Zeszyt 196 **Prace Matematyczne XV** 1998

Janusz Matkowski and Kazimierz Nikodem

Convex set-valued functions on $(0, \infty)$ and their **conjugate**

Abstract. Let (Ω, Σ, μ) be a σ -finite space and Y be a Banach space. It is shown that if $F : (0, \infty) \to cl(Y)$ is a convex continuous set-valued function, then

$$
\int_{\Omega} y \left(F \circ \frac{x}{y}\right) d\mu \subset \int_{\Omega} y d\mu F\left(\frac{\int_{\Omega} x d\mu}{\int_{\Omega} y d\mu}\right)
$$

for all positive *µ*-integrable functions $x, y : \Omega \to \mathbb{R}$. Moreover, *F* is convex if and only if its conjugate F^* , $F^*(x) = xF(x^{-1})$, is convex.

It is known that convex functions defined on $(0, \infty)$ are characterized by the inequality

$$
(y_1 + y_2) f\left(\frac{x_1 + x_2}{y_1 + y_2}\right) \le y_1 f\left(\frac{x_1}{y_1}\right) + y_2 f\left(\frac{x_2}{y_2}\right),\tag{1}
$$

where $x_1, x_2, y_1, y_2 \in (0, \infty)$ (cf. [2], [3], [8]). J. Matkowski ([2], [3]) noticed that this inequality is a simultaneous generalization of the discrete Holder's and Minkowski's inequalities, and in [4] he obtained an integral version of this inequality which generalizes both the Holder's and Minkowski's inequalities (cf. also J. Matkowski and J. Rätz $[6]$ where the case of the equality was considered). It was also observed in $[3]$ (cf. also $[2]$) that through the inequality (1), the function f is strictly related to the function $f^* : (0, \infty) \to \mathbb{R}$, $f^*(x) =$ $xf(x^{-1})$, which is termed the conjugate of f. In this note we present an integral counterpart of (1) for convex set-valued functions, and we show that some basic properties of the conjugate functions remain true for set-valued functions.

Let Y be a real vector space and $n(Y)$ be the family of all nonempty subsets of **Y**. Recall that a set-valued function $F : (0, \infty) \to n(Y)$ is convex if its graph is convex or, equivalently, if for all $x, y \in (0, \infty)$ and $t \in (0, 1)$,

$$
tF(x)+(1-t)F(y)\subset F(tx+(1-t)y).
$$

AMS (1991) subject classification: 26A51, 54C60.

T heorem 1

A set-valued function $F : (0, \infty) \rightarrow n(Y)$ *is convex if and only if*

$$
y_1 f\left(\frac{x_1}{y_1}\right) + y_2 f\left(\frac{x_2}{y_2}\right) \subset (y_1 + y_2) f\left(\frac{x_1 + x_2}{y_1 + y_2}\right) \tag{2}
$$

for all $x_1, x_2, y_1, y_2 \in (0, \infty)$.

Proof. If *F* is convex then for every positive x_1, x_2, y_1, y_2 we have

$$
y_1 F\left(\frac{x_1}{y_1}\right) + y_2 F\left(\frac{x_2}{y_2}\right) = (y_1 + y_2) \left[\frac{y_1}{y_1 + y_2} F\left(\frac{x_1}{y_1}\right) + \frac{y_2}{y_1 + y_2} F\left(\frac{x_2}{y_2}\right) \right]
$$

$$
\subset (y_1 + y_2) F\left(\frac{x_1 + x_2}{y_1 + y_2}\right).
$$

To prove the converse implication take arbitrary $x, y \in (0, \infty), t \in (0, 1)$, and apply (2) with $y_1 = t$, $y_2 = 1 - t$, $x_1 = tx$, and $x_2 = (1 - t)y$.

Now assume that $(Y, \|\cdot\|)$ is a Banach space and $cl(Y)$ is the family of all closed nonempty subsets of Y. Given a measure space (Ω, Σ, μ) we denote by $L^1_+(\Omega,\Sigma,\mu)$ the family of all positive μ -integrable functions $x:\Omega\to\mathbb{R}$. For a set-valued function $G : \Omega \to cl(Y)$ the integral $\int_{\Omega} G d\mu$ is understood in the Aumann sense, i.e. it is the set of integrals of all μ -integrable (in Bochner's sense) selections of *G.*

T heorem 2

Let (Ω, Σ, μ) be a σ -finite measure space and Y be a Banach space. If $F:(0,\infty) \to cl(Y)$ *is a continuous convex set-valued function, then*

$$
\int_{\Omega} y \left(F \circ \frac{x}{y} \right) d\mu \subset \int_{\Omega} y d\mu F \left(\frac{\int_{\Omega} x d\mu}{\int_{\Omega} y d\mu} \right) \tag{3}
$$

for all $x, y \in L^1_+(\Omega, \Sigma, \mu)$.

In the proof of this theorem we will use the following fact which for $Y = \mathbb{R}$ is proved in [6].

Lemma

Let $y \in \mathbf{L}^1_+(\Omega, \Sigma, \mu)$, $a = \int_{\Omega} y \, d\mu$, and $\nu(A) = a^{-1} \int_A y \, d\mu$ for all $A \in \Sigma$. *If a function* $h : \Omega \to \mathbf{Y}$ *is* μ *-integrable, then* $\frac{h}{\mu}$ *is v-integrable and*

$$
\int_{\Omega} \frac{h}{y} \, d\nu = a^{-1} \int_{\Omega} h \, d\mu. \tag{4}
$$

Proof. Clearly, ν is a normalized measure absolutely continuous with respect to μ and its Radon-Nikodym derivative $\frac{d\nu}{d\mu} = a^{-1}y$. It is known that a measurable vector-valued function is integrable iff its norm is integrable (cf. [1, Theorem 2, p. 45]). Therefore, by the μ -integrability of h we get that $\|h\|$ is μ -integrable. This implies that $\frac{d^n\cdot\mathbf{u}}{d}$ is ν -integrable and, consequently, $\frac{d}{d}$ is ν -integrable. To prove (4) note that for every linear continuous functional $\phi: \mathbf{Y} \to \mathbb{R}$ we have (cf. [6])

$$
\int_{\Omega} \frac{\phi \circ h}{y} \, d\nu = a^{-1} \int_{\Omega} (\phi \circ h) \, d\mu.
$$

Hence

$$
\phi\left(\int_{\Omega}\frac{h}{y}d\nu\right)=\phi\left(a^{-1}\int_{\Omega}h\,d\mu\right),\,
$$

which implies (4).

Proof of Theorem 2. Take $x, y \in L^1_+(\Omega, \Sigma, \mu)$, put $a := \int_{\Omega} y d\mu$, and consider the measure ν defined by

$$
\nu(A) := a^{-1} \int_A y \, d\mu, \quad A \in \Sigma.
$$

Let $h : \Omega \to \mathbf{Y}$ be a μ -integrable selection of $y\left(F \circ \frac{x}{y}\right)$. By the Lemma, $\frac{h}{y}$ is a *v*-integrable selection of $F \circ \frac{x}{y}$ and

$$
a^{-1} \int_{\Omega} h \, d\mu = \int_{\Omega} \frac{h}{y} \, d\nu \in \int_{\Omega} F \circ \frac{x}{y} \, d\nu. \tag{5}
$$

The function $\frac{x}{y}$ is also *v*-integrable and $\int_{\Omega} \frac{x}{y} d\nu = a^{-1} \int_{\Omega} x d\mu$. Moreover, $\int_{\Omega} \frac{x}{y} d\nu$ is a positive number. Hence, using the integral Jensen inequality for convex functions (cf. [5]) we get

$$
\int_{\Omega} F \circ \frac{x}{y} \, d\nu \subset F\left(\int_{\Omega} \frac{x}{y} \, d\nu\right) = F\left(a^{-1} \int_{\Omega} x \, d\mu\right). \tag{6}
$$

By (6) and (5) we obtain

$$
\int_{\Omega} h \, d\mu \in \int_{\Omega} y \, d\mu \, F\left(\frac{\int_{\Omega} x \, d\mu}{\int_{\Omega} y \, d\mu}\right).
$$

Since *h* is an arbitrary μ -integrable selection of $y \left(F \circ \frac{x}{y} \right)$, this finishes the proof.

Remark 1

If values of *F* are bounded, we can drop the assumption that *F* is continuous. In that case the convexity of *F* implies its continuity because the domain of *F* is finite dimensional (cf. [7, Theorem 3]).

Remark 2

It is easy to check that if (Ω, Σ, μ) is a non-trivial finite measure space (i.e. there exists an $A \in \Sigma$ such that $0 < \mu(A) < \mu(\Omega)$) and (3) holds for all positive μ -integrable step functions, then *F* satisfies (2) and hence it is convex.

Remark 3

Inclusion (3) can be treated as a set-valued generalization of Holder's and Minkowski's inequalities (cf. [2], [3], [4]).

Given a set-valued function $F : (0, \infty) \to n(Y)$ we define its conjugate F^* : $(0, \infty) \rightarrow n(Y)$ by the formula (cf. [2], [3])

$$
F^*(x) = xF\left(\frac{1}{x}\right), \quad x \in (0, \infty).
$$

Note that the operation $\ddot{ }$ is an involution i.e.

$$
(F^*)^* = F.
$$

It is easy to see that *F* satisfies (2) if and only if *F** does. Therefore as a consequence of Theorem 1 we get the following

Corollary

A set-valued function $F : (0, \infty) \to n(Y)$ *is convex if and only if* F^* *is convex.*

References

- [1] J. Diestel, J. J. Uhl, Jr., *Vector Measures,* Amer. Math. Soc., Providence R.I., 1977.
- [2] J. Matkowski, *A functional inequality characterizing convex functions, conjugacy and a generalization of Holder's and Minkowski's inequalities,* Aequationes Math. **40** (1990), 168-180.
- [3] J. Matkowski, *A generalization of Holder's and Minkowski's inequalities and conjugate functions,* in: Constantin Caratheodory: An international Tribute, edited by Th. M. Rassias, World Scientific, Singapore, 1991, 819-827.
- [4] J. Matkowski, *The converse of the Hôlder inequality and its generalizations,* Studia Math. **109** (1994), 171-182.
- [5] J. Matkowski, К. Nikodem, *An integral Jensen inequality for convex multifunctions,* Results Math. 26 (1994), 348-353.
- [6] J. Matkowski, J. Ratz, *On the equality condition in Holder's and Minkowski's inequalities,* Aequationes Math. 46 (1993), 220-228.
- [7] K. Nikodem, *On midpoint convex set-valued functions,* Aequationes Math. 33 (1987), 46-56.
- [8] J. E. Pecarië, F. Proschan, Y. L. Tong, *Convex Functions, Partial Orderings, and Statistical Applications,* Academic Press, Boston, 1992.

Kazimierz Nikodem Department of Mathematics Technical University Willowa 2 PL 43-309 Bielsko-Biala Poland E-mail: knik@merc.pb.bielsko.pl

Janusz Matkowski Institute of Mathematics Pedagogical University Plac Słowiański 9 PL-65-069 Zielona Góra Poland E-mail: matkow@omega.im.wsp.zgora.pl