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Superadditive solutions of a functional equation

Abstract. Let {A* : s > 0} be a given iteration semigroup of additive
set-valued functions. In this paper we study superadditive set-valued
solutions ® of the functional equation

®(* + B) = JTF[P(<)] + P(a)

fort,s > 0.

1. We start with some definitions.

A set-valued function F defined on a convex cone S in a real vector space
X into the set n(Y) of all non-empty subsets of a real vector space Y is said
to be additive iff

F(x +y) —F{x) + F(x)
for all x,y £ S.

A set-valued function F defined on a convex cone S in a real vector space
X into the set n(Y) is said to be superadditive iff

F(x) + F(x) CF{x + vy)

for all x,y £ S.
A family
{F* : t> 0}

of set-valued functions Ff: S —» n(S) is said to be an iteration semigroup iff
F*0 Fs= Ft+S,

in 5, where (FfoFs)(x) = Y € Fs(x)}, for every t,s > 0 and
X £ S.
In this paper we study superadditive solutions ® : [0,00) — n(S) of the
functional equation
®(* + B) = AS[D(r)] + ®(5) (1
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where {vls : s > 0} is a given iteration semigroup of additive set-valued func-
tions As : S —n(S). This equation arises in a study of iteration semigroups
of Jensen set-valued functions.

2. If Y is a topological vector space, we denote by cc(Y) the familiy of all
compact convex members of n(Y).

We need the following lemma

Lemma 1 (cf. [8])
Let A,B and C be subsets of a topological vector space such that

A+ CCB + C.
If B is convex closed and C is non-empty bounded, then
A C B.

Let X be a Banach space and let [a,b] C [0,00) be a closed interval.
Suppose that a set-valued function G : [a,b] -A cc(X) is continuous with
respect to the Hausdorff distance. Then there exists the Hukuhara version of
the Riemann integral

G(t) dt
Ja

(see [4]).
The following four lemmas describe some important properties of this in-
tegral (see [4]).

Lemma 2
IfC £ cc(X) and F(t) = C for every t £ [a, 6] then

rb

-I: F(t) dt = (b- a)C.

Lemma 3

For every continuous set-valued functions F, G we have

d F(t) dt, 3* G(t) dtj < I* d(F(t), G(1)) dt,

where d is the Hausdorff distance connected with the norm in X.

Lemma 4
Let X and Y be two Banach spaces and let S be an open convex cone in

X. IfF :[a 6] — cc(S) is a continuous set-valued function and A : 5 -A cc(Y)
is a continuous additive set-valued function, then
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I* A(F(t))dt= A F (t) dty.

Lemma 5

IfF:[a,b] X is continuous and a < ¢ < b, then
rb rc rb
/ F(u)du= / F(u)du+ / F(u)du.
Ja Ja Je
3. We start this section with the following auxiliary result

Lemma 6 (see [7])

Let X and Y be two real separable Banach spaces. Assume thatS is an open
convex cone in X. Moreover, let A : S — cc(Y) be a lower semicontinuous
additive set-valued function. Then there exists a constant M € (0, oo) such
that

d{A(x), A(y)) < M\\x - y\

for x,y £ S.

Let ¥ be a metric space. An iteration semigroup {F *: t > 0} of set-valued
functions Ft : Y —» cc(Y) is said to be continuous iff the function t »>=F t(y)
is continuous for every y € Y.

Now we can prove the main result of the paper.

Theorem

Let X be a real separable Banach space and let S be an open convex cone
in X. Suppose that {Al1: t > 0} is a continuous iteration semigroup of
continuous additive set-valued functions Al:clS —cc(clS) such that

AO= lim At(x) —{x} (2)

for every x E S. A set-valued function ® : [0,00) — cc(cl5]) is a continuous
superadditive solution of (1) if and only if there exists a set D G cc(cl5) such

that S
®(5) = j)AU{D) du (3
and
D C AS(D) 4)

for every nonnegative s.

Proof. 1. Suppose that ® : [0, 00) -> cc(cl S) is an upper semicontinuous
superadditive solution of equation (1). The graph of ® is closed (see Theorem
6 of Chapter VI in [1]). According to Proposition 3 in [10] the function
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t
is increasing in (0, 00). It is easy to see that the set

t>o

is an element of cc(S).

Let (tn), tn € (0,1), be an arbitrary sequence tending to zero. Take an ar-
bitrary subsequence (fnfc) of it. The family of compact subsets of compact met-
ric space ®(1) is compact in Hausdorff metric (see Chapter XV 1 of [5]) there-

fore there exists a compact set E C ®(1) and a subsequence "~"® of
(™ @ (tnk)) such that
l.n*/A (*"*;) E -

Without loss of generality we can assume that the sequence (tnkl‘j is strictly

decreasing. Consequently we have

E=fld\n(t) " (D y= 100"

(see Theorem 11-2 in [2]). Therefore

(4) =°

{tn) *®(*n) D,
thus the formula
D = lim
. O
holds.

Il. The set AM(X) — . <e[0,i]}

being the image of [0,1] by the continuous set-valued mapping t Al(x) with
compact values, is compact for every x £ S (see [1], Chapter VI, Theorem 3).
Let T be the family of all continuous additive maps / : X — X such that
/ (x) £ N"0,1(x) forevery x £ S. Fix az £ X. Since 5 is an open cone there are
X,y £ S such that z = x - y. We have [)/@]l < WNOL1I] + V101Nl < oo
for arbitrary f £ T . Thus there exists a positive constant such that |[/]| < M
forevery f £ T .

Now, we are going to prove that the convergence in (2) is uniform on the
set D. Suppose that it is not true. Then there exist e > 0, tn £ (0, £) and
xn £ D such that



Superadditive solutions of a functional equation 133

dn = sup {\\y —<x,Jl : vy G A<n(xn)} > e. (6)

By the compactness of sets Atn(xn) there exist yn G Atn(xn) fulfilling the
equalities

dn=1wn ~ *.11. (7)
According to Theorem 2 in [9], for every positive integer n, there exists an
additive selection fn of Atn such that fn(xn) = yn. Each fn has an extension
belonging to J-. There exist a subsequence (xIkK) of (i,,) and an xo G D such
that

x K > x0. (8)
Since
fnie{Xo) 0 — ifnki'Xnic) (fnk(Xnk)  fnk(Xo)) (X0 Xnk)
and by (6) and (7) we have
[[/1* (10) - 1 0] > £- MWxIk- zoll - |0 - xTIK\, (9)

By (2) the left hand side of (9) tends to zero and the right one tends to e.
This contradiction proves that the convergence in (2) is uniform on D.
Take a positive e. There exists a positive number 6 such that

d(A‘(x), {x}) < £
whenever 0 < t < 6 and x G D. We have
Al(x) C x+ eB C D + eB
for every i G O, where B denotes the unit closed ball, and therefore

A\D) = (J A\x) C D + eB. (10)
XCD

Moreover
xe AH{x) + eB C A"Dj + eB

for every x G D and, consequently,

D CA\D) +eB. (11)
Conditions (10) and (11) imply that

nmne(0),7>) < £
whenever t G (0,5). Thus

lim AHD) = D. (12)
«=>
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1. Let s be a nonnegative number. According to Lemma 6 there exists
the smallest real number M (s) such that

d{As{x), As(y)) < M(S)IIx - I

for every x,y G S.
It Ls obvious that the function M is nonnegative. It is also measurable
since

M’(é = SUP et M
nhT IMm xml

where {xn: n = 1,2,...} is a dense subset of S. Moreover, this function is
submultiplicative. Now, we can define the function m(s) := log(M(s) + 1). It
is a finite measurable subadditive function, whence by Theorem 7.4.1 in [3] it
is bounded above on any compact subset of (0, 00). Thus for any positive s
there exists a positive number K such that

M(u) < K
whenever n € [|,s] . Now, let s be a positive number and let t € (0, |). Then
d(As+t{D), AS(D)) = d{As(AI(D)),As{D)) < M(s)d{AlI(D),D)
and
d(A'(D),As~t(D)) = d(A*-t(At(D)),As-t(D))
< M(s - Hd(At(D), D)
< Kd(AHD), D).

These inequalities and (12) imply that the function t«> AI{D) is continuous.

IV. Now. we can define

®(*)= j) Au(D)du

and
Mt) = <*(*(*),*(*))

for nonnegative t. By Lemmas 5 and 4 we have

d(t+ e)= i) 'AU(D) du = @d(a) + ‘b As(Au(D))du :\I(S) +As(<H(t))

which shows that the set-valued function @ is a solution of (1).
For an arbitrary positive e there exists a positive number O such that
d(Au(D),D) < e

whenever n 6 (0, S). Lemmas 2 and 3 imply that
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(M . Niad
DAj = dQ Jo Au{D)du,Dp < IJ d(Au{D),D) du < e,
whence
R **) _
Jige ") = D, (13)

This implies that lim< >+ ®(£) = {0} = ®(0) and, consequently, ® is right
hand side continuous at 0.
Now, let s be a positive number and t G (0, 8). Then

d(*(s + t)M *))=d (A'mt)),{0})
<d(A'(nt)),A*(tD)) + \A°(tD)\\

<M (S)td (~p-,D) +t\A*{D) Il

and

d{ns),9{s-t)) = d(A-t(®(*)){0})
</(N'-(D(4)), A*-1(LlL)) + d(As~#(tD), {0})

M (5-«Ne (& (*),LL) + *| /s “ ||

A

N

< Ktd\ +tiias~u

These inequalities and (13) imply that the funcion @ is continuous. It follows
that so is h. Moreover,

D+h(S) = |imsup/\ N h{S)
t~y0 t
lim sup @@+ 4).0@+ %) -7 (2 (5)8()
«pO t

<l.Lmsup
“ t->0 <

<IImMMd(i|U,i21)
=0

Since h is a continuous function with D +h(s) < 0, according to Zygmund’s
Lemma (see [6]) the function h is non-increasing. Therefore h(s) < h(0) = 0
for s > 0. This means that ® = .

The superadditivity of ® and (1) imply that

P(<) + ®(38) C d(r+ s) = N*(P(<)) + d(B)

and by Lemma 1 we have (4), the monotonicity of the function pp, and (5).
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We know that formula (3) defines a solution of (1). According to condition
(4) we have

SO

o) + @ (a)C Au{D)du = <>t+ s).
This completes the proof.
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