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Oscillation and integration characterizations 
of bounded a.e. continuous functions

Dedicated, to the memory of Imre Makai

A bstract. We show that a bounded vector valued function on a premeas- 
urable set is a.e. continuous if and only if its upper or lower oscillation 
is zero.

Moreover, a bounded real valued function on a premeasurable set is 
a.e. continuous if and only if it is strongly Riemann or strongly (weakly) 
Darboux integrable.

Introduction

B y abstracting the most important properties of the right-open intervals 
in R  and their weighted contents, we introduce the notion of a Lebesgue- 
Stieltjes type metric premeasure space ( f i ,5 , v). And having established the 
basic properties of the premeasurable system S  and the premeasure v, we 
investigate the family M l„ of all Lebesgue ^-negligible subsets of Q.

We define an ordered triple (A , Y, Z )  of normed spaces to be a multiplica­
tion system with respect to a given bilinear map (x, y ) —l xy  of A x  Y  into Z  if 
\xy\ <  |x||t/| for all ж G A  and y G Y .  And we consider the space B C iv(D , X )  
of all bounded functions /  from a subset D  of fi into A  which are continu­
ous Lebesgue v -almost everywhere, and the space B V v{S b , Y )  of all finitely 
additive measures from S p  =  {A  6 <S : A  C  D }  into Y  which satisfy 
|/i(A)| <  M v (A )  for some M  >  0 and all A  G S p .

If  A  G S ,  then a finite disjoint family a — (сгг)ге/ in S  is called an 5-division 
of A  if A  =  |Jje/  Oj! and the collection of all such divisions is denoted by V (A ) .  
Moreover, a family r  =  (тг)ге/  in A  is called a tag for a, and the collection of 
all such tags is denoted by T {o ) .  Whenever a  G D (A )  and r  G T { a ) ,  then the
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ordered pair (er, r) is called a tagged ^-division of A, and the collection of all 
such tagged divisions is denoted by V T ( A ) .

If о  =  ((Ti)iç/ G V ( A )  and r  =  (т*)^ / G T (u ) , then the extended real 
number

|(cr,r)|l/ =  sup{diam (a, U {r ,}) : i/(at) ф 0} 

is called the i/-norm of (cr, r ). And the extended real number 

сЦсг, t ) =  sup{d(crt , t,) : u(at) Ф 0}

is called the г̂ -distance of a and r. Moreover, a sequence ((crn,Tn)) in V T ( A )  
is called i/-normal if limn^ool(crn, тп)|„ <  0 .

I f /  : A —> X  and p : S a —► Y , and moreover a =  (cr,)ie/ G B (A )  and 
r  =  (Ti)i6/ G T(cr), then the vector

S { f , l i ,a ,T )  =  ^ / ( т г)р(сгг)
tel

is called the Riemann sum of /  with respect to p  corresponding to the tagged 
division (cr, r ) . Moreover, the function /  is called strongly Riemann ^-intég­
rable with respect to p  if the limit

v - l  f d p  =  lim S ( f ,p ,c r n,Tn)
J a n^ °°

exists for every i'-normal sequence ((crn,r n)) in V T { A ) .
If r  >  0, then the relation

B r = { ( t , s )  G ft2 : d(t, s) <  r}

is called the r-surrounding of the diagonal An- And if А  С  Г2, then the sets

A 0r =  {t G ft : B T(t) C  A}  and A ~ r =  {t G Ü : B T(t) П 4 / 0 }

are called the r-interior and r-closure of A. Note that A ~ r =  B r(A), and 

moreover A 0 =  Ur>o ^ ° Г an(f =  П Г> о ^ _ г -
If /  e B { A , X ) ,  a — (<7i)ie/  G X>(j4) and r >  0, then the extended real 

numbers
Qtr{ f ,v ,a )  =  diam / (cr°r )ь'{аг)

iei
and

И*Г( / ,  ^,cr) =  y ^ d i a m / ( c r1_ r )i/(crt)
ге/

are called the r-size lower and upper i/-oscillations of /  on cr. Moreover, the 
real numbers
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fl* ( / ,  V, o) =  sup fi*r ( / ,  v, o) and f l * ( f ,v ,o )  =  inf 0 *r ( f , v , o )
r>0 r>°

are called the lower and upper t/-oscillations of /  on o. And the real numbers

n * ( f , i / , A ) =  inf Г2„(/,глсг) and 0 * ( f , v , A )  =  inf Çl*(f,v,cr)
aeV(A) <7 eV (A)

are called the lower and upper i^-oscillations of /  on A.
Similarly, if /  € B (A ,  R ), а  =  (<7i)j6/  € V ( A )  and r >  0, then we define

L * r { f ,v ,o )  =  in ff ( ° i  rM * i ) .
iei

U .r U ,V ,o )  = ^ S U p /((7 I°r)l/(CTI),
tei

L *r{f , V, о ) = ^ т{  f (cr°r) i/(<J i ) ,  

iei

U*r ( f ,  v ,o )  =  5 ^ su p /(< 7 ,r '> (< 7 i). 
iei

Moreover, we define

L * ( / , i/ , ct) =  su pL tr( f ,  г/, er),
r>0

Ut { f , i / ,o )  =  supt/*r ( / , j / ,f f ) ,
r>0

L * { f ,v ,o )  =  inf L*r( f ,  is, o),
r>0

U * ( f ,v ,o )  =  m iU * r (f,v ,cx).
r> о

And we define

sup L * (/,i / ,tr ) , 
oev(A)

sup L * ( / ,i / ,f f ) , 
oev (A)

inf
<xev(A)

В Д , inf U * ( f ,  v, <r).

It turns out that f _ rAf d v  <  j * Af d v  <  j~Afd v  <  f^ * fd iy .  Therefore, the 
function /  may be called strongly (resp. weakly) Darboux integrable with 
respect to t/ if J _ t  ̂f d v  =  ff f*  f d v  (resp. f *  xf d v  =  £ ~ f d v ) .

Now, the main results of the paper can be briefly summarized in the fol­
lowing three statements:

T heorem 1
I f  f  € B ( A , X )  for some A  G S ,  then the following assertions are equival­

ent:

(1 ) f  £ B C lM , X ) ;  (2)Г2*(/,1/,Л) =  0; (3) Sl . {f ,v,A)  = 0.

C orollary

I f  f  G B C l „(A , X )  and g  G ÔV1/ (<ÎM,yr) /or some A  € <S, t/ien /  is strongly 
Riemann u-integrable with respect to p provided Z  is complete.
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T heorem 2
I f  f  £ B{A,  K) for some A £ S ,  then the following assertions are equivalent:

( 1 )  f £ B C Lr(A,R);
(2) f  is strongly Riemann integrable with respect to u;

(3) /  is strongly (weakly)  Darboux integrable with respect to v.

The proof of the implication (1 )= ^ (2 )  in Theorem 1 is based upon the 
observation that for each open cover V of A ~  there exist a (a ,) ,e/  £ T>(A) and 
an r >  0 such that the family (ст~ г)*е j  refines V in the sense that for each 
i £ I  there exists a Vt £  V such that o ~ T C  VJ.

While the proof of the above Corollary is based upon the observation that

IS  ( f , p , a , r )  -  S  { f ,p .p ,u>)\ <  П ,г ( / > , p )  \p\„,

whenever (a, r)  and (p, w) are in T>T(A) such that |(ct, t )|„ < г and du(p ,ш) < r .

1. Premeasure spaces

D efinition 1.1
Let D be a metric space, and assume that S  is a nonvoid family of subsets 

of D and V is a function from S  into [0, +oo[ such that:

( 1 ) if A, В  £ S ,  then Л П В е 5 ;

(2) if A. В  £ S  and В  C  A, then there exists a disjoint family in S
such that П

A \ B  =  \ J C p
i=  1

(3) if t £ V  С  О and V  is open, then there exists an A £ S  such that t £ A° 
and А С  V;

(4) if A £ S ,  then A ~  is compact;

(5) if A £ S  and (Л ;)"=1 is a disjoint family in S  such that A  =  ( J "=1 A t, 
then П

v(A ) =
i=  1

(6) if A £ S  and e >  0, then there exist B , C  £ S  such that

B ~  С  A °, A~  C  C °  and iĄ C )  -  v{B ) <  e.

Then the ordered triple (Ç l ,S ,v )  will be called a Lebesgue-Stieltjes type 
metric premeasure space.
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The above definition is mainly motivated by the fact that it is inconvenient 
to start with a higher dimensional counterpart of the following

E xample 1.2
If <p is an increasing function on R, C v is the set of all continuity points of

J v = {[a,ß[: a , ß £ C v, ot < ß},
and

=  A ß )  -  А & )  ( [a,ß[E J v ),

then (R, v7<p, ) is a Lebesgue-Stieltjes type metric premeasure space.
The necessary verifications are left to the reader. Note that the set D v of 

all discontinuity points of ip is at most countable, and therefore =  R  \  D,fi 
is dense in R . Moreover, note that a precise proof of the property (5) requires 
induction on n.

R emark 1.3
In particular J  =  ^7дк and v — пд„ will be called the Lebesgue premeas- 

urable system and premeasure on R, respectively.
Moreover, and vv will be called the Lebesgue-Stieltjes premeasurable 

system and premeasure on R  generated by <p, respectively.

The properties ( l ) - ( 6) listed in Definition 1.1 have several useful con­
sequences. The most immediate ones are summarized in the next remarks.

R emark 1.4
The disjointness property (2), together with the nonvoidness of S ,  implies 

that 0 £ S .
The additivity property (5), together with the finiteness of i/(0), implies 

that //(0) =  0 .

R emark 1.5
The intersection property (1) implies that S  is closed under the formation 

of finite nonvoid intersections.
The base property (3), together with the regularity of fi, implies that for 

each t £  D the family {A ~  : t € A 0, A  G <S) is also a neighbourhood base at t.

R emark 1.6
The properties (2) and (5), together with the nonnegativity of v, imply 

that v{B ) <  u{A) whenever A , B  £ S  such that В  C  A.
Namely, if A , В  and С г are as in (2), then A  =  B  U ( J "_ i  Q ,  and hence by 

(5) and the nonegativity of n, we have v{A) =  u{B)  -I- Х!Г=1 >  v (B ) .
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Remark 1.7
Therefore, in the regularity property (6) we actually have 0 <  г/(Л) — 

v{B) <  e  and 0 <  u (C )  — i '(A ) <  e.

Moreover, by compactness property (4) it is clear that if A, В  and C  are 
as in (6), then there exists an r >  0 such that B ~ r C  A°r and A ~ T C  C °r.

In connection with Definition 1.1, it is also worth considering the following 
notes.

Note 1.8
Example 1.2 would allow us to assume a strengthenig of (2) that for each 

A , B  £ S ,  with В  C  A,  there exists an increasing family (C j)"_0 in S  such 
that Co = B , Cn — A  and Ci \  C i- \  £ S  for all г =  1 , . . . ,  n.

The importance of this latter property seems to lie mainly in the striking 
observation of Halmos [6, p. 31] that this property, together with the property
(1) and the n  =  2 particular case of (5), implies the property (5).

Note 1.9
Example 1.2 would also allow us to assume that for each bounded subset 

В  of ft there exists an A  £ S  such that В  C A.

This boundedness property, together with the compactness property (4), 
would, in particular, imply the completeness and the separability of ft.

Note 1.10
Finally, we note that the properties (1) and (2) can usually be replaced by 

the weaker assumption that for each A, В  £ S  there exists a disjoint family 
(Ci)"=i in 5  such that A \ B  =  U?=i Ci-

Namely, according to [12, Corollary 1.11], this latter property already im­
plies that for each A, В  € S  there exists a disjoint family j in S  such
that А П  В  =  U j l i  Dj.

2. Division properties

To briefly formulate some less trivial consequences of the properties (1 ) -
(6), it is convenient to introduce the following

Definition 2.1
A disjoint family (A j) j£/ in 5  will be called an 5-division of a subset A  of 

ft if A  =  U , e i A r-

Moreover, a subset A  of ft having at least one finite (countable) 5-division 
will be called finitely (countably) 5-divisible.
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R em ark  2.2
Whenever (A ,)ie / is an 5-division of a subset of A , then sometimes it is 

also convenient to say that (A ,) ,e/ is an 5-division in A.

Moreover, for the above mentioned purposes, it is also convenient to in- 
droduce the following

Definition 2.3
I f  (А г)гё/ and (B j ) j e j  are families of sets, then we say that:

(1) (A i) ie i refines (B j ) j e j  if for each г £ I  there exists j  £ J  such that
A i  C  B y ,

(2) (A j)ie / divides (B j ) j e j  if for each j  £ J  there exists I j  С  I  such that 

B j  =  U ie/j A ‘ -

R emark 2.4
Note that if (1) holds, and moreover \ J j e j B j  C  (J ig / Ai and ( jS j)je J  is 

disjoint, then (2) also holds.
While if (2) holds, and moreover ( J ig/ C  U jg j  B j  and (A i)ie i  *s disjoint, 

then (1) also holds, provided that J  ф 0.

Now, we can briefly state the following basic theorem which is certainly 
familiar to the reader.

T heorem 2.5

(1) I f  A  £ S  and (A ,)”=1 is a family in 5 ,  then A \  ( J "=1 finitely 5 -  
divisible.

(2) I f  is a family in 5 ,  then there exists an S-division { B j )”Lj of
u r= i Ai such that (B j ) j L l divides (A,)™=1.

(3) I f  (A i)-^1 is a family in 5 , then there exists an S-division {Bj)*jLx of 
U “ i Ai such that {B j) JL l refines (A i ) ^ j .

Hint. The assertions (1) and (2) can be proved by induction on n. Note, 
for instance, that if (A j)"_1 and (Bj)™=l  are as in (2) and A n+1 € 5 , then

M“j“ l  /  771 \  /  TTl \  /  771

L U . =  ( U  А п +1П в Л  U (  U  B j \ A n + 1)  U ( A n+1 \  U  B 3
i=l 'j=l '  \ = 1 ' ' j= 1

Moreover, by (1) there exist an 5-divison (Cjk)Pk=1 of B j  \  A n+\ for every 
j  =  1 , . . . ,  77i, and an 5-division (D /)^=1 of A n+i \  [ J y - ^ B j .  Therefore, by
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observing that

в '  =  { л п+1 n U ( U { ^ Æ i )  u  ш и  1

is a finite disjoint collection in S  and taking an injection B '  of { l , . . . , m ' }  
onto B'  for some ml G N, we can state that (В' )̂™=1, where B j  =  B ' ( j ), is an 

5-division of A% such that (B j ) ^ _ x divides (A ,)”^ 1.
The proof of the assertion (3) relies on the facts that

OO 00 / 1—1

lJ^i = J41u ( j ( ^ \ U ^
i= l i=2 '  j =1

is a disjoint union and for each i =  2, 3 , . . .  there exists an 5-division (B lic)^t_l

of M U  ÏÀAj.

R emark 2.6
By considering the families ([г- 1 , ^ ) “ ^  and ([0, г-1 [ ) ^ ! , it can be easily 

seen that the assertions (1) and (2) cannot be extended to countable families.
Moreover, it is also worth noticing that if the family (Ai)f2.l in the assertion

(3) is locally finite at a point of Q, then the division ( B j ) <j i l can also be stated 
to be locally finite there.

Now, as an important aplication of Theorem 2.5, we can also prove 

T h e o r e m  2 .7
I f  A  G 5  and V  is an open cover of A ~ ,  then there exist an S-division  

(Ai)2= i of A  and an r >  0 such that (Д ~ Г)Г=1 refines V .

Proof. Since V  covers A~, for each t G A~  there exists a Vj G V such that 
t G Vt- Moreover, since each Vj is open, for each t G A ~  there exists a Ą  >  0 
such that B$t(t) C  Vt. Furthermore, if rt — 2-1 £t for all t G A~, then by the 
base property of 5  for each t G A ~  there exists an At G 5  such that t G A°  
and At C  B rt(t).

Now, since (A°t )teA-  is an open cover of A ~  and A ~  is compact, there 
exists a family ‘n A~  such that A ~  C  U jL i ■ Therefore, we have
A  C  U jL i A tj,  and hence A — U jL i ^  Ft A t j . Thus, by the second assertions 
of Theorem 2.5 and Remark 2.4, there exists an 5-divison (A t)"=1 of A  such 
that (A t )"=1 refines

Moreover, if r =  min {rtj }™_15 then it is clear that (А ~ г)™_х refines V. 

Namely, for each i G { 1 , . . .  , n}  there exists a j  G { 1 , . . .  , m }  such that Ai C  
A tj , and thus
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Ai r =  B r{At) C  B T(A tj) C  B rt. (B rt. (t j )) C  B St. (t j)  C  Vtj .

R emark 2.8
Note that in this case the families (Лг)"=1 and (Л “ )”=1 also refine V , since 

A{ C  A ~  C  A ~ r holds for all г =  1 , . . . ,  n.

Hence, since V =  (-Be/ 3(f ))ten, for each e >  0, is an open cover of A ~  such 
that diam (V ) <  e for all F  £ V , it is clear that in particular we also have

C orollary 2.9
I f  A  E S  and e >  0, then there exists an S-division  (A j)”_1 of A such that 

diam (Ai) <  e for all i — 1, . . . ,  n.

3. Measure properties

The subsequent results are almost standard, therefore the proofs are in­
cluded here only for the reader’s convenience.

L e m m a  3.1
I f  A  E S ,  then

П

(1) v(A i)  <  i '(A) whenever (А г)"=1 is an S-division in A ;
i= 1

n
(2) v (A )  <  Y ! v {Ai) whenever (^4j)"=1 is an S-cover of A .

i=i

Proof. The assertion (1) is an immediate consequence of Theorem 2.5(1) 
and the finite additivity and the nonnegativity of u.

To prove (2), note that if l is as in (2), then A — (J"_ i A iD A .  There­
fore, by Theorem 2.5(2) and Remark 2.4, there exists an «S-division (B j ) 1J L l 
of A  such that (B j refines (A t П A)"=1. Hence, by the finite additivity of 
V and the assertion (1), it is clear that

m n n

v{A) =  '5 2 v { B j )  < * 5 2
j = 1 i=l BjCAi i= 1

By using the above covering properties and the regularity property of v, 
we can now easily show that the finitely additive premeasure v is actually 
countably additive.
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T heorem 3.2
I f  A  G S  and (A ^ -E j is an S-division of A , then

00

„ (А ) =  $ > ( Л ) .
i=i

Proof. Because of the regularity property of v. for each e >  0 there exists 
a B  G S  such that

B ~  С  A  and v{A) — iĄ B) <  e.

Moreover, for each i G N, there exists a Ci E S  such

А г C  C °  and v{Ci)  -  v{Ai) <  e /2 l .

Now, since B ~  C  ( J ^ i  C °  and B ~  is compact, there exists an injective family 
(ik)k=i *n N such that B ~  C  Ufc=i C t° , and hence B  C  Ufc=i Ci*- Therefore, 
by Lemma 3.1(2)

n oo oo

v{A) -  e <  u{B ) <  J 2 ^ C lk) <  5 > ( C . )  <  Ą A J  +  e.
k= 1 i=l i=l

And hence, by letting e —> 0, we can infer that i/(A) <  X}i^i 
The converse inequality is immediate from Lemma 3.1(1).

Now, as a useful consequence of Lemma 3.1 and Theorem 3.2, we can also 
prove

C orollary 3.3
I f  ( A j ) ^  is an S-division in and (B j) 'jL l is an S-cover  o/ U l̂ i A*, then

OO OO

' { B j ) .
i= l j =1

Proof. Note that now we have A , C  ( J j l i  -^i П B j  for ah t € N. Hence, 
quite similarly as in the proof of Lemma 3.1(2), but using Theorems 2.5(3) 
and 3.2 instead of Theorem 2.5(2) and the finite additivity of i/, we can infer 
that v(A i) <  i v (Ai  П B j )  for all г G N.

Moreover, note that now we also have ( J ^ i  C  B j  C  B j  for all j  G N. 
Hence, by using Lemma 3.1(1), we can infer that X ^ i  ^(A^ f lB j )  <  i ' (B j )  for 
all y G N. Therefore, we have

OO OO OO OO OO OO

E " ( a ) < E E  и а  n B j)  =  y ,  E  и л  п ч $ Е  " № ) •
i=l i= l j = 1 j = l  t=l j =1
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Note that Corollary 3.3 is a substantial generalization of not only Lemma 
3.1, but also of Theorem 3.2. Namely, from this corollary, we can at once get

Corollary 3.4
I f  ( A i ) ^  and are S-divisions of the same subset of fi then

OO OO

^iv(Ai)  =  ' (Bj).
i=1 j=1

Remark 3.5
This corollary would in particular allow of an easy extension of и to the 

countably 5-divisible subsets of f2.

Finally, we note that, by using Corollary 3.4, one can also easily prove the 
following monotone continuity property of v.

T heorem 3.6
I f  A  € 5  and (A j)? ^  is an increasing (resp. decreasing) sequence in 5  

such that A — U t^ i A* (resp. A  — fj°^ j A j) ,  then

iy(A) =  lim i' (A{).
i—»00

Hint. Note that if (A i)“ j decreasing and A =  A i, then

OO

A i \  A  =  ( J ( A j  \  A j+1)
i= 1

is a disjoint union. Moreover, by the disjointness property of 5 , there exist an 
5-division (B : )p=1 of A x \  A  and an 5-division (С ^)^'=1 of Aj \  A x+\ for every 
г G N. Therefore, by Corollary 3.4, we have

P OO gj

ha,) - ha) = 5> (в,) = E E "«7“)
j =1 г=1 k=1

OO

=  5 Z (^ (A i)  -  v{A i+ 1)) =  v { A x) -  lim v (A n),
L ‘  n - >  OO
t= 1

and hence u(A)  =  lim v {A n).
n —too

Note 3.7
Note that the above results actually depend only on some of the properties

(1), (2), (5) and (6) of 5  and v.
Moreover, it is also worth noticing that only one half of the regularity 

property of v has been needed to prove the ст-additivity of v.
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The other half of the regularity property of v will be needed to show only 
that the members of 5  have negligible boundaries.

4 . N e g lig ib le  se ts

D efinition 4.1
A point t of Cl will be called ^-negligible if for each e >  0 there exists an 

A E 5  such that t E A and i/(A) <  e.
And the family of all ^-negligible points of v will be denoted by N u.

R emark 4.2
The ^-negligible points of $4 may now also be called the continuity points 

of V.

Namely, because of the corresponding properties of v  and 5 , for any t E Cl, 
we now have t E N v if and only if for each e >  0 there exists a neighbourhood 
V  of t such that v(A )  <  £ whenever A  E 5  such that А  С  V .

Definition 4.3
A  subset A  of will be called Lebesgue ^-negligible if for each e >  0 there 

exists an 5-cover of A  such that K A )  <  £-
And the family of all Lebesgue ^-negligible sets will be denoted by Лk,v •

R emark 4.4
A subset A  of Cl may be called Jordan ^-negligible if for each e >  0 there 

exists an 5-cover (А *)™=1 of A  such that Х)Г=1 K A )  <  £■ And the family of 
all Jordan ^-negligible sets may be denoted by M jv .

Because of 0 G 5  and i/(0) =  0, it is clear that N j „  C  A/l „- Moreover, it can 
be easily seen that N E Лfiv, but N ^ Afjv. Therefore, the converse inclusion 
need not be true.

The basic properties of the Lebesgue ^-negligible sets are listed in the 
following

T heorem 4.5

(1) {t} e N l „ < = *  t E N u;

(2) i f  A  E N l „ and В  C  A , then В  E A/l„;

(3) i f  (A j) ^ 1 is a family in H v, then ( J “ i A  E Яь„-

Hint. Note that if ( A ) ^  is in A £„, then for each e >  0 and г € N there 
exists an 5-cover (A (ijj))|2.1 of Ai such that u (A(i,j)) <  £/ ^ г- Hence,
by taking an injection <p of N onto K 2, we can get an 5-cover ( A ^ ) ) ^
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of U *1  A i such that E * t i  H 4p(k))  =  E f c i  E £ i  <  e. Therefore,
U  “ , ^ € 4  is also true.

Now, as a trivial consequence of the above theorem, we can also state 

C orollary 4.6
I f  A  is a countable subset of N „ then A  G Ml u.

R emark 4.7
Note that in the assertions (1) and (2) of Theorem 4.5, we may write 

in place of A/l„ ■
B ut the family Mj„ is, in general, closed only under finite unions. Therefore, 

we can only state that finite subsets of N v are in Afjv.

To have some larger Lebesgue ^-negligible sets than the countable ones, 
we can also prove

T heorem 4.8
I f  A  € S ,  then A  € Ml v i f  and only i f  v (A )  =  0.

Hint. Note that if A  G then for each e >  0 there exists an 5-cover
° f  A  such that E S i  <  £- Therefore, by Corollary 3.3, we also 

have v(A ) <  e . And this implies that v(A ) — 0.

T heorem 4.9
I f  A  G 5  and e >  0, then there exist an r >  0 and an 5 -cover (-Ai)”=1 of 

drA such that ЕГ=1 <  £•

Proof. B y Remark 1.7, there exist B , C  G S  and r >  0 such that В  C  A °r ,
A ~ r С  C  and l'(C )  — v ( B )  <  e.

Moreover, by the disjointness property of S ,  there exists an 5-division 
(A i)”=1 of C \ B .  Hence, by the finite additivity of v, it is clear that Е Г =1 
=  iĄ C ) - v ( B ) .

Now, since dTA  =  A  T \  A °r, it is clear that дгА  С  С  \  В  =
Moreover, it is clear that ЕГ=1 u(A-i) <  £■

Hence, since д А  — П г>о dr A, it is clear that in particular we also have

T heorem 4.10
I f  A  G 5 ,  then d A  G Ml u ■

Remark 4.11
Note that in Theorems 4.8 and 4.10, we may write Mj„ in place of Ml u ■ 

Now, as a useful consequence of Theorems 4.8 and 4.10, we can also state
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Theorem 4.12
I f  A  £ S  such that i '(A ) ф 0, then there exists an 6 >  0 such that A °T £ 

N l v, and hence A °r Ф 0 for all r G]0, d].

Proof. In this case, by Theorem 4.8, A  £ M iv. Therefore, since A  C  A 0 U 
dA,  by Theorems 4.10 and 4.5, A° £ N l v- And hence, since A°  =  U ^ = i A 0*/", 
by Theorem 4.5, A °s ^ Ml v for some d =  1 /n  with n £ N. Moreover, it is clear 
that A °s C  A °T for all r  G]0, d]. And thus, again by Theorem 4.5, A °T ^ Ml v 
for all r e]0 , d].

Moreover, as some useful characterectizations of Lebesgue ^-negligible sets, 
we can also prove

T heorem 4.13
I f  А  С  П, then A  G M iu if  and only i f  for each e >  0 there exists an 

interior (closure) S-cover of A  such that v (C i)  <  e.

Hint. Note that if A  G H l v , then for each e >  0 there exists an 5-cover 
(A j)“ 1 of A  such that ^ (А г) <  e/2.  Moreover, because of the regularity 
property of i/, for each г G N there exists a Ci £ S  such that A , c  C °  
and v (C i)  — v(A i) <  e /2 1+1. And hence, it is clear that A  C  U S i  C °  and
Y T = ^ C i ) < e .

Now, as an immediate consequence of Theorem 4.13 and Remark 4.4, we 
can also state

Corollary 4.14
I f  A  is a compact subset of fi, then A £ Ml v i f  and only i f  A  £ .

Moreover, by using Theorem 2.5(3) and Corollary 3.3, we can also easily 
prove

T heorem 4.15
I f  A  C  fl, then A  £ Л(l v i f  and only if for each e >  0 there exists a disjoint 

S-cover  ( Д )“ 1 of A  such that <  £•

Note 4.16
Whenever the boundedness property of S  is also assumed, then the family 

(D i) iZ i can also be stated to be locally finite at each point of the set ( J S i  A -  
Moreover, in this case as some extension of Corollary 4.14, we can also 

prove that A  G Afj„ if and only if A ~  £  and A  is bounded.
Or even more generally, A ~  G Ml v if and only if there exists a locally finite 

(disjoint) family (A i)“ : in Mju such that A =  ( J ^ 1 Aj.
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5. A.e. continuous functions and dominated premeasures

Definition 5.1
If X , Y  and Z  are normed spaces over K, where K  =  К or C , and (x, у ) - ł  

xy  is a bilinear map of X  x Y  into Z  such that

\xy\ < ИЫ
for all a: € A  and y 6 Y ,  then the ordered triple ( X , Y , Z )  will be called 
a multiplication system of normed spaces with respect to the above bilinear 
map.

R emark 5.2
Multiplication systems play an important role in advanced calculus. (See, 

for instance, Lang [7, pp. 135, 372 and 455].)
The above definition can be well motivated by the next useful theorem and 

the several important examples listed in [14].

T heorem 5.3
I f  X ,  Y  and Z  are normed spaces over К  and и is a bilinear map of X  x Y  

into Z ,  then и is continuous if and only if there exists a c >  0 such that 
|и(ж,у)| <  c|x||y| for all x  € X  and y  € Y .

R emark 5.4
Note that if the latter inequality holds, then by considering the new norm 

c| I on X  or У , or the new bilinear map c- 1u, the triple ( X , Y , Z )  becomes a 
multiplication system.

Definition 5.5
A  function /  from a subset D  of fl into X  will be called continuous Le- 

besgue V-almost everywhere if the set D f  of all discontinuity points of /  is in
A/L„-

The family of all such functions will be denoted by Cl „ (D ,  X ) .  And the 
family of all bounded members of C i„ { D ^ X )  will be denoted by BC l„ { D ,X ) .

R emark 5.6
Quite similarly /  may be called continuous Jordan ^-almost everywhere 

if D f  € M jv. Moreover, the family of all such functions may be denoted 
by C jv{D, X ) ,  and the family of all bounded members of C jl/( D , X )  may 
be denoted by B C jw( D , X ) .  Clearly, C j „ ( D , X )  C  Cl v( D , X ) ,  and hence 
B C ju (D , A )  C  BC l „ (D , X ) ,  but the converse inclusions are not true in general.

Among the several useful properties of a.e. continuous functions estab­
lished in [14], we shall only mention here the following
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T heorem 5.7
The family BCl v{ D , X ) ,  with the pointwise linear operations and the uni­

form norm, is a normed space such that BC l u{ D , X )  is complete whenever X  
is complete.

Hint. Let B ( D , X )  be the family of all bounded functions from D  into 
X.  Moreover, for each t G D ,  let Ct(D , X )  be the family of all functions from 
D  into X  which are continuous at t , and let BCt(D , X )  be the family of all 
bounded members of Ct(D , X ) .

Assume that /  G B { D , X )  and ( / n) is a sequence in BCl v[ D , X )  such that

lim \ f n -  f \ u =  0 ,
п—юо

and define

C f  =  { t e D :  f e C t( D , X ) }  and D f  =  D \ C f .

Then, by the closedness of B C t ( D ,X )  in B ( D , X ) ,
OO 00

P i  C f n С  С / ,  and hence D j  C  U *>/-■
n=l n=l

Moreover, we have D f n G N l u for all n G N, and hence by Theorem 4.5, 
D f  € M i„.  Therefore, /  G BCLl/( D , X ) .  Consequently, BC l„ { D , X )  is also 
closed in B ( D , A ) .

R emark 5.8
Note that the normed space B C jv( D , X ) need not be complete even if X  

is complete.

D efinition 5.9
If D  С  П and p. is a function from

S D =  {A G S  : A c  D }

into Y  such that:
(1) if A G S p  and (A j)"=1 is an 5-division of A, then

П

м(А) =  5 > ( Л ) ;
i=I

(2) there exists an M  >  0 such that for all A  € S p

Н А ) I <  M v (A )\

then p  will be called an У -valued ^-dominated premeasure on Sp-  
And the family of all such premeasures will be denoted by BVu{ S p ,Y ) .
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Example 5.10
Take D  — [a, ß[E J , and let д be a function of bounded variation from 

D ~  into Y . And define <p9{t) =  0 for —oo <  t <  a ,

t
ip9{t) =  V(g) for а  <  t <  ß

and <pq(t) =  ß {g) for ß <  t <  Too. Moreover, define

S[) =  ff(S) _  9 if) ([ )̂ {îjipg) d ) ■>

where J Vg is as in Example 1.2. Then p g e  B V Vvg( { J Va) D ,Y ) .
In particular, it is clear that if g is a Lipschitz function from D ~  into Y ,  

then Цд € BV v( J d , Y ) .

Remark 5.11
Note that if ot <  t <  s <  ß, then

ls(s) -  9(t)I < \ (9 )  =  Vg H  -  fg(t).

Therefore, Cpg П [or, jS] C  Cg. Moreover, by [7, p. 225], the converse inclusion 
is also true.

Definition 5.12
If Ц G B\>v( S d , Y ) ,  then the number

H „  =  inf{ M  >  0 : \fi{A)\ <  M u {A )  for all A  € S D } 

will be called the v -uniform norm of g.

Remark 5.13
If Ц E B V „ ( S o ,Y ) ,  then 1̂ 1,, is the smallest nonnegative number such that

И ^ )|  <  \p\uv(A)

for all A E S o -
Namely, by the above definition, we have |/r(A)| <  ( \ц\„ T  £)v{A)  for all 

A E S o  and £ >  0, whence by letting e —> 0, the stated inequality follows.

Now, because of the complete analogy of the space BV1/(S d , Y )  to the space 
C ( X ,  Y )  of all bounded linear maps from X  into Y  [7, p. 359]. it is clear that 
the following theorem is also true.

T h e o r e m  5.14
The family B V u( S d , Y ) ,  with the pointwise linear operations and the u- 

uniform norm, is a normed space such that BV1/ (S d , Y )  is complete whenever 
Y  is complete.
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R emark 5.15
Moreover, it is also worth mentioning that the cr-additivity, and the con­

tinuity and regularity properties of v  are inherited by the г̂ -dominated pre­
measures [14].

6. Oscillations and approximating sums

D efinition 6.1
If /  : D  C  fi - i  X ,  E  С  О and t G fî, then the extended real numbers 

u>f{E) =  diam ( f ( E ) )  and o>y(t) =  inf c j f (B r(t))
r> 0

will be called the oscillations of /  on E  and at t , respectively.

R emark 6.2
Note that o jj(E )  =  — oo if D  П E  =  0; 0 <  u ) f ( E ) <  +oo  if D  D E  ф 0; and 

u )f(E ) <  2|/|u <  -boo if /  is bounded.

The importance of the oscillations taken at points lies mainly in the next 
simple

P roposition 6.3
I f  f  : D  C  fi  —> X  and t G D ,  then f  is mutinous at t i f  and only i f

D efinition 6.4
If A  G S ,  then the collection of all finite 5-divisions of A  will be denoted

by V (A ) .
Moreover, if /  G B ( A , X ) and a  =  (стг) ,6/ G V ( A ) ,  then the real numbers

will be called the i/-oscillations of /  on a and A , respectively.

R emark 6.5
Note that 0 <  Wf(ai) <  2 \ f \u, whenever Oi Ф 0. Therefore, because of 

V >  0 and г/(0) =  0, we have

Now we may also naturally introduce the following more complicated 

D efinition 6.6
If /  G B ( A , X ) ,  о =  (<Tj)i€j  G V {Ä )  and r >  0, then the extended real 

numbers

ujf(t) =  0 .

Q (/,i/,c r ) =  'y~' ujf(<7j)i'(cri) and D ( / ,  is, A) 
ie i

inf Ç l ( f ,v ,a )  
cr̂ V (A) V У

0 <  n ( f , v , A )  <  n ( f , u , a )  <  2 \ f \uv(A).
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to *r{f ,v ,o ) =  and i r T( f , v , o )  =  r)i/(crt)
i e l  i€ /

will be called the r-size lower and upper ^-oscillations of /  on o. 
Moreover, the real numbers

Q + ( f ,v ,e )  =  sup fi*r ( / ,  1/, o)  and ü * ( f ,u ,o )  =  inf fi*r( / ,  v, o)
r>0 r>°

will be called the lower and upper (/-oscillations of /  on cr.
And the real numbers

Ç l A f , v , A ) — inf Q * (/, I/, o)  and f l * ( f , n , A ) =  inf 1/, cr)
<?ev (A) <rev(A)

will be called the lower and upper (/-oscillations of /  on A.

R emark 6.7 
Note that

0 <  UJf ( o ° r ) <  u f { o i )  <  ujf {o~T) <  2 \ f \u 

whenever o °r Ф 0. Therefore, by Theorem 4.12, we have

0 <  Q»r{f,v,<j) <  Q ( f , i / ,o )  <  Q*r( f , n , o )  <  2|/|ui/(A) 

for all sufficiently small r >  0. And hence, we can now easily infer that 

0 <  fl*(/,i/,cr) <  Q(/,i/,cr) <  Q* (f , v, cr) <  2|/|ui/(A),

and thus

0 < //, A) <  i/, A) <  n * ( f ,  i/, A) <  2|/|ui/(A).

D efinition 6.8
If <7 =  (Oi)ie i  € D (A ), then the collection of all families r  =  (т ;),е/  in A  

will be denoted by T ( o ) .  And the collection of all families r  =  in A
such that Ti G сгг, whenever i/(er,) Ф 0, will be denoted by Cv(o).

Moreover, the collection of all ordered pairs (cr, r )  such that o  G V {A )  and 
г  G T {o )  will be denoted by V T { A ) .  And the collection of all ordered pairs 
(cr, r )  such that cr G T>(A) and r  G С„(о)  will be denoted by V C U(A).

R emark 6.9
If T  G T (ff), then we shall say that r  is a tag for cr, and (cr, r ) is a tagged 

iS-divisiori of A. While if r  G Cu(o), then we shall say that r  is a i/-choice for 
cr, and (a, r ) is a i/-choiced 5-division of A.

Now, by making use of the multiplication system ( X , Y , Z ) ,  we can also 
introduce the following
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D efinition 6.10
If A  G S ,  f  : A  —t X  and p : S a —t Y ,  and moreover а  =  (cr^ie/ € V (A )  

and т — {Ti)i£i G 7 » ,  then the vector

S  { f ,  P, сг,т) =
t e /

will be called tbe Riemann sum ol /  •with, respect to  p corresponding to the 
tagged division (<r, r ) of A

To define limits of the above approximating sums, we shall also need 

D efinition 6.11
If er =  (сгг)ге/ € and r  =  (Tj),g/ € 7”(cr), then the extended real

numbers

H „  =  sup{diam(cr,) : г/(ст,) Ф 0}

and
|(cr, t )|„ =  sup{diam (сгг U {г*}) : и(а{) ф 0} 

will be called the v -norms of a  and (er, r ). And the extended real number 

du (o', r ) =  sup {d(«7i, Tf) : v(oi) ф 0} 

will be called the ^-distance of a  and r .

R emark 6.12
Note that -o o  <  \a\„ <  |(ct, r)|„ <  +oo and

-o o  <  du(o, t ) <  \(o , t ) \u <  \a\u + d u ( o ,T ) <  +oo

such that Icr|„, \(o, t)|„ or d„(cr,T) equals -o o  if and only if v(A ) =  0, and 
dv (a ,r )  <  0 if т G C„(o).

The above unusual definitions are mainly motivated by the next useful 

T heorem 6.13
I f  A  e  S ,  f  G B (A , X )  and p  G  BVv(S a , Y ) ,  and moreover € V T ( A )  

and (p,u>) G V T (A) such that |(cr, t )|„ <  r and du(p,w) <  r, then

|S  ( f , p , a ,  t )  -  S  ( f , p , p , u )  I <  Q*r ( / ,  о, p) \p\„.

Proof. If cr =  (Oi)i€i , г  =  (ri)i6/ ,  p =  (p j ) j e J  and cj =  ( u i j ) j & j ,  then it is 
clear that, for each i G I  and j  G J ,

v(oi П pj) Ф 0 = * •  Ti,ujj € B r(pj).

Namely, if v (a г П p j ) ф 0, then i/(ai) ф 0 and v(pj) ф 0, and thus diam (cq U 
{r ,}) <  r and d(pj,u)j) <  r. Moreover, cq П pj ф 0, and therefore d(pj,Ti) <  r 
also holds.
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On the other hand, it is clear that, for each i € I  and j  G J ,

and thus

(а, П pj)je j  £ 'D(oi) and (ст* П pj)ieI £ V(pj),

P (° i )  =  X  П Pi) and A*(Pi) =  X ^ ff< П р ^ -
j e J  iei

Therefore, we have

IS  ( f , p , o , T )  -  S { f ,n ,p ,w ) \  = X /(r»)̂(̂i) - X ffajMpj)
ie i j e J

X X № * )  ~ /К)) П  pj)
ie i j e J

te/ j e J

<  X X i/(t*) ~  / ( wi)i  i/i i«/i/(cr* n  Pj)
16/

< X X (Br(Pj)) n pj)
ie / j e J

=  ^ 2 ш/  (B r { p j ) ) \p \^ { p j )
j e J

= Wr (f,v,p) \p\v.

7. Oscilation characterizations of bounded 
a.e. continuous functions

The following theorem is of fundamental importance for our integration
procedure.

T heorem 7.1
I f  f  £ B C i v(A, X )  for some A £ S ,  then 0 * ( f , v , A )  — 0.

Proof. Define

C  =  { t £ A :  f £ C t( A , X ) }  and D  =  A \ C ,

where Ct(A, X )  is the family of all functions from A  into X  which are continu­
ous at t. Then, by Theorems 4.10, 4.5(3) and 4.13, for each e >  0, there exists 
an interior «S-cover (A j )^S;1 of D  U dA  such that
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Y ^ v ( A j)  <  e.
j = i

Moreover, by Proposition 6.3, for each t £  C ,  there exists a <5f >  0 such that

№ ,(« ) )  <  e.

Now, it is clear that

C = {A°j }f=1U{BSt(t)}teC

is an open cover of A ~ . Thus, by Theorem 2.7, there exist a division а  — 
€ B ( A )  and an r >  0 such that K ~ rW  refines C. Define

I l  =  { i  E 1 : 3 j  : Oi C  A j}  and / 2 =  I  \  I \ .

Then, by Lemma 3.1(1), it is clear that

OO OO

J 2  и(<°г) <  <  e-
ieh j= l  UiCAj j —1

Moreover, since (ai )ie / refines C , for each г £ /2 there exists a <г £  C  such 
that a ~ T C  B$t (tt). Therefore,

Uf{o~T) < и >f(BSt.(ti)) < £

for all г £  / 2.
Now, since LOf(a~r) <  2 \ f \u and u(a i) =  p {A )i it is clear that

ieh ieh

<  ^ 2  2 \ f \uv{(Ji) +  ^ 2  eb'(fft) <  2|/|ue +  ev(A).  
ieh ieh

Therefore,

n * ( f , v , A ) < 2 ( \ f \ u  +  H A ))e ,

and hence f i* ( / ,  1/, A)  =  0.

Moreover, as a certain converse to Theorem 7.1, we can also prove the 
following less important

T heorem 7.2
I f  f  £ B ( A , X ) for some A  £ S  such that Г2* ( / ,  v, A) =  0, then f  £ 

BCLM , X ) .
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Proof. Define again

C  =  { t e A :  f e C t{ A ,X ) }  and D  =  A \ C ,

and moreover
D n =  {t G A : ujf(t) >  n -1 } 

for all n G N. Then, by Proposition 6.3, it is clear that
OO

D  =  ( J  D n.
П =  1

Therefore, by Theorem 4.5(3), it is enough to prove only that D n G for
all n G N.

Since П * (/, V, A) =  0, for each e >  0 and n G N there exists а о — {oi)i^i G 
V ( A )  such that for all r >  0

X ^ / ( CTt°rM CTt) <  (2n) xe.
iei

Now, since

A  =  | J oi C  ( J  cr“ r =  ( J ( a ° r U Э т о , ) ,

i€l ie l  iel
it is clear that

where
Jr =  { i e l :  о °т П D n ф 0}.

Moreover, by Theorem 4.9, it is clear that there exist an г >  0 and an 5-cover
m

of (J  drOi such that v(Ak)  <  2~xe. Therefore, it is enough to 
iel k=1

show only that <  2_ 1e.
iCJr

For this, note that if i G J r, then there exists a f, G i l  such that /г G o °r 
and ti G D n, and hence

B r(ti) C  Oi and w /(tj) >  n l .

Now, by taking s =  2_ 1r, it is easy to see that B s(ti) C  o°3, and thus 

n ~ l <  UJf{ti) <  UJf(Bs(ti)) <  Wf{o°3).

Therefore, we also have

^ 2  v{o i) =  n ^ 2  n ~ xv(oi) < n ^ T u j f ( o ° 3)i;(oi) < 2~l e. 
iE Jr iE Jr iE I
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Now, as an immediate consequence of Theorems 7.1 and 7.2 and Remark 
6.7, we can also state

Corollary 7.3
I f  f  6 B ( A , X )  for some A  6 S ,  then the following assertions are equival­

ent:

Remark 8.2
Note that, by Corollary 2.9, such normal sequences exist for every A  G S .  

Definition 8.3
If A  €  S ,  /  : A  —> X  and p : S ą  —> Y  such that for each ^-normal sequence 

((ay,, r„)) in V T { A )  the sequence ( S ( f ,  p , an, ту,)) converges in Z ,  then /  will 
be called strongly Riemann i/-integrable with respect to p  over A.

To define the corresponding integral, we must prove 

Lemma 8.4
I f  A  €  S ,  f  : A  —> X  and p : S ą  —> Y  such that f  is strongly Riemann  

v-integrable with respect to p , and moreover ((a n,r n)) and ((pn,u>n)) are v-  
normal sequences in T>T(A), then

Then ((<5n, £n)) is also a i^-normal sequence in V T ( A ) .  And thus, the sequence 
(S ( f , p , ô n,Çn)) is also convegent. Now, since

(1) /  G B C l „ ( A , X ) ; (2) n * ( f , v , A )  =  0;

(3) 0 (J > ,A )  =  0; (4) i l . ( f ,v ,A )  =  0.

8. A strong Riemann integral

Definition 8.1
A sequence (a„) in ~D(A) will be called i'-normal if

limr,_>oo|0'n|b' Si 0.

Likewise, a sequence ((a n, t„ ))  in V T { A )  will be called i/-normal if

l im n_>ooI(<7n> 7h )|i/ S  0.

lim S { f , p , o n,Tn) =  lim S { f , p , p n,ujn).

Proof. For each n G N, define

S { f , p , a n,Tn) =  S { f , p , 6 2n- i , 6 n -i)
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and

S{f,ß,Pn,Un) = S{f,p,62n,bn)

for all n, it is clear that the corresponding sequences have the same limit.

Now we may also have the following straightforward 

Definition 8.5
If A  £  <S, /  : A  —> X  and g : S a —> Y  such that /  is strongly Riemann 

//-integrable with respect to /i, then the limit

where ((оп,тп)) is a v-normal sequence in V T ( A ) ,  will be called the strong 
Riemann //-integral of /  with respect to p  over A.

R emark 8.6
Now if A  =  [a, ß[£ J ,  f  : A  —» X  and д : A ~ —>■ V ,  then we may also 

define

exists in the sense of the above definition.

A  simple reformulation of Definition 8.5 yields 

T heorem 8.7
I f  A  G S , f  : A  —t X , p  : S a —> V  and S  €  Z ,  then the following assertions 

are equivalent:

Moreover, by supposing that the normed space Z  in the multiplication 
system (X , Y, Z )  is complete, we can also easily prove

T heorem 8.8
I f  A  G S ,  f  : A  —> X  and p  : S a —t Y ,  then the following assertions are 

equivalent:

whenever the latter integral, where

/*s([M[) = 9 ( s )  - g ( t )  { [ t , s [ e J A),

(1) S  =  u-fA f d p ;

(2) for each e >  0 there exists a S >  0 such that

I S ( f , p , a , T )  -  S I <  e

whenever (o, r )  £ V T ( A )  such that |(сг, т)|„ <  5.
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(1) /  is strongly Riemann v-integrable with respect to p;

(2) for each e >  0 there exists a ô >  0 such that

\ S { f , p : a ,r )  -  S ( f , p , p , u )I <  e

whenever (cr, r) and (p,w) are in V T ( A )  such that |(cr, т)|„ <  <5 and 
I (P,w)|„ <  6.

Hint. If  the assertion (2) does not hold, then there exists an e >  0 such 
that for each n  G N there exist (crn, rn) and (pn, wn) in V T ( A )  such that 
|(<7,t)|„ <  1 /n  and \(p,w)\v <  1 /n  and

IS {f ,p ,< 7 n,Tn) -  S { f , p , p n , u n)\ >  e.

And hence, if (1) holds, then by letting n  —> oo, we can immediately arrive at 
the contradiction 0 >  e. Therefore, the implication (1 )= > (2 )  is true.

Remark 8.9
By using Theorem 8.8, we can easily prove that if A  G S  and /  : A  —i X  

such that /  is strongly Riemann integrable with respect to v, then there exists 
an r >  0 such that /  is bounded on the set В ~ т П A  for all В  6 «Sa with 
diam (В ) <  r and v{B ) Ф 0.

Moreover, by using Theorems 7.1, 6.13 and 8.8, we can now also easily 
prove the next fundamental

T heorem 8.10
I f  f  € B C l v{ A ,X )  and p  G B V „(S a , Y )  for some A  G <S, then f  is strongly 

Riemann и -integrable with respect to p.

Proof. Now, by Theorem 7.1, we have f l * ( f , v ,A )  =  0. Therefore, by 
Definition 6.6, for each e >  0 there exists a p G V ( A )  and an r >  0 such that

П*г(/,* ',р )< (2 (И , + 1))"1е.

Hence, by Theorem 6.13, it is clear that if и  G С„(р), then 

IS { f , p , a , r )  -  S { f ,p ,p ,w )  I <  2_1e 

whenever (а,т) G V T { A )  such that | (cr, r)|„ <  r. Therefore,

IS ( f , p , a , r )  -  S { f ,p ,6 ,Z ) \  <  \ S { f , p , a , r ) -  S ( f , p , p , u ) \

+1 S ( f , P , P , u )  -  S ( f , p , S , 0 \  <  £,

whenever (cr, r ) and (J ,£ )  are in V T { A )  such that |(cr, t )\v <  r and |(5,£)|i/ <  r. 
And thus Theorem 8.8 can be applied.
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Remark 8 .11
Now if A  6 S  and /  is a bounded function from A  into M such that

9(t) =  v ( f  1 Ü M D )

exists for all t € [a,/?], where —oo <  а <  inf f ( A )  and sup f { A )  <  ß  <  +oo, 
then we may also define

[  f d v  =  ß v(A ) -  [  g(t)dt, 
J  A Ja

which is certainly the usual Lebesgue integral of /  with respect to v whenever 
S  is closed under countable unions.

9. Lower and upper aproximating sums

For real valued functions, we may also consider the lower and upper ap­
proximating sums.

Definition 9.1
If /  6 B (A .  R) and о — (сгг)ге/ €  V { A ) 1 then the real numbers

L ( f , v , a )  = ^ 2 ' m { / ( о г)и(ог) and U (f ,v ,cr )  = ^ s u p / ( c r l)^ (a I) 
iei iei

will be called the lower and upper Darboux sums of /  with respect to v 
corresponding to o.

Moreover, the real numbers

L
f d v  =  sup L ( f ,  V, o) and /  f d v  =  inf U  ( / ,  v, o)

-A oev{A) J a crev(A)

will be called the lower and upper Darboux integrals of /  on A  with respect
to V.

R e m a r k  9 .2  
It is clear that

L { f ,v ,o )  <  S ( f , v ,  o , t ) <  U { f ,  v ,o )

for all (ct, t ) £ V C U{A). Moreover, it can be easily seen that

L ( f ,  " ,  o) <  L ( f ,  " ,  P) and U ( / ,  v,p) < U ( / ,  v, a)

whenever o, p € T>(A) such that p divides (refines) a.
Therefore, if о =  (стг)ге/  and p =  {p3) j e J  are arbitrary members of V (A )  

and 6 =  о  A  p =  ( o i  П  P j ) ( i  j ) ç . j x j i  then we also have

L { f ,v , ( j )  <  L ( f , v , S ) <  U ( f ,v ,6 )  <  U ( f ,v ,p ) .
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And hence it is clear that

fdu .

Now, we may also naturally introduce the following more complicated

D efinition 9.3
If f  £ B (A ,  M), а  =  (<7j)jg / 6 'D(A) and r  >  0, then we define

L*r{f ,  V, cr) = Х > / К -
i e i

U „ ( f , v , a )  = ^ s u p / ( c r l°r)i/(a i),
i e i

Moreover, we define

L*r{ J ,v ,o )  = 5 ^ i n f / ( a l0rMCTi), 
i e i

U*T{ J ,v ,o )  = ^ s u p / ( < T l_ r )i/(a i). 
i e i

L * ( f ,  v,cr) =  su pL tr( f , v , a ) ,
r > 0

u * { f , V,cr) =  sup U ,r ( f , v , a ) ,
r> 0

L * {f ,  V, cr) =  inf L*r( f , is, a ),
r>0

U * ( f ,v ,a )  =  inf[U*r ( / ,* / , a).
r>0

And we define

sup L t ( f , v , a ) ,
<re v \ a )

inf
a e V ( A )

U . ( f ,

=  sup L * { f , i / ,a ) ,  
<re v{A)

inf U * ( f , is ,a ) .  
a  e V ( A )

R emark 9.4 
Note that

inf/(<7j r) <  in f/(a » ) <  in f / ( a ° r) <  s u p /(a ° r) <  s u p /(a j)  <  sup r) 

whenever a °r ф 0. Therefore, by Theorem 4.12, we have

L*r{f , iy ,o )  <  L ( f ,  V, a) <  L*r( f , v , o )  <  Utr{ f ,  v ,a )  <  U ( f , v , a )  

< U * r( f , v , a ) ,

for all sufficently small r >  0. And hence it is clear that 

L*{f ,v,o)  < L ( f , u ta) <  L*( f ,v ,a)  <  U. ( f , v ,a)  < U( f , v , a )  <  U*{f ,v,o) .  

On the other hand, it can be easily seen that

L*r( f , v , a )  <  L*r( f ,  г/, p) and U „ ( f , u , p )  <  U ,r ( J , v , a )

for all r >  0, and hence



Oscillation and integration characterizations of bounded 167

L * { f ,v ,o )  <  L * { f ,v ,p )  and U * ( f ,v ,p )  <  U » { f ,v ,o )

whenever cr,p G V {Ä )  such that p divides (refines) er.
Therefore, if o, p E Î?(A ) and 6 =  ct A p, then we also have

L ' U , u , o )  <  L ' ( f , v , 6 )  <  U *(f ,  v, Ó) <  Ut ( f ,v ,p ) .

And now it is clear that

[  f d v <  f  
J - * Л J - .

f d v  < [  f d v  <  f  f d v  <  [  f d v  <  [J-A J*A Ja Ja fd v .

10. Integral characterizations of a.e. continuous functions

T heorem 10.1
I f  f  £  B (A ,  R ), for some A £ S ,  such that f  is strongly Riemann integrable 

with respect to v, and (ct„ ) is a v-normal sequence in V { A ) ,  then

/  f d v =  lim L * ( f , v , o n) and /  f d v =  lim U * ( f , v , o n).
Ja n̂ °° Ja n̂ °°

Proof. B y  Definition 9.3, it is clear that for each n G N there exists an 
rn g ]0, n -1 ] such that

0 <  L * ( f ,  v, on) -  L trn ( / ,  v, on) <  n ~ l .

Namely L*T( f ,  v, a) is a decreasing function of r.
Moreover, it is clear that for each er„ =  (стпг)г-е /п there exists a family 

тп =  (rnj)te/n in A such that

T„i G егТГп and 0 < / ( r ni) -  in f/(e r“ rn) <  n _1

whenever oni ф 0. Therefore

0 <  S ( f ,  v, on, тп) -  L*r„ ( / ,  v ,o n) <  n ~ 'v (A )

for all n G N.
Consequently, we have

\ S ( f ,  v, crn, r„) -  L * ( / ,  V ,a n )\ <  n_1 ( l  +  v{A))

for all n G N. And hence, by letting n —»■ oo, we can at once get the first 
statement of the theorem. Namely, ((crn, r^)) is a ^-normal sequence in V T ( A ) .  

The proof of the second statement is quite similar.

Now, as an immediate consequence of Theorem 10.1, we can also state

T heorem 10.2
I f  f  G B (A ,  M), for some A  G S ,  such that f  is strongly Riemann integrable 

with respect to v , then
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Proof. If (ап) is a i^-normal sequence in V { A ) ,  then by Definition 9.3 and 
Remark 9.4 it is clear that

for all n G N. And hence, by using Theorem 10.1, we can immediately get the 
required equalities.

Remark 10.3
Therefore, if /  € В  {A, E) is strongly Riemann integrable with respect to 

и, then /  is also strongly Darboux integrable with respect to v  in the sense 
that

Moreover, as a certain converse to Theorem 8.10, we can also prove 

T heorem 10.4
I f  f  G ß (A ,M ), for some A  G S ,  such that f  is weakly Darboux integrable 

with respect to v in the sense that

then is, A) =  0.

Proof. If I  denotes the common value of the above integrals, then by 
Definition 9.3 and Remark 9.4, for any e >  0, there exists a a — (o i)ie / G D (A )  
such that

I  -  e <  L * ( f , v ,a )  and U * ( f , v , a ) < I  +  e.

Hence, again by Definition 9.3, it is clear that

I  -  £ <  L*r( f ,  v ,o )  and Utr( f , i ' , a ) < I  +  £ 

for all r >  0. Therefore, under the notations

m ir =  inf /  (cr°r ) and M iT =  sup /  (o °T ),

L * (L  °n

we have

2̂ iMir - mir)u{ai) = Utr{f, o') - L*r{f, v,o) <e
iei

for all r >  0. Hence, since
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w / ( a ° T )  =  SUP I/ ( * )  ~  / ( s)l <  M I T  -  m i r ,
t,s€c°r

it is clear that
O ,r( f ,n ,o )  =  £ > / K rM - t) <  e 

iei

for all r >  0. Therefore Г2„(/, ь», ст) <  e, and hence f l t ( f , v , A )  <  e. Con­
sequently, П * (/, г/, A) =  0.

Now, as an immediate consequence of Theorems 8.10, 10.2 and 10.3, we 
can also state

C orollary 10.5
I f  f  € B (A ,  R) for some A  6 S ,  then the following assertions are equivalent:

(1) / е в С ь М Л ) ;
(2) /  is strongly Riemann integrable with respect to v;

(3) /  is strongly (weakly) Darboux integrable with respect to v.

R emark 10.6
The implication (2 )= > (1 )  is certainly not, in general, true for A’-valued 

functions.
Namely, according to Graves [5] there exists a Riemann integrable function 

from [0,1] into В  ([0 ,1],M) which is everywhere discontinuous.

A ck n o w led ge m en t

The author is indebted to Zoltan Daróczy, Zsolt Pâles and Péter Battyânyi 
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