y) - d,
that is H(x) + d is additive on the set of reals. Hence
P(x) = Pp(x) + AO{X) - d,

where Ao : K — K is an additive map. Substituting (73) into (60),

(70)

(71)

(72)

(73)

we get

f(x) - H{y) = {x- y)[h(ty - tx) + d(x) + d(y) + AO(y) - d] (74)

which is
FO) - F(y) = (x - Y)K(x - ty) + o(x) + &(y)]

where

(75)
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F(x) = f(x) + dx
K(x) = h(-tx) - A0 (I) (76)
dOK) = d(x) + "Ao(x).

Thus from Theorem 1, (59), (73) and (76), we again have the asserted solution
f(x) = 2ax3+ cx2+ (213- d)x —A(X) + a
9(x) = f(x)

d(x) —3ax2+ cx —~ylo(x) + /3
'h(x) —3ax2+ cx + Mo(x) + B —d

Hx) = -a (1)’ - 1 Af) +

where a, 6, ¢, d, a, R are arbitrary constants and A, Aq : K —y R are additive
functions.

Subcase 3.3. Suppose s2 ® t2. Lettingy = 0 in (61), we get
h(sx) + p(x) + V(O) = h(tx) + d(0) + p{x). 77)
Letting (77) in (61) and simplifying, we have
h(sx + ty) - h(sx) —h(ty) = h(sy + tx) —h(tx) —h(sy). (78)

Replacing x by j and y by | in (60), we obtain

‘)-?)- (™) >R B

Defining
F(x) = stf (T)

® (x)=<n) (80)

and using (80) in (79), we have

F{x) - F (y) = (xt- ys)[h{x +y) + &{x) + ®(y)]. (81)
Letting y = 0 and x = 0 separately in (81), we have
F(x) = F(0) + xt[h(x) + ®(x) + ®(0)] (82)

and



On a generalization of a functional equation 29

F (™) = F(0) + ys[h(y) + ®(0) + @(y)], (83)

respectively. Letting (82) and (83) into (81), we obtain (after some simplific-
ations)
®*[@(0) - @(y) - NI(Y)] - Y«[®(0) - &(x) - h(x)]
= {xt- ys)[h(x +y) - h(x) - h(y)]l.

Interchanging x with y in (84), we obtain

Y*[®(0) - ®(x) - N1(x)] - X3[®(0) - @(y) - h(y)]

= (yt- xs)[h(x +y) - h(x) - h(y)}. (©9)
Subtracting (85) from (84), we have
xP(y)- yP{x) = (x- y)(s + t)[h(x + y)- h{x) - (Y], (86)
where
P{x) - <[®(0) - ®(x) - h{})} + B[®(0) - ®(x) - h(X)]. (87)

The general solution of (86) can be obtained from Lemma 2 as

P(x) = 3ax3+ 2bx2+ cx + d 1
(s + t)h(x) = —ax3—bx2—A(x) —d, j

where A : R — R is an additive function and a, b, ¢, d are arbitrary constants.
Letting the form of h(x) from (88) in (78), we obtain

3astxy(s —t)(x —y) = 0
for all x, yeldl. Hencea= 0as 0 ® s2® t2 ® 0. Thus, we have
(s -ft)h(x) = -bx2- A(x) - d. (89)

Prom (89) and (84), we have

FIFO)-*w o+ A+ Sy ot 5T
bx2.+ A(X) N d

3(0) - dy) +
-S - X
y y S+ t S+ t S+ t

2bxy d
= (xt-ys) s+t s+t
2bt 1 2bs 1
se 1SV FTTRY Kty

that is
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obsy2 1
Xt m(o) - * /s\+-t * s+t t(s iyt)

(90)
(0 0] H bx2 4 AP
=ys 20 - ¢ s+t s+t s(s+t)
Hence, we have
bx2 btx2 A&x} Rx .
P(X) = oo fomeees r+ - + — + ® 0, 91)
s+ 1 s(s+ 1 s+t S

and
bx2 2bsx2 A(X) 3 x _In
: + + — + ©(0), (92)

®(rc) = r
(re) s+t tls+1) s+t t

where R is constant. From (89), (91), (92) and (80), we have

. bs{s-2t)x2 A(sx
P{x) = { ........... ) ..... +R X+ ( )+7+a
s+t s+t
bt(t - 2s)x2 R A\(/tx? . 93)
X)) = — ———-—— +RX + - +
b() s+t s+ t
bx2 A(X
h(x) — — (x)
s+t s+t s+t

From (80), (82), (89) and (93), we obtain

o 2bstx3 2 ”7 N 04
* = mm———— + .
I( ~TT +B8x2+ 27T+a (94)
Renaming the constants as b, as d, and the additive function as

A(x), we have from (93) and (94) the asserted solution

f(x) = - 2bstx3+ Bx2+ (27 + a —d)x + O
h(x) = bs(s —2t)x2+ Bx + A(sx) + 7 + a
-(x) = bt(t —2s)x2+ Bx + A(tx) + 7

h(x) = —bx2- A{x) - d.

(95)

Since no more cases are left, the proof of the theorem is now complete.
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